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PACS 05.60.Cd – Classical transport
PACS 66.10.cg – Mass diffusion, including self-diffusion, mutual diffusion, tracer diffusion, etc.

Abstract – The effective diffusivity De of tracer particles diffusing in periodically corrugated
axisymmetric two- and three-dimensional channels is studied. The majority of the previous studies
of this class of problems are based on perturbative analyses about narrow channels, where the
problem can be reduced to an effectively one-dimensional one. Here we show how to analyze this
class of problems using a much more general approach which even includes the limit of infinitely
wide channels. Using the narrow- and wide-channel asymptotics, we provide a Padé approximant
scheme that is able to describe the dispersion properties of a wide class of channels. Furthermore,
we systematically identify all the exact asymptotic scaling regimes of De and the accompanying
physical mechanisms that control dispersion, clarifying the distinction between smooth channels
and compartmentalized ones, and identifying the regimes in which De can be linked to first passage
problems.

Introduction. – How fast does a cloud of tracer par-
ticles, moving stochastically in a complex heterogeneous
medium, disperse? This question naturally appears in
a wide range of contexts, including mixing [1–3], sort-
ing [4], contaminant spreading [5] or chemical reactions
kinetics [6]. The characterization of dispersion proper-
ties, which result from a non-trivial interplay between the
geometry of the heterogeneous medium and the trans-
port by forces and/or flows, is an active field of re-
search [1–4,7–11]. At large length and time scales,
dispersion is usually characterized by an effective diffusion
tensor whose components can be considerably different
from typical microscopic diffusivities [12]; canonical exam-
ples for increased and decreased diffusivities are given by,
respectively, motion in shear hydrodynamic flows (called
Taylor dispersion [13]) and in periodic [14] and ran-
dom [15] potentials.

Here, we consider diffusion of non-interacting particles
in channels of non-uniform cross-section, a paradigm for
diffusion in confined environments [16,17], arising in con-
texts as varied as biological cells [18,19], zeolites, porous
media, ion channels and microfluidic devices. It is well
known that, in the absence of hydrodynamic flow, the ef-
fective diffusivity of particles in channels is lower than the
microscopic diffusivity. Qualitatively, this can be under-
stood by considering the entropy S(z), which measures

the number of available lateral configurations at fixed lon-
gitudinal position z: the narrow regions have a reduced
entropy and act as entropic barriers, while the wide re-
gions can be viewed as entropic traps, leading to a motion
slower than in a uniform channel.

The first quantitative results on diffusion in channels are
attributed to Jacobs [20] who derived the first form of the
so-called Fick-Jacobs (FJ) approximation. This standard
approach, and its various extensions [21–31], are based
on a dimensional reduction, and approximate the dynam-
ics of the tracer longitudinal position z(t) by a diffusive
dynamics in an entropic potential φ(z) ≡ −TS(z), possi-
bly with a position-dependent diffusion coefficient D(z).
Once the dimensional reduction is carried out, the effec-
tive diffusion constant can be computed using exact one-
dimensional results [32–34]. Such FJ-like approaches rely
however on the assumption that the equilibration dynam-
ics of the lateral position is fast compared to longitudi-
nal motion, which unavoidably leads to a limited range of
validity. It has been recognized that the case of abrupt
changes of channel radius requires an improvement the
one-dimensional description at the cost of employing more
sophisticated methods [26,35,36]. A different picture, in
principle valid for channels constituted of pores separated
by narrow necks, relies on the assumption that the motion
is controlled by the first passage events of tracer particles
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Fig. 1: Schematic of a two-dimensional channel of local width
2R(z), or slice of an axisymmetric channel in three dimensions
of local radius R(z). The complete channel is formed by the
periodic repetition of this motif.

between pores. Calculations of effective diffusivities that
rely on first passage time (FPT) arguments have been so
far restricted to particular simplified geometries, such as
sinusoidal channels [37], septate channels (made of per-
fectly cylindrical connected cavities) [38,39], or channels
formed by overlapping circles [40] or spheres [41]. In gen-
eral however, the regimes of validity of FJ-like approxima-
tions and FPT-approaches are different, and it is therefore
difficult to describe the transition between these regimes
(except for the sinusoidal channel [37]).

In the present paper, we revisit theoretically the prob-
lem of dispersion in two- and three-dimensional axisym-
metric channels of arbitrary shape. Our approach uses
an exact formula of the effective diffusivity, expressed in
terms of an auxiliary function that satisfies a set of partial
differential equation at the scale of a single period, which
we analyze using singular perturbation analysis and con-
formal mapping techniques. We systematically identify
all the (exact) asymptotic scaling regimes of diffusivity
and the accompanying physical mechanisms that control
dispersion. In many cases, especially the case of highly
corrugated channels, the dispersion coefficient is found to
depend on only a few quantities related to the channel
geometry rather than on the full details of its shape. We
show how the identification of regimes far outside the va-
lidity of the one-dimensional effective description can lead
to an accurate description of the effective diffusivity for a
wide range of parameters, via a Padé approximant. We
identify the regimes in which De is linked to FPT prob-
lems. We also show that, depending on the behavior of
the radius near the neck, we can classify channels into
smoothly and highly corrugated ones, for which the effec-
tive diffusivity displays qualitatively different behaviors.

Channel geometry and general equations for the
effective diffusivity. – We consider here the problem
of the diffusion of an overdamped particle, of microscopic
diffusivity D0, in a two- or three-dimensional axisymmet-
ric channel (fig. 1), assumed to be periodic with period L.
We denote by z the (longitudinal) position in the direc-
tion parallel to the channel axis, and we assume that the
channel radius R(z) is parametrized as

R(z) = a + Hg(z/L), (1)

where a is the minimal channel radius, H is the ampli-
tude of variation of the channel radius, and g is a dimen-
sionless periodic function of period 1 which describes the
geometrical shape of the channel boundaries, chosen to
have a maximal value equal to 1 and a minimal value 0.
We define the dimensionless parameters, which we will see
determine the various modes of dispersion,

ξ ≡ H/a, ε ≡ a/L. (2)

Channels of uniform width thus correspond to ξ = 0, while
ξ is large for highly corrugated ones. The limit of weakly
varying channels thus correspond to ε → 0 (at fixed ξ).
Finally we denote by Ω the unit periodic cell, and we call
V its volume.

We aim to characterize the long time effective diffusion
coefficient of tracer particles De ≡ lim

t→∞[z(t) − z(0)]2/(2t),
where the overbar denotes ensemble average. The starting
point of our analysis is the following exact expression:

De = D0

(
1 +

(d − 1)〈fS Rd−2 ∂zR〉
〈Rd−1〉

)
, (3)

where the notation 〈w〉 =
∫ L

0 dzw(z)/L is used for the
uniform average over one period for any function w, d is
the spatial dimension (d = 2 or 3), and De is expressed
in terms of an auxiliary function fS(z) ≡ f(r = R(z), z),
where f(r, z) satisfies

∂2
zf + r2−d∂r[rd−2∂rf ] = 0, (4)

[(∂zR)∂zf − ∂rf ]r=R(z) = ∂zR, (5)

f(r, z + L) = f(r, z); ∂rf |r=0 = 0, (6)

where r is the distance to the central axis. These equa-
tions (3)–(6) are a particular case of the general descrip-
tion of dispersion in arbitrary periodic systems introduced
in refs. [11,42], they are also compatible with the equations
of the macrotransport theory of Brenner and Edwards [12].
They express the macroscopic diffusion coefficient De as a
function of the microscopic structure of the channel, at the
scale of one single period. Such a system of partial differ-
ential equations can be readily integrated numerically by
using standard finite element solvers, leading to the curves
presented in figs. 2 and 3 for various channels. De is rep-
resented as a function of ε = a/L for different values of
the corrugation parameter ξ. These curves clearly display
two plateaus separated by an intermediate regime; we will
now study these asymptotic regimes analytically.

Slowly varying channels (ε → 0). – The first lim-
iting case to consider is that of a slowly varying chan-
nel, which here corresponds to the limit ε → 0, a limit
in which the FJ approximation applies since equilibra-
tion in the perpendicular direction is much faster than
in the longitudinal direction. At leading order, a tracer
particle exhibits the effectively one-dimensional dynam-
ics of a Brownian particle z(t) with diffusion coefficient
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Fig. 2: (Color online) Effective diffusivity for the bidimen-
sional channel of radius R(z) = a{3/2 + 0.266[cos(2πz/L) +
sin(6πz/L)]} for small (a) and finite (b) values of ε. The
channel shape is represented in inset. On both plots, disks
represent the numerical values of De/D0 obtained by solving
eqs. (3)–(6), and continuous lines correspond to the Padé ap-
proximant (14). In (a), the first orders of the expansion of
De in powers of ε, obtained from refs. [23,43], are represented.
In (b), we also represent the results obtained by using one-
dimensional re-summed formulas for the local diffusivity D(z)
proposed by Zwanzig (Zw) [21], Reguera and Rubi (RR) [22]
and Kalinay and Percus (KP) [23].
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Fig. 3: (Color online) Effective diffusivity De for channels
of sinusoidal shape g(u) = [1 + cos(2πu)]/2 in two dimen-
sions (a) and three dimensions (b), and ellipsoidal shape
g(u) =

√
1 − 4u2 in two dimensions (c) and three dimensions

(d). Disks represent the numerical solution of eqs. (3)–(6),
continuous lines correspond to the Padé approximant (14).
Dashed lines represent the various asymptotic regimes: FJ ex-
pression (7) for ε → 0, wide channel limit (8) for ε → ∞
and narrow-escape regime (21) for intermediate ε (the value
κ = 2/π, valid for H � L, was used).

D0 advected by the potential φ(z) = −kBT ln(Rd−1(z)).
Here, the Lifson-Jackson formula [32] provides an estimate
for the effective diffusion coefficient De:

De =
ε→0

D0

〈(1 + ξg)d−1〉〈(1 + ξg)1−d〉 ≡ DFJ. (7)

This well known expression clearly shows (from Jensen’s
inequality) that the effective diffusivity De is reduced com-
pared to the microscopic diffusion coefficient D0, it is

furthermore independent (at leading order) of the chan-
nel period L. This estimate can be recovered from the
equation for f by a standard perturbation theory in ε for
d = 2 [43], and we show in the Supplementry Material
Supplementarymaterial.pdf (SM) of this paper how to
generalize to d = 3.

Several works have attempted to improve this estimate,
using various approaches. The most obvious one consists
of calculating more terms in the expansion in ε: this has
been done by assuming that the dynamics for z(t) can be
described by a Markovian one, with a position-dependent
local diffusivity D(z). Perturbation expansions for D(z)
have been proposed1 which have been found to be con-
sistent with the expansion of the macrostransport theory
performed up to order ε4 [43]. However, such series in
powers of ε fail to describe the numerical curve as soon as
ε is not small (see fig. 2), for the obvious reason that at
large ε the curve should reach a plateau instead of being
polynomial. The use of Padé approximants is a standard
way to enforce a series expansion to have a constant limit
at large ε, while retaining precision for small ε: it consists
of writing De =

∑q
n=1 anεn/

∑p
n=1 bnεn, with p = q in or-

der to ensure a finite limit for large ε, while the coefficients
an, bn are chosen to be consistent with the small ε expan-
sion. We have tried this procedure, but we concluded that
it does not lead to accurate results, as the plateau at large
ε is not predicted correctly.

Other approaches [21–23] have considered different
choices of D(z), obtained by partial re-summation tech-
niques, and leading to alternative estimates of De. How-
ever it is seen on fig. 2 that none of these re-summations
correctly estimate De for finite values of ε, and it is also
known that they are not consistent with exact small ε
expansion [43]. Therefore, FJ-like approaches are, by con-
struction, not likely to be able to estimate De for finite
values of ε, which is why we focus on the opposite limit,
ε → ∞ of fast varying channels.

The limit of wide channels (ε → ∞). – In the limit
of wide channels, where a, H � L, the diffusivity at lead-
ing order can be deduced as follows. At the time scale
τ ∼ L2/D0, particles at r < a can be considered to dif-
fuse freely in the longitudinal direction, while particles at
r > a can be considered as immobile. We can thus es-
timate the mean square displacement during a time t to
be z2(t) = 2D0Tc(t), where Tc(t) is the time spent in the
region r < a up to time t. Ergodicity implies that Tc(t)/t
is also the ratio of the volume of the region r < a to the
total volume of the periodic cell, which leads to

De = D0
ad−1

〈(a + Hg)d−1〉 . (8)

1In ref. [23] an anisotropy of the microscopic diffusion tensor
is considered, and the small parameter of the perturbation expan-
sion is the ratio D‖/D⊥; expansions in powers of ε or of this small
parameter are equivalent.
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This expression is the same as that found in comb-like
geometries [44,45] or tubes with dead-end regions [46] in
simplified geometries. However, this argument should hold
only for infinitely thin dead-end regions, and it does not
take into account tracer particles that cross the hypersur-
face r = a, and corresponding corrections to the effective
diffusivity are not easy to estimate. In what follows we
carry out a quantitative analysis of the exact equations (4)
in the large ε limit.

In order to construct the auxiliary function f in the limit
of wide channels ε → ∞, it is convenient to use rescaled
variables, z̃ = z/L and r̃ = r/a, in which case the variation
range of variables z̃, r̃ is independent of ε. At leading
order in ε, the resulting equation (4) for f(r̃, z̃) becomes
∂2

z̃f = 0, which, using the boundary conditions (5) and (6)
leads to solutions of the form

f(r̃, z̃) = z̃ θ(r̃ − 1)L + b(r̃), (9)

where θ is the Heaviside function and b(r̃) is an unde-
termined function of r̃. The above solution for f is not
satisfactory because it is not continuous at r̃ = 1. This is
the signal of the presence of a boundary-layer near r = a.
The size of the boundary layer for the lateral variable r is
found by inspection to be L: it corresponds to the region
in which tracer particles can cross the line r = a in the
time L2/D0 needed by tracer particles to reach a neigh-
boring pore. It is now useful to write r = a+ηL, in which
case the equation (4) becomes at leading order in ε

∂2
ηf + ∂2

z̃f = 0, (10){
∂z̃f |z̃=±1/2 = L (η > 0),
f(η, z̃ = 1/2) = f(η, z̃ = −1/2) (η < 0),

(11)

(note that this equation holds in dimensions 2 and 3). Fur-
thermore, to match with the outer solution (9), f must
behave as f � b(1) + z̃L for η → ∞, and f must be
constant for η → −∞. This problem can now be han-
dled by the use of complex analysis: we look for a solution
f = Re(w(Z)), where w is an analytic function of the com-
plex variable Z = z̃ + iη. If we make the transformation
Z1 = ieiπZ , the problem becomes equivalent to the two-
dimensional electrostatic problem consisting of finding the
potential generated by two perfectly conducting neighbor-
ing horizontal plates, being located between (±1, 0) and
(±∞, 0), on which opposite values of the potential is im-
posed. The solution of this problem can be constructed
using a Schwarz-Christoffel transform (see SM), and we
find

f = Re
[
iL

π
ln

(
1 +

√
1 + e−2πiz̃+2πη

)]
+ b(1), (12)

where Re(. . .) represents the real part of a complex num-
ber. It can be checked that the above formula satisfies the
boundary conditions (11) and matches with the outer so-
lution (9) when one takes η → ±∞. Inserting this formula

into eq. (3) yields

De =
ε→∞ D0

ad−1

〈(a + Hg)d−1〉
(

1 +
(d − 1) ln 2

πε

)
, (13)

where the ε−1 correction comes from the contribution of
f in the boundary layer. These corrections, which quan-
tify the contribution to dispersion of the particles that
can cross the line separating the blocked region from the
regions of free longitudinal move, do not depend on the
details of the channel geometry: they are characterized by
a universal numerical constant equal to ln 2/π.

An approximant including both narrow- and
wide-channel limits. – At this stage, we can construct
a Padé type approximant forDe,

De = DFJ
1 + a1ε + a2ε

2 + a3ε
3

1 + b1ε + b2ε2 + b3ε3 , (14)

where the coefficients ai, bi are carefully chosen to ensure
that the expression for De is exact for both the wide-
channel limit ε → ∞ (up to order ε−1, using eq. (13))
and the slowly varying channel limit ε → 0 (up to order
ε4, for which we used expressions in the literature [43]),
see SM. This approximant incorporates effects that cannot
be captured by FJ-like approaches, and is found to agree
with the numerical curve for almost all values of ε (see
figs. 2 and 3). We therefore emphasize that the strength
of our approach is that it allows an accurate description
of De which ranges from narrow to wide channels.

The FJ approximation for highly corrugated
channels. – We now proceed to simplifying the descrip-
tion of the mechanisms controlling dispersion in the limit
of large ratio ξ = H/a of maximum width over minimal
aperture. Consider first the large ξ limit of the FJ expres-
sion. The result of taking ξ → ∞ in eq. (7) depends on
the existence of the integral

∫
dz/gd−1(z), which may be

a divergent one (because g vanishes for some value of z).
We now assume that the behavior of R near the point of
minimal aperture (here taken as the origin of longitudinal
axis) is characterized by

R(z → 0) � a + γ|z|ν , (15)

where γ is a quantity that characterizes the local geometry
of the narrowest region of the channel. For example, dif-
ferentiable channel profiles correspond to ν = 2, in which
case γ is half the minimal curvature at the neck. If the
neck is composed of connected conical portions (so ν = 1),
arctan(γ) is half the opening angle of these cones. The as-
sumption (15) is equivalent to

g(z̃ → 0) � A|z̃|ν ; γ = AH/Lν . (16)

If we define νc(d) = 1/(d − 1), we see that the integral
of 1/gd−1 is infinite when ν > νc. In this case the domi-
nant contribution in the integral J ≡ ∫ 1

0 dz̃/(1+ξg(z̃))d−1
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comes from the values of z close from the points of smallest
channel width, so that J � ∫ ∞

−∞ dz̃/(1+ξA|z̃|ν)d−1 (where
we can replace the integration bounds by ±∞ without
changing the integration result at leading order). Com-
puting this integral leads to

DFJ

D0
� ν sin(π/ν)(Aξ)1/ν

2π ξd−1〈gd−1〉
(

ν

ν − 1

)d−2

, (17)

which can also be written as

DFJ � L2/(2T ), (18)

with

T =
V

D0ad−1−1/νγ1/ν
× π

2ν sin(π/ν)

(
2(ν − 1)

πν

)d−2

.

(19)
We can interpret T as the mean first time to reach the
middle of one of the narrow regions, while the other is re-
flecting. The time T does not depend on the precise geo-
metric details of the channel shape: it depends only on the
volume V of a single pore, on the minimal channel radius a
and on the parameter γ which characterizes the geometry
of the channel near the neck. In this regime, the stochastic
trajectories of the tracer particles can be viewed as a con-
tinuous time random walk, where the particles spend in
each pore an average time T/2 which measures the rate at
which the tracer particles can escape the entropic barriers
formed by the narrow regions. Equation (17) is known in
the case ν = d = 2 [47,48]. The mean escape time T to
an opening at the end of a funnel has recently been calcu-
lated using conformal mapping techniques [19,49–51] for
ν = 2 and d = 2, 3 and coincides with the above formula2,
it is interesting to see that these mean escape times are
also accessible via the FJ approximation. The general for-
mula (19) for T for any exponent ν is new to the best of
our knowledge.

An important remark here is that De is controlled by the
time to cross the neck regions: as a consequence, eq. (17)
holds as soon as the FJ approximation is a correct de-
scription of the dynamics in the neck only rather than
in the whole channel. The relevant longitudinal length
scale l∗ in the neck is identified from a ∼ γ(l∗)ν , so that
l∗ ∼ (a/γ)1/ν ; the FJ approximation is valid when l∗ � a,
a condition which is less constraining (for ν > 1) than the
condition H 	 L which would be required for the FJ ap-
proximation to hold in the whole channel.

Thus, if ν > νc, the dispersion in the limit of slowly
varying channels is controlled by the geometry at the neck.
The situation is completely different in the case ν < νc for
which the large ξ limit of DFJ reads

DFJ =
D0

〈gd−1〉〈g1−d〉 . (20)

2Note that, for d = 3 and ν = 2, eq. (17) is half the result given
in refs. [19,50]. It is mentioned in ref. [51] that a correction factor of
one half should be added, but misprints in the definition of R and a
render difficult the comparison with (17).

In this case, the effective diffusivity depends on the chan-
nel’s geometrical shape, but not on any of the parameters
a, L, H. This is a key difference between channels with
sharp necks (ν < νc) or smooth necks (ν > νc): dispersion
in sharp neck channels is not controlled by the diffusion
at the neck only. Interestingly, the case ν = 1 in d = 3 di-
mensions is included in the regime ν > νc and corresponds
to a regime where the dynamics at the neck controls the
transitions between pores and thus the dispersion.

Intermediate regime of dispersion. – We finally
study the regime that is intermediate between the limits of
small and large ε. It is seen on fig. 3 that this intermediate
regime tends to increase with increasing ξ, and also tends
to deviate from the predictions of our Padé approximant.
This suggests the presence of a different mechanism that
controls dispersion. We treated this case by performing a
singular perturbation analysis of eq. (4)–(6) in the limit
of small pore opening by following closely the approach of
refs. [52,53] (see SM for details). We obtain

De � L2D0

V
×

⎧⎨
⎩

2a (d = 3),
π

2 ln(2Lκ/a)
(d = 2),

(21)

where κ is a constant that depends on the ratio H/L
and on the shape of the boundary; more precisely
ln κ = [R(r0, r0) + R(r1, r1) − 2G(r0, r1)]π/2, where G is
the pseudo-Green’s function of the domain (without open-
ing), R is the non-diverging part of this Green’s function
and r0, r1 are the positions of the openings. In the limit
H � L, κ reaches a constant value deduced from the
Green’s function in an infinite strip [54], κ = 2/π. The
above formula reveals that in this intermediate regime one
can again interpret the stochastic trajectories as continu-
ous time random walks, with a dispersion coefficient sat-
isfying the relation (18), De = L2/(2T ). In 3 dimensions,
T is, not surprisingly, the mean escape time through a
small opening embedded in a flat plane, which does not
depend on the initial position of the walker, due to the
non-compact feature of space exploration by a Brownian
walker in 3D [6,55]. In 2D the situation is slightly different,
because Brownian search for an opening is only marginally
compact, and mean escape times depend logarithmically
on the initial position [6,55]. Comparing eq. (21) with re-
cent calculations of the mean escape time in 2D domains of
arbitrary shape [53] reveals that De = L2/(2T ), where T is
not the global mean first passage time to a pore, but is in-
stead the time to reach a pore, starting from the opposing
opening (considered as reflecting). The above formula has
been identified for particular geometries such as septate
channels in 3D [38] and for channels made of overlapping
spheres [41], it has already proposed for the corresponding
cases in 2D [39,40] but at leading order only.

We obtained the formula (21) rigorously from (3) in the
limit of small pore opening in the case ν ≤ 1, but one can
see from fig. 3 that is actually gives a good description
of De in the intermediate regime for large ξ for arbitrary
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Fig. 4: Diagram (ε, ξ) summarizing the asymptotic estimates
of De and their validity regimes for ν > νc (a) and ν ≤ νc (b),
with νc = 1/(d − 1). In the Fick-Jacobs (FJ), Narrow-Escape
(NE) and Wide-Channel (WC) domains, the equations (7), (21)
and (8) are respectively correct. In the limit ξ → 0, the
effective diffusivity goes to D0 for both FJ and WC limits.
When ν > νc, the FJ expression for large ξ corresponds to
a regime where dispersion is controlled by events of narrow
escape through a funnel (NEF).

geometries for any channel shape, be it smooth or not.
It is therefore not limited to compartmentalized channels.
This can be understood by noting that the large ξ limit
implies that the boundaries become more and more per-
pendicular to the channel axis near the channel necks, and
one therefore recovers the conditions of the narrow-escape
problem at a domain boundary.

We end our study by drawing in fig. 4 qualitative
diagrams where the asymptotic expressions for De are
summarized, together with their validity domains. Each
regime corresponds to a different physical mechanism that
controls the behavior of the stochastic trajectories and
thus dispersion. We stress that our approach, based on
the exact expression (3) for De, enables to obtain all the
asymptotic regimes.

Conclusion. – Let us now summarize our findings.
Here we have revisited the problem of computing the
effective diffusivity of tracer particles in corrugated ax-
isymmetric two- and three-dimensional channels. We have
classified the channels into two categories: smooth chan-
nels, characterized by an exponent ν > 1/(d−1), for which
the FJ dispersion becomes controlled by the crossing of a
funnel at the necks, which we computed for any ν, and
non-smooth channels, with ν < 1/(d − 1), for which the
effective diffusivity in the FJ regime becomes independent
of the parameters H, L, a in the strong corrugation limit.
We also identified two supplementary regimes, common to
all channel geometries: a comb-like regime for wide chan-
nels, where we quantified the influence on dispersion of the
probability of crossing the frontier between the slow and
fast regions, and an intermediate regime controlled by the
standard narrow-escape problem. We have also proposed a
Padé type approximant for De, which accurately describes
the effective diffusivity for a wide class of parameters be-
tween the limits of narrow and wide channels. This study
thus provides a refined understanding of how dispersion
properties are controlled by the geometry of the channel.
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