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Heat transport in nano & microstructures, basics, 
models and challenges 



Tailoring heat transport in nano & microstructures 

Challenges  

• Control of overheating 

o minimize failure,  

o hotspots occurrence  

o improve performance of materials 

o etc 

• Tailoring heat transport properties 

o thermoelectric material improvement 

o thermal cloaking, thermal rectification 

o etc 

• Thermal management applications 

o electronic, optical, optoelectronic and thermoelectric 
devices, 

o thermal diode 

o etc 
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Heat transport modeling, a multiscale issue 
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http://www.dierk-raabe.com/ 



Heat transport in nano & microstructures 

Basics 

• Heat transfer at the nanoscale differs 
from what occur in bulk material: 

o Fourier’s law needs to be considered with 
caution 

o  Heat transport equation is no longer valid 

o Thermal properties of materials depend on 
length scales and temperature 

• Heat transport varies between diffusive 
and ballistic regimes 
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Phonon and heat propagation 

In semiconductors “phonons” are quasiparticles that characterize 
the vibrational motions of a lattice. They propagate heat and can 
be either considered as wave or particles. 
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Vibration ↔ Dispersion relations 

Kinetic model for thermal conductivity: 
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Boltzmann transport equation for phonons 

Phonons obey to the Boltzmann Transport Equation (BTE). When considered as 
particles their motion and interactions (scattering) in nanostructures depends on: 
temperature, dispersion properties and scattering lifetimes of the considered 
material.  
The BTE is solved in the frame of the relaxation time approximation by a Monte Carlo 
method. 
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Using Monte Carlo technique to solve the Boltzmann 
transport equation for phonons 



The MC solution of the BTE for phonon lies on several steps: 
 
• Design of the nanostructure geometry and 

discretization 
• Prescription of boundary conditions 
• Initialization of the phonon state in the discretized cells 
• Motion of phonon during a time step 
• Scattering of phonon to restore thermodynamic 

equilibrium 
• Calculation of local temperature and heat flux 
• Derivation of thermal conductivity 

• Assessment of other quantities (phonon spectrum vs 
mfp, phonon phase function, etc) 
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Monte Carlo solution of the BTE 

Iterative 
process 

Post-
processing 

Initialization 
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Monte Carlo solution of the BTE - initialization 

Nanostructures 

Energy within a cell 
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Structures are discretized taking into account periodicities 
Temperature are prescribed in first and last cells (blackbodies) 

1. Sampling of a phonon population (energy bundles) at a given temperature T, according to 
dispersion relations (isotropic). Random location of phonons. 
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Monte Carlo solution of the BTE – transport 
and scattering 

2. Follow phonon displacement according to their group velocity and boundary conditions 
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Lifetimes of scattering processes (Normal, Umklapp, Impurity) are derived from 
M.G. Holland for Si and Ge M.G. Holland, PR 132, 2461-2471 
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Monte Carlo solution of the BTE – post 
processing 

4. Extract T and  according to the local phonon distribution in the nanostructure 





N

i

i

z
V1

gzV

Silicon nanofilm 
Lz = 2µm 
t = 1ps 
Nz = 20 cells 
40000 time steps 
8 cores / 6 hours 
Cross plane TC 
k = 128.7 W/m K 
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Application of MC-BTE tool to appraise thermal 
properties in nanostructures 
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Monte Carlo simulations – Nanofilms I  

Diffuse regime 

310 K 290 K 11,8K 3 K 

L = 2 mm L = 10 mm 

D. Lacroix, PRB 72, 064305 
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Monte Carlo simulations – Nanofilms II  

z 

Lz Lx 

Wire: Rx = D, Ry = D 

Film In-plane: Rx = D, Ry = S 

Bulk /film Cross-
plane: Rx = S, Ry = S 

Rx, Ry: reflections 
D: diffuse 
S: Specular 

Thermal conductivity in Si vs T; Lz = 2µm In-plane Thermal conductivity in Si film vs Lx 
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Monte Carlo simulations – Nanowires I  

Si nanowire TC vs T 

D. Lacroix,  APL 89, 103104 
D. Li, APL 83, 2934 

Si nanowire TC vs cross-section 
Lz 

Smooth nanowires 

Simulations match experiments, except for very  
thin diameters (bulk limit) 
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Monte Carlo simulations – Nanowires II  

Corrugated and modulated nanowires 

Si Nanowires 
with shape 
modulation 

C. Blanc, APL 103, 043109 

MC design of modulated nanowires 
E. Buitrago, Microelectronic Engineering 97, 345–348 
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Monte Carlo simulations – Nanowires III  

Smooth and steep constrictions 
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Monte Carlo simulations – Nanowires IV  

V. Jean, IJHMT 86, 648-645 

L 

TC in canal NW smaller  
than in single NW with  
the minimal diameter 
 
No significant effect of 
‘canal’ length, 
 
    Constriction resistance 

Long constriction ‘canal shape’ 
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Monte Carlo simulations – Nanowires V  

V. Jean, IJHMT 86, 648-645 

Modulated nanowire 

4 periods nanowire Increase of period number 
leads to a decrease of the 
thermal conductivity 
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Monte Carlo simulations – Porous membranes  

V. Jean, JAP 115, 024304 

Porous membranes/membranes with inclusions 

Nanoporous Si 
Ge3Mn5 
inclusions in Ge 

Polydisperse inclusions Monodisperse inclusions 

Lz =250nm 

ANR Grant - Mesophon 
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Monte Carlo simulations – PnC membranes I  

Phononic (PnC) Si membranes 

R. Anufriev, PRB 93, 045411 

‘Staggered’ ‘Aligned’ 

Good agreement between experiments & 
simulations 
The TC is always lower when pores are in staggered 
configuration for a same S/V ratio 
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Monte Carlo simulations – PnC membranes II  

Accumulated TC in PnC Si membranes 

T=300K 

Bulk : 50% of TC due to phonon with mfp < 500nm 
PnC : 65% of TC due to phonon with mfp < 500nm 

Extract from MC the contribution discrete 
phonon fequencies to the TC 

Distribution of the exit angle of phonons 
just before the cold thermostat for 
a=160nm and d=126nm 

Ballistic transport in PnC membranes 

T=4K 

Some phonons experiment ballistic 
transport in aligned PnC 
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Improvement of MC-BTE by coupling with ab-initio 
calculations 
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Monte Carlo simulations, ab-initio coupling I  

The MC solution of the BTE for phonon has a main weakness, 
the necessity to have an explicit formulation of phonon 
lifetimes of the studied material. 

 

• Idea: replace analytic lifetime expressions of basic 
material (Si, Ge, etc) by the one provided by DFT 
calculation 

• Use the real dispersions properties of the material 
(frequency, polarization branches including optical mode, 
group velocities) 
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Monte Carlo simulations, ab-initio coupling II  

DFT calculations: Dispersion properties 
& phonon lifetimes  Discretization of the 

first Brillouin zone on 
a 31x31x31 K grid 

Si 
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Monte Carlo simulations, ab-initio coupling III  

The MC-ab initio solution of the BTE for phonon lies on the same 
principle as above: discretization, BC, initialization, phonon drift and 
phonon scattering. Changes are related to: 

• Use of a K space discretization instead of frequency one 

• Calculation of scattering term of the BTE 

For each K point, a phonon is sampled in a cell and caries a given number of modes N.  

NbD(K1,K2,K3,p)  
at different T 

T1 T2 T3 

before Drift 

NaD(K1,K2,K3,p) at T2* 

T1* T2* T3* 

NaD(K1,K2,K3,p)=0 
at T1* 

after Drift 

T1* T2* 
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at T1* & T2* 

after Scattering 
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Monte Carlo simulations, ab-initio coupling IV  

Calculation of T and  according to the local phonon distribution in the nanostructure 
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Silicon nanofilm 
Lz = 2µm 
t = 1ps 
Nz = 20 cells 
10000 time steps 
1 core / 12 hours 
Cross plane TC 
k = 153.2 W/m K 

Holland relaxation time : k = 128.7 W/m K !!! Overestimation of the TC with MC-ab-initio !?! 
 Calculation without I() : kMC-NU = 155.2 W/m K 
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Monte Carlo simulations, ab-initio coupling IV  
Monte Carlo post-processing, modes contribution to Thermal Conductivity 
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Monte Carlo simulations, ab-initio coupling V  

Thermal conductivity in Si vs T; Lz = 2µm Cross-plane Thermal conductivity in Si film vs Lz 

 Temperature and thickness well recovered 
 Impurity scattering explain the light overestimation; need to be implemented in 
MC-ab-initio 
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Summary and perspectives 



Summary 

• MC solution of BTE offers a good flexibility to 
model heat transport in different kind of 
nanostructures close to the real ones 

• Computational cost is reasonable (max 1 week) 
• Possibility to include real material dispersion 

properties 
• Gives transient information on heat transport 
• Gives spectral information on phonon 

contribution to thermal properties 
• Actually coherent effect are not considered 
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Monte Carlo simulations, ab-initio coupling VI  

Calculation of T and  using Cold-Hot-Cold boundaries 

Silicon nanofilm 
Lz = 2x2µm 
t = 1ps 
Nz = 25 cells 
10000 time steps 
1 core / 18 hours 
Cross plane TC 
k = 146.3 W/m K 

z 
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