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1. Introduction

From the standpoint of magnetic properties, iron borate FeBO3

is an easy plane antiferromagnet, possessing a weak in plane fer
romagnetic moment. Iron borate has rhombohedral calcite struc
ture of point group symmetry D3d and the space group D6

3d [1].
The effective basal (hexagonal) magnetocrystalline anisotropy
energy for FeBO3 can be expressed as follows [2]:

EA eeff cos 6u ð1Þ
where u is the azimuthal angle of the antiferromagnetic vector and
eeff is the effective basal anisotropy constant,

eeff eFeBO3 þ
1
4
d2
FeBO3

aeff
; ð2Þ

dFeBO3 and eFeBO3 being the basal magnetocrystalline anisotropy con
stants and aeff being the effective uniaxial magnetocrystalline aniso
tropy constant,

aeff aFeBO3 þ
D2

FeBO3

EFeBO3

: ð3Þ
In the latter equation aFeBO3 ;DFeBO3 and EFeBO3 are, respectively,
the uniaxial magnetocrystalline anisotropy, Dzyaloshinskii
Moriya and exchange constants for FeBO3.

As far as for Fe3+ (3d5 electronic configuration) the orbital
moment equals zero, the exchange energy in a good approximation
is isotropic [3], so that the magnetocrystalline anisotropy energy of
FeBO3 includes only crystal field (cf) and dipole dipole (dip) terms:

aFeBO3 acf þ adip
dFeBO3 dcf þ ddip

eFeBO3 ecf þ edip

ð4Þ

The crystal field contributions to the abovementioned constants
have been calculated by Seleznev in the mean field approximation
[4]. Indeed, the effective exchange field HE in iron borate is in order
of 103 kOe, thus, Fe3+ ions experience strong exchange coupling [5].
The crystal field contribution to the anisotropic part of the magne
tocrystalline anisotropy energy can be calculated in perturbation
theory using the spin Hamiltonian for isolated Fe3+ ion in a dia
magnetic crystal isomorphous to iron borate, e.g., gallium borate
[6,7]. Thus, acf ; dcf and ecf can be expressed through the parame
ters of the spin Hamiltonian. The corresponding expressions will
be given and the parameters will be specified in the next Section.

The dipole dipole contributions to these constants are usually
calculated using the lattice sum method. The value of
adip 3:82 105 Jm 3 at 0 K for FeBO3 has been obtained previously
[8]. aFeBO3 has been determined by antiferromagnetic resonance



(AFMR) in a wide temperature range by Velikov et al. [9]; its value
extrapolated to 0 K is aexp

FeBO3
3:29 105 Jm 3.

Earlier, the occurrence of the dipole dipole contribution to
hexagonal basal anisotropy in iron borate had been ruled out on
the grounds of symmetry. Indeed, the dipole dipole interaction
energy is usually considered for ‘‘point dipoles” having a negligible
size, in which case only the uniaxial anisotropy is accounted for.
Meanwhile, more sophisticated anisotropies, in particular, the
hexagonal magnetocrystalline anisotropy can be described by
higher than first order terms in the expansion of the dipole
dipole interaction energy in a Taylor series in the small parameter
dipole size/interdipole distance. Thus, taking into consideration
‘‘extended dipoles”, having non negligible size, opens the possibil
ity to reasonably account for the dipole dipole contribution to the
basal anisotropy constants and, subsequently, to estimate effective
dipole dimensions in iron borate.

With this aim in mind, we have developed a theoretical descrip
tion of two models of the extended magnetic dipole: (1) an assem
bly of two fictitious ‘‘magnetic charges” �q a distance d apart and
(2) an Ampérian current, i.e., a circular current loop of a radius R

delimiting an area S pR2. Previously, we have obtained and dis
cussed the expressions of vector potentials and magnetic fields
produced by these two models [10]. The purpose of the present
work has been to calculate the dipole dipole contribution to the
basal magnetocrystalline anisotropy constants of iron borate and
to evaluate the size of dipoles in FeBO3 in the framework of the
suggested models.
2. Crystal field contribution to magnetocrystalline anisotropy

In order to calculate the crystal field contribution we have to
consider a Fe3+ ion in a diamagnetic crystal isomorphous with
FeBO3. The conventional spin Hamiltonian in this case is [11,12]:

H gbH � S þ 1
3
DO0

2
1

180
ða FÞO0

4 þ
2

p

9
að�O3

4 sin 3a

þ O 3
4 cos 3aÞ ð5Þ

where g is close to the free electron g factor ge 2:0023, b is the
Bohr magneton, H is the magnetizing field, S 5

2 is the electron spin
of Fe3+, D is the second order axial fine structure constant, a and F
are, respectively, the fourth order cubic and axial fine structure
Fig. 1. Two non-equivalent sites of Fe3+. ðx; y; zÞ is a Cartesian coordinate system with xkC
and the three-fold axis [1]. The z-axis is perpendicular to the plane of the figure and poi
below this plane, respectively.

2

constants and O0
2; O

0
4; O

3
4 and O 3

4 are extended Stevens operators,
as defined in the textbook by Al’tshuler and Kozyrev [13]. The �
signs refer to two non equivalent iron sites with local magnetic
axes rotated through the angle �a about the C3 axis, see Fig. 1.

The spin Hamiltonian parameters of Fe3+ in diamagnetic GaBO3

have been determined previously by Lukin et al. [11] and recently
specified by Seleznyova et al. [12].

Seleznev has obtained the expressions for acf ; dcf and ecf using
the mean field approximation [4]:

acf 2N½DtðxÞ 1
2 ða FÞrðxÞ�

dcf
2

p
3 N a rðxÞ cos 3a

ecf 0

ð6Þ

where N is the number of Fe3+ ions per unit volume,
N 2:236 1028 m 3 for FeBO3 and tðxÞ and rðxÞ are the following
functions:

tðxÞ ð8ch12xþ2ch32x 10ch52xÞsh12x
sh3x

and
rðxÞ 5 ð2ch12x 3ch32xþch5

2xÞsh12x
sh3x :

ð7Þ

where x gbHE=2kT , HE is an effective exchange field, vide infra, k is
the Boltzmann constant and T is the absolute temperature.

As one can see from Eq. (6), the crystal field gives no contribu
tion to eFeBO3 .

With the spin Hamiltonian constants D 0:1032; a
0:0158; F 0:0368 cm 1 and a 36o specified recently [12],

we obtain the following crystal field contributions to the magne
tocrystalline anisotropy constants for FeBO3 at 0 K:

acf 4:82 � 105Jm 3

dcf 2:55 � 103Jm 3

ecf 0

: ð8Þ
3. Dipole-dipole contribution to magnetocrystalline anisotropy

3.1. Model of a pair of fictitious magnetic charges

Here we consider the interaction energy E between two paral
lel/antiparallel identical dipoles for different models. Fig. 2 shows
a system of two interacting dipoles implemented as a pair of
2; ykm; zkC3 where C2;m and C3 are, respectively, a two-fold axis, a symmetry plane
nts towards the reader. The full and empty circles represent ions located above and



Fig. 3. System of two interacting Ampérian currents.

Fig. 2. System of two interacting dipoles in the model of a pair of magnetic charges.
‘‘magnetic charges” �q spaced a distance d apart. For the dipole
dipole energy one gets:

E � l0

4p
m2

d2

2
r

1
rmp

1
rpm

� �
ð9Þ

where l0 is the permeability of vacuum, m qd qdem is the mag
netic moment, defined by analogy with electrostatics and directed
along the unit vector em ðsin#cosu; sin#sinu; cos#Þ;
r ðr2x þ r2y þ r2z Þ

1=2 is the distance between the centers of the

dipoles, rmp r2 þ d2 þ 2rder em
q

and rpm r2 þ d2 2rder em
q

where er is the unit vector in the direction of r, see Fig. 2 for the
notation. The choice of the � signs refers to parallel and antiparallel
dipoles, respectively.

Introducing e d=r in Eq. (9) one gets:

E � l0

4p

� m2

d2r
2

1

1þ e2 þ 2eer � em
p 1

1þ e2 2eer � em
p !

ð10Þ

For our purpose we need only an approximate expression of E
for e � 1. An expansion in the Taylor series up to the fourth order
yields:

E �2
l0

4p
m2

r3
ðP2 þ P4e2 þ P6e4Þ ð11Þ

where Pn are Legendre polynomials [14] of the scalar product
er em, and the and + signs correspond to parallel and antiparallel
dipoles, respectively.

3.2. Model of a circular current loop

Next, we calculate the interaction energy between two identical
and parallel circular current loops (Ampérian currents) of the same
radii R and areæ S pR2, carrying a current I, see Fig. 3. By defini
tion, the magnetic moment of a loop is m SIem pR2Iem.

For definiteness, we choose the loops centered at the space ori
gin Op and at an arbitrary point Os as the primary and secondary
loops, respectively.

The dipole dipole interaction energy in this model is straight
related to the mutual inductance M of the loops:

E MI2: ð12Þ
3

Here the sign in the right hand member occurs because the
interaction energy between two coaxial (attracting) currents is
negative while M in this case is positive. By definition,

M U
I

ð13Þ

where U, the magnetic flux induced by the current in the primary
loop and passing through the secondary loop, can be calculated as
follows:

U
I
ls

I
lp

dA � dls: ð14Þ

Here lp and ls are perimeters of the primary and secondary
loops, dA is a differential element of the vector potential at a point
Ms on the secondary loop, produced by the primary loop:

dA
l0

4p
I

MpMs
dlp; ð15Þ

MpMs is the distance between two points on the primary and sec
ondary loops, and dlp and dls are differential elements of the corre
sponding loops.

In order to evaluate the closed curve integrals in Eq. (14) we
express MpMs, dlp and dls as follows:

jMpMsj2 r2 þ 2R2½1 sinð/ sÞ�
þ2Rrx½sinuðcos/þ sin sÞ þ cosu cos#ðsin/ cossÞ�
þ2Rry½sinu cos#ðsin/ cos sÞ cosuðcos/þ sin sÞ�
2Rrz sin#ðsin/ cos sÞ

;

ð16Þ

dlp

Rðcosu cos# sin sþ sinu cos sÞds
Rð sinu cos# sinsþ cosu cos sÞds
R sin# sin s ds

0B@
1CA ð17Þ

and

dls

Rðsinu sin/ cos# cosu cos/Þd/
Rðsinu cos# cos/þ cosu sin/Þd/
R sin# cos/ d/

0B@
1CA: ð18Þ



In Eqs. (16) to (18) s and / are polar angles of arbitrary points of
the primary and secondary loops, respectively. Putting these
expressions in Eq. (14), for the interaction energy, cf. Eq. (12), we
get:

E l0

4p
I2
Z 2p

0

Z 2p

0

dlp � dls
MpMs

ð19Þ

where the integrations are over s and /.
Since, as in the previous case, we need only an approximate

expression of E, we can first expand the integrand in Eq. (19) in a
Taylor series in the small parameter e R=r and then integrate
the result. In terms of the Legendre polynomials, up to the fourth
order we get:

E �2
l0

4p
m2

r3
P2 3P4e2 þ 75

8
P6e4

� �
ð20Þ

where the and + signs correspond to parallel and antiparallel
dipoles, respectively.
Table 1
Crystal field and dipole-dipole contributions to the magnetocrystalline anisotropy
constants of iron borate at 0 K.

Constants,
J m 3

Crystal field
contribution

Dipole-dipole contribution
Pair of fictitious
magnetic charges

Circular current
loop

aFeBO3 4:82 � 105 3:82 � 105

dFeBO3 2:55 � 103 7:02 � 105d2=l2 �2:11 � 106R2=l2

eFeBO3 0 �9:80 � 104d4=l4 �9:19 � 105R4=l4
4. Calculation of the dipole-dipole interaction energy in FeBO3

In order to calculate the dipole dipole contribution to the mag
netocrystalline anisotropy constants for FeBO3, we have put for
ward a computer code implementing the lattice sum method.
We have chosen to do the summation in the volume of a rhombo
hedron congruent to the primitive rhombohedron shown in Fig. 4.

The axes of the rhombohedral coordinate system x0; y0; z0 coin
cide with the edges of the rhombohedron, see Fig. 4. In transform
ing the radius vector from the Cartesian to the rhombohedral
system, we express the coordinates of iron sites through the edge
length l of the rhombohedron: x0 ml, y0 nl and z0 kl, where
m; n; k are integers numbering the sites along the corresponding
axes. The radius vector in the new coordinate system is

r l

ðz0 x0Þ cosck0i
ðx0 2y0 þ z0Þ cos bi0j
ðx0 þ y0 þ z0Þ cos ck0k

0BBB@
1CCCA ð21Þ

where cosck0i 1 cosb
2

q
, cos bi0j 1 cosb

6

q
and cosck0k 1þ2 cosb

3

q
are

the cosines of angles between the corresponding axes of two coor
dinate systems. Substituting Eq. (21) in the expressions for the
dipole dipole interaction energy, Eqs. (11) and (20) for the models
of a pair of magnetic charges and a circular current loop, respec
tively, we express this energy in terms of integers numbering the
iron sites along the edges of the rhombohedron.
Fig. 4. A primitive rhombohedron with the edge length l 3:6Å and the apex angle
b 79:9

	
used to calculate the dipole-dipole energy.

4

The calculation of the dipole dipole energy density now is
reduced to computing the following sum:

Edip
1
2
N
X
m;n;k

ð 1ÞmþnþkEðm; n; kÞ ð22Þ

where the factor ð 1Þmþnþk takes into account antiferromagnetic
ordering and Eðm;n; kÞ is the dipole dipole interaction energy
between ions at the origin (numbered 0; 0;0) and at a site num
bered m; n; k.

Henceforth, the magnetic dipole moment at T 0 K will be
expressed as

m gbS ð23Þ
where g; bandS have the same meanings as in Eq. (5).

The dipole dipole contributions at 0 K, together with those of
the crystal field, described in Section II, are listed in Table 1. One
can see that the models of a pair of magnetic charges and a circular
current loop result in substantially different expressions for the
dipole dipole energies.

In order to get the dipole dipole contributions to the magne
tocrystalline anisotropy constants at different temperatures, these
contribution at 0 K should be multiplied by ðMT=M0Þ2, where MT is
the sublattice magnetization at the temperature T. ðMT=M0Þ for
FeBO3 have been tabulated [4]. The temperature dependences of
the crystal field contributions are given in Eq. (6).
5. Comparison with experiment

From the AFMR experiments the effective basal magnetocrys
talline anisotropy constant eexpeff , cf. Eq. (2), can be determined [15].

The EMR studies have been carried out at 77 K with a
laboratory developed spectrometer at microwave frequencies m
from 15 to 36 GHz and magnetizing field H up to 10 kOe applied
in the basal plane of the crystal. FeBO3 crystal has been synthesized
Table 2
Parameters in Eq. (24) and their experimental values for FeBO3.

Parameter Definition Value at 77 K

Dzyaloshinskii-Moriya field HD
1
2
DFeBO3
MT

a 99.3 ± 0.2 kOe [9]
98.68 ± 0.52 kOe [this
work]

Exchange field HE
1
2
EFeBO3
MT

a 5:937 � 103 kOe

6:02 � 103 kOe b [5]
Isotropic energy gap H2

D
4.25 ± 0.25 kOe2 [9]
6.543 ± 0.032 kOe2 [this
work]

Anisotropic energy gap HEHhex
1
4
eeff EFeBO3

M2
T

a

0.05421 ± 0.0013, kOe2

[this work]

Basal magnetocrystalline
anisotropy field

Hhex
1
2
eeff
MT

a �0:9 � 10 5 kOe [15]

0:913 � 10 5 kOe [this
work]

a For FeBO3 M0 520G and M77 
 512:9G [4].
b Value at 0 K.



by solution in the melt technique and had the shape of a thin
hexagonal plate [6].

For H applied in the basal plane of the crystal, the low
frequency AFMR mode for FeBO3 is described by the following
expression [15,16]:

m c½HðH þ HDÞ þ 36HEHhex cos 6uþ H2
D�

1=2 ð24Þ

where c is the gyromagnetic ratio for g 2:0; HD and HE, HEHhex and
H2

D are, respectively, effective Dzyaloshinskii Moriya and exchange
fields, anisotropic and isotropic energy gaps, Hhex being the effective
Fig. 6. Dependence of ðmcÞ2 � HðH þ HDÞ on the angle

Fig. 5. Dependence of the AFMR frequency on the magnetizing field for FeBO3

crystal. The dashed curve is the best fit according to Eq. (24).

5

field of basal magnetocrystalline anisotropy, and u is the angle
between H and the x axis. As far as different authors use different
definitions of HD, HE and Hhex, the definitions used in this work
are given in Table 2 together with their experimental values.

The field sweep EMR spectra recorded at different m allow
obtaining the relation between m and H. The experimental results
shown in Fig. 5 can be convincingly fitted to Eq. (24), resulting in
the following best fit parameters:

HD 98:68� 0:52kOe and 36HEHhex cos 6uþ H2
D

6:46� 0:34kOe2:

This value of HD confirms the previous finding [9], see Table 2.
Using this value, we have determined the product HEHhex, see Eq.
(24), from AFMR measurements at a fixed m, carried out by rotating
H in the basal plane of the crystal.

Fig. 6 shows the angular dependence of the quantity
ðm=cÞ2 HðH þ HDÞ.

One can see that this dependence can be accounted for by a
superposition of hexagonal and uniaxial magnetocrystalline aniso
tropies in the basal plane. The occurrence of uniaxial magnetocrys
talline anisotropy in this case can be due to a slight deviation of H
from the basal plane or caused by mechanical stresses [17]. There
fore, the angular dependence of the resonance field has been fitted
to by the following expression, cf. Eq. (24):

m
c

� �2

HðH þ HDÞ H2
D þ 36HEHhex cos 6uþ p cos 2u ð25Þ

where H2
D; HEHhex and p are fitting parameters, the term in p

describing the uniaxial component. The best fit parameters

H2
D andHEHhex are listed in Table 2 and p 1:13� 0:05kOe2.

From HEHhex and HE we get Hhex 0:913 10 5 kOe; then, using
the definition of Hhex given in Table 2, we get eexpeff 0:936 Jm 3. The
Hhex value corroborates that earlier reported by Doroshev et al.
[15]; note that the negative sign of the latter value is due to a dif
ferent definition of the angle u.
u. The curve is a fitting according to Eq. (25).



Finally, from the results described above we estimate the dipole
size. In the following we assume that eeff eexpeff , see Eq. (2) for eeff .
Substituting eexpeff in Eq. (2) and taking into account Eqs. (3) and (4),
we get:

eexpeff ecf þ edip þ 1
4

dcf þ ddip
� �2
aFeBO3 þ

D2
FeBO3

EFeBO3

: ð26Þ

In what follows, for aFeBO3 we use the experimental value

aexpFeBO3
3:2 105 Jm 3 determined by AFMR at 77 K [4,9].

DFeBO3 andEFeBO3 at 77 K have been calculated from the experimen
tal values of corresponding effective fields and sublattice magneti
zation, see Table 2. Substituting in Eq. (26) the abovementioned
values as well as those given in Table 1, for the model of a pair
of fictitious magnetic charges we get:

853d4 þ 135d2 þ 3:2 0:936 ð27Þ
Obviously, this equation can have only complex solutions;

therefore, this model is not applicable in the actual case. In con
trast, for the model of a circular current loop, with an analogous
substitution, we get:

7:47 � 103R4 405:4R2 þ 3:2 0:936; ð28Þ

yielding two positive solutions: R1 0:2189 and R2 0:0797Å:
In order to assess the plausibility of such values, they should be

compared with the ionic radius Ri of Fe3+; indeed, we can reason
ably infer that the effective size of a dipole should be of the same
order of magnitude as the size of the physical object producing the
corresponding dipole moment. For high spin Fe3+ in sixfold oxygen
coordination Ri 0:645 Å [18]; therefore the R1 value seems to be a
more realistic estimate than R2, the latter value being an order of
magnitude smaller than Ri.

The dipole dipole contributions to the magnetocrystalline ani
sotropy constants of FeBO3 at 77 K calculated with the R1 value are:

edip 12:2 Jm 3 and ddip 7:57 � 103Jm 3: ð29Þ
6. Conclusions

Possible contributions to the basal magnetocrystalline aniso
tropy of iron borate, namely, crystal field and dipole dipole contri
butions have been considered in detail. The former contribution
has been calculated using the spin Hamiltonian parameters for iso
lated Fe3+ ions in (diamagnetic) gallium borate. The latter contribu
tion has been evaluated assuming that the ratio dipole size/
interdipole distance is non negligible, i.e., that we are dealing with
extended dipoles. The dipole dipole interaction energy has been
calculated for two extended dipole models, viz., a pair of magnetic
charges and a circular current loop. The dipole dipole contribution
has been calculated by the lattice sum method.
6

In order to determine the basal magnetocrystalline anisotropy
constants of iron borate, we have carried out AFMR studies at
77 K. A comparison between the experimental and calculated val
ues of this constant has shown that the model of a pair of magnetic
charges fails at explaining the experimental results. In contrast, the
model of circular current loop provides consistent evidence in sup
port of the dipole dipole contribution to the basal magnetocrys
talline anisotropy of iron borate and, incidentally, yields a more
or less realistic estimate of the size of the magnetic dipole associ
ated with Fe3+ ion.

In spite of the fact, that the modeling considering extended
dipoles, put forward in this work provides new insight in the nat
ure of the basal magnetocrystalline anisotropy of iron borate, it is
certainly oversimplified. More sophisticated (ab initio) calculations
are necessary in order to get further insight in the spatial distribu
tion of the magnetic field produced by paramagnetic ions at short
and intermediate distances.
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