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Abstract

The aim of this paper is to study in detail the relations between strong chain recurrence for
flows and Lyapunov functions. For a continuous flow on a compact metric space, uniformly
Lipschitz continuous on the compact subsets of the time, we first make explicit a Lipschitz
continuous Lyapunov function strict –that is strictly decreasing– outside the strong chain
recurrent set of the flow. This construction extends to flows some recent advances of Fathi
and Pageault in the case of homeomorphisms; moreover, it improves Conley’s result about
the existence of a continuous Lyapunov function strictly decreasing outside the chain recur-
rent set of a continuous flow. We then present two consequences of this theorem. From
one hand, we characterize the strong chain recurrent set in terms of Lipschitz continuous
Lyapunov functions. From the other hand, in the case of a flow induced by a vector field,
we establish a sufficient condition for the existence of a C1,1 strict Lyapunov function and
we also discuss various examples. Moreover, for general continuos flows, we show that the
strong chain recurrent set has only one strong chain transitive component if and only if the
only Lipschitz continuous Lyapunov functions are the constants. Finally, we provide a nec-
essary and sufficient condition to guarantee that the strong chain recurrent set and the chain
recurrent one coincide.

1 Introduction

Let φ = {φt}t∈R be a continuous flow on a compact metric space (X, d). In the paper [9][Page
96], Robert Easton introduced the notion of strong chain recurrence.

DEFINITION. (Strong chain recurrence)

(i) Given x, y ∈ X, ε > 0 and T ≥ 0, a strong (ε, T )-chain from x to y is a finite sequence
(xi, ti)i=1,...,n ⊂ X × R such that ti ≥ T for all i, x1 = x and setting xn+1 = y we have

n∑
i=1

d(φti(xi), xi+1) < ε. (1)

(ii) A point x ∈ X is said to be strong chain recurrent if for all ε > 0 and T ≥ 0 there exists
a strong (ε, T )-chain from x to x. The set of strong chain recurrent points is denoted by
SCR(φ).

(iii) The points x, y ∈ SCR(φ) belong to the same strong chain transitive component of SCR(φ)
if for any ε > 0 and T ≥ 0 there exist a strong (ε, T )-chain from x to y and a strong
(ε, T )-chain from y to x.
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This notion sharpens the one of chain recurrence, in which it is only required

d(φti(xi), xi+1) < ε (2)

for all i. Chain recurrent sets are both easily seen to be closed and invariant, see e.g. [2][Pages
12-13, 71 and 109-110], [8][Theorem 3.3B], [20][Page 248] and [6][Proposition 3.1]. Furthermore,
strong chain recurrent set (strictly) contains the set of non-wandering points and it is (strictly)
contained in the chain recurrent set, that is NW(φ) ⊆ SCR(φ) ⊆ CR(φ), see for example
[20][Theorem 2.4] and [8][Theorem 3.3B].

The study of the intimate relations between chain recurrent sets and Lyapunov functions
comes from the celebrated paper [7] by Charles Conley and has had recent important advances
by Albert Fathi and Pierre Pageault in [12] and [16]. Before recalling these results, we need to
premise the notions of Lyapunov function, neutral set and first integral.

DEFINITION. (Lyapunov function, neutral set and first integral)
A function f : X → R is a Lyapunov function for φ if f ◦φt ≤ f for every t ≥ 0. The neutral set
N (f) of a Lyapunov function f is the set of all points x ∈ X such that the function t 7→ f ◦φt(x)
is constant. A function f : X → R is a first integral for φ if f ◦ φt = f for every t ∈ R.

In other words, f is a first integral if and only if f is a Lyapunov function with N (f) = X.
We refer to Lemma 1.5 in [1] for a characterization of Lyapunov functions and first integrals in
the case of a flow induced by a locally Lipschitz continuous vector field.

In the seminal paper [7], Conley described the structure of the chain recurrent set in terms
of attractors and their “complementary repellers” and –as an outcome– he proved the theorem
below. Some authors refer to this result as the “fundamental theorem of dynamical systems”, see
e.g. [15] and [13] for an instructive treatment of the matter.

THEOREM. (Conley, 1978)
Let φ : X × R → X be a continuous flow on a compact metric space. Then there exists a
continuous Lyapunov function u : X → R for φ such that

(i) N (u) = CR(φ).

(ii) If x, y ∈ CR(φ), then f(x) = f(y) if and only if x and y belong to the same chain transitive
component of CR(φ).

(iii) f(CR(φ)) is a compact nowhere dense subset of R.

Conley called u complete Lyapunov function for φ, see Definition 5.2 of Section 4. In particular,
point (i) of the previous theorem is an either/or statement about what can happen: parts of
the space are either chain recurrent or “gradient-like”. In the same year –see [9][Proposition 3]–
Easton connected the notion of strong chain recurrence to the property for the corresponding
Lipschitz first integrals to be constants. Easton’s contribution represented the first step towards
the study of the relations between strong chain recurrence and Lyapunov functions.

For a homeomorphism g on a compact metric space, Fathi and Pageault in [12] and [16]
presented a new variational point of view to face the study of recurrent sets and Lyapunov
functions. Their techniques are very different from Conley’s original ones and are inspired by
Fathi’s work in weak KAM theory, see [10]. Indeed, thanks to the arbitrariness of the parameter
ε > 0 involved in both the definitions of recurrence, Fathi and Pageault equivalently described
recurrent points as minima of appropriate functionals defined on the space of finite sequences of
points. In particular, bearing in mind formulae (1) and (2), for strong chain recurrent points the
functional is the sum of the amplitudes of the jumps; for chain recurrent points, the functional
is the maximum of the amplitudes of the jumps. We remind two of their fundamental results.
On one hand, they provided a new proof of the above Conley’s theorem in the framework of
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discrete-time dynamical systems. On the other hand, they proved the next

THEOREM. (Fathi & Pageault, 2015).
Let g : X → X be a homeomorphism on a compact metric space. Then

(i) There exists a Lipschitz continuous Lyapunov function u for g such that N (u) = SCR(g).

(ii) SCR(g) =
⋂
N (f), where the intersection is taken over all Lipschitz continuous Lyapunov

functions f for g.

(iii) SCR(g) has a unique strong chain transitive component if and only if the only Lipschitz
continuous Lyapunov functions for g are the constants.

We refer respectively to Theorem 4.4, Corollary 4.5 and Theorem 4.8 in [16] for the proofs of
the points (i), (ii) and (iii) above. More recently, an adaptation of Fathi and Pageault’s tech-
niques has led to the proof of point (ii) of the previous theorem also for a flow which is Lipschitz
continuous for every t ≥ 0, uniformly for t on compact subsets of [0,+∞), see [1][Theorem 2.2].
However, in [1] it is not constructed a single Lyapunov function whose neutral set coincides with
the strong chain recurrent set.

This paper intends to examine in depth the relations between strong chain recurrence and
Lyapunov functions in the case of flows. First, we prove this improvement of point (i) of Conley’s
original result:

THEOREM 1. Let φ : X × R → X be a continuous flow on a compact metric space (X, d),
uniformly Lipschitz continuous on the compact subsets of [0,+∞). Then there exists a Lipschitz
continuous Lyapunov function u : X → R for φ such that

N (u) = SCR(φ).

The proof of this theorem combines together variational and dynamical methods. In particular,
we start by constructing –by accurately adapting Fathi and Pageault’s techniques– a function
which strictly decreases along the flow out of a closed set containing SCR(φ) and definitively
(that is, for t ≥ T ) in time. We refer to Proposition 3.1 for the precise statement. Thereafter,
by using some ideas coming from the original proof of Conley’s theorem, we modify this function
in order to obtain the desired Lyapunov function, that is strictly decreasing outside SCR(φ) for
any t > 0. See Lemma 4.1, Lemma 4.2 and the consequent Theorem 4.1.
We proceed by discussing the main consequences of the above theorem. From one hand, we give
an alternative –i.e. constructive– proof of Theorem 2.2 in [1]:

COROLLARY 1. Let φ : X × R → X be a continuous flow on a compact metric space (X, d),
uniformly Lipschitz continuous on the compact subsets of [0,+∞). Then

SCR(φ) =
⋂
N (f).

where f is any Lipschitz continuous Lyapunov function for φ.

From the other hand, we discuss a sufficient condition in order to establish the existence of
a C1,1 strict Lyapunov function for a flow induced by a vector field:

COROLLARY 2. Let (M, g) be a C∞ closed connected Riemannian manifold. Let V : M → TM
be a Ck vector field, k ≥ 2, inducing the flow φ. If SCR(φ) = CR(φ) then there exists a C1,1

Lyapunov function such that N (u) = SCR(φ).

See respectively Corollary 4.1 and Corollary 4.2. In particular, the proof of the second corollary
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uses existence and regularity results for sub-solutions of the so-called Mañé Hamiltonians. We
then pass to discuss some cases –Examples 4.1 and 4.2– where the hypothesis SCR(φ) = CR(φ)
of this corollary is not satisfied and any sub-solutions of weak KAM theory provide first integrals,
while the Lyapunov function previously constructed is not a first integral.
We also remark that the converse implication of this corollary does not in general hold true.
To be thorough, in Definition 5.2 we remind the milder notion of pseudo-complete Lyapunov
function and in Proposition 5.3 we prove a necessary and sufficient condition for the strong chain
recurrent and the chain recurrent sets to be equal:

PROPOSITION. Let φ : X × R → X be a continuous flow on a compact metric space (X, d).
Then, SCR(φ) = CR(φ) if and only if there exists a pseudo-complete Lyapunov function f : X →
R such that f(SCR(φ)) is totally disconnected.

We finally analyze the relations between Lipschitz continuous Lyapunov functions and the strong
chain transitive components of SCR(φ). As a final outcome –see Theorem 5.1– we show that
point (iii) of Fathi and Pageault’s theorem still holds in the case of a continuous flow:

THEOREM 2. Let φ : X × R → X be a continuous flow on a compact metric space (X, d).
SCR(φ) has a unique strong chain transitive component if and only if the only Lipschitz contin-
uous Lyapunov functions for φ are the constants.

Acknowledgements. O. Bernardi has been supported by the project CPDA149421/14 of the
University of Padova. O. Bernardi and A. Florio acknowledge the support of G.N.F.M.

2 The function LT : definition and properties

Let φ : X → X be a continuous flow on a compact metric space (X, d). The next definitions are
the continuous-time versions of the ones introduced by Fathi and Pageault for homeomorphisms,
see [16][Chapter 2, Section 3] and [12][Section 2.1]. We also underline that their setting has
recently been extended by Ethan Akin and Jim Wiseman in [3] both to relations and to uniform
spaces.

Let x, y ∈ X. For any T ≥ 0, we indicate by CT (x, y) the set of chains C = (xi, ti)i=1,...,n ⊂
X ×R from x1 = x to xn+1 = y such that ti ≥ T for all i. The cost of going from x to y through
a chain C ∈ CT (x, y) is given by

lT (C) :=

n∑
i=1

d(φti(xi), xi+1).

Moreover, for any T ≥ 0, we define the non-negative function

LT : X ×X → [0,+∞)

LT (x, y) := inf{lT (C) : C ∈ CT (x, y)}.
(3)

In the next proposition, we summarize some useful facts about the function LT . We refer to
[16][Proposition 3.1] and [12][Proposition 2.1] for analogous results in the case of a homeomor-
phism.

Proposition 2.1. Let φ : X × R → X be a continuous flow on a compact metric space (X, d).
For any fixed T ≥ 0, the following properties hold:

(i) For any x, y, z ∈ X,
LT (x, y) ≤ LT (x, z) + LT (z, y).
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(ii) For any x ∈ X,
LT (x, φt(x)) = 0 ∀t ≥ T.

(iii) For any x, y, z ∈ X,
|LT (x, y)− LT (x, z)| ≤ d(y, z).

As a consequence, for any fixed x ∈ X, the function z 7→ LT (x, z) is 1-Lipschitz continuous.

(iv) For any fixed x ∈ X, the function z 7→ LT (z, x) is upper semicontinuous.

Proof. For points (i), (ii) and (iii) we refer to Lemma 2.4 in [1].
(iv) By definition of LT , for any z ∈ X and ε > 0, from the definition of infimum, there exists a
chain Cε ∈ CT (z, x) such that

lT (Cε) < LT (z, x) +
ε

2
.

Moreover, since φt1 is a homeomorphism, for any ε > 0 there exists δ = δ(ε) > 0 so that

d(z, y) < δ ⇒ d(φt1(z), φt1(y)) <
ε

2
.

Let us consider the chain C̃ε ∈ CT (y, x) obtained from Cε by substituting the first point with y.
Hence, if d(z, y) < δ, we have that

LT (y, x) ≤ lT (C̃ε) ≤ d(φt1(z), φt1(y)) + lT (Cε) < ε+ LT (z, x).

For any T ≥ 0, we define the subset AT of X as

AT := {x ∈ X : LT (x, x) = 0}. (4)

Since CT (x, y) is contained in CT ′(x, y) when T ≥ T ′, the function T 7→ LT (x, y) is monotonically
increasing for any pair (x, y) ∈ X ×X and AT ⊆ AT ′ . We notice that

SCR(φ) =
⋂
T≥0

AT . (5)

The next proposition characterizes the points of the strong chain recurrent set in terms of the
functions LT .

Proposition 2.2. Let φ : X × R→ X be a continuous flow on a compact metric space (X, d).

(i) If x ∈ SCR(φ), then LT (φt(x), x) = LT (x, φt(x)) = 0 for any T ≥ 0 and t ∈ R.

(ii) If for any T ≥ 0 there exists a time t = t(T ) ∈ R such that LT (φt(x), x) = LT (x, φt(x)) = 0,
then x ∈ SCR(φ).

In particular, if x ∈ SCR(φ) then x and φt(x) belong to the same strong chain transitive compo-
nent of SCR(φ) for any t ∈ R.

Proof. (i) Let x ∈ SCR(φ), T ≥ 0 and t ∈ R be fixed and take N = N(T, t) ∈ N such that
t ≤ NT . Since x ∈ SCR(φ), L(N+1)T (x, x) = 0. This means that for any ε > 0 there exists a
chain Cε = (xi, ti)i=1,...,n ∈ C(N+1)T (x, x) such that

l(N+1)T (Cε) ≤ ε.

Let consider the following chain C̃ε ∈ CT (φt(x), x) obtained from Cε:

C̃ε = ((φt(x), t1 − t), (x2, t2), . . . , (xn, tn)) .
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Then it clearly holds that

0 ≤ LT (φt(x), x) ≤ lT (C̃ε) = l(N+1)T (Cε) ≤ ε.

From the arbitrariness of ε > 0, we deduce that LT (φt(x), x) = 0. Since the above argument can
be repeated for any fixed x ∈ SCR(φ), T ≥ 0 and t ∈ R, we conclude that if x ∈ SCR(φ) then
LT (φt(x), x) = 0 for any T ≥ 0 and t ∈ R.

For a fixed x ∈ SCR(φ), T ≥ 0 and t ∈ R, we now prove the other equality. If t ≥ T , the
fact that LT (x, φt(x)) = 0 corresponds exactly to property (ii) of Proposition 2.1. Consequently,
let t < T and choose N = N(T, t) ∈ N such that T < N |t|. Moreover, observe that by the
invariance of the strong chain recurrent set, φt(x) ∈ SCR(φ). This means that, for any ε > 0
there exists a chain Cε = (xi, ti)i=1,...,n ∈ C(N+1)|t|(φt(x), φt(x)) such that

l(N+1)|t|(Cε) ≤ ε.

Let us consider the following chain C̃ε ∈ CT (x, φt(x)) obtained from Cε:

C̃ε = ((x, t1 + t), (x2, t2), . . . , (xn, tn)) ,

so that
0 ≤ LT (x, φt(x)) ≤ lT (C̃ε) = l(N+1)|t|(Cε) ≤ ε.

From the arbitrariness of ε > 0, we conclude that LT (x, φt(x)) = 0. Since the above argument
holds for any fixed x ∈ SCR(φ), T ≥ 0 and t < T , we conclude that if x ∈ SCR(φ) then
LT (x, φt(x)) = 0 for any T ≥ 0 and t ∈ R.
(ii) Conversely, for a point x ∈ X, let assume that for any T ≥ 0 there exists a time t = t(T ) ∈ R
such that

LT (φt(x), x) = LT (x, φt(x)) = 0

Thanks to property (i) of Proposition 2.1, we have that

0 ≤ LT (x, x) ≤ LT (x, φt(x)) + LT (φt(x), x) = 0.

From the arbitrariness of T ≥ 0, we deduce that x ∈ SCR(φ).

3 Construction of Lipschitz Lyapunov functions definitively strict

Through the whole Sections 3 and 4, we assume that φ : R×X → X is a continuous flow on a
compact metric space, uniformly Lipschitz continuous on every compact subset of [0,+∞). This
means that for any T ≥ 0 there exists MT > 0 such that

d(φt(x), φt(y)) ≤MTd(x, y) ∀t ∈ [0, T ]. (6)

The above Lipschitz regularity assumption is satisfied, for instance, by the flow of a Lipschitz
continuous vector field on a compact manifold.

Let K := {x1, . . . , xj , . . .} be a countable dense subset of X; such a set exists since X is a
compact metric space. For any T ≥ 0, we define the function

uT : X → R

uT (x) :=
∑
j∈N

1

2j
LT (xj , x). (7)

Clearly, the function uT is bounded. Indeed, for any x ∈ X, it holds that

|uT (x)| ≤
∑
j∈N

1

2j
|LT (xj , x)| ≤ 2 diam(X)

where diam(X) = max{d(x, y) : x, y ∈ X} < +∞. In the next proposition we summarize the
properties of uT .
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Proposition 3.1. Let φ : X × R → X be a continuous flow on a compact metric space (X, d),
uniformly Lipschitz continuous on compact subsets of [0,+∞). For any fixed T ≥ 0, the following
properties hold:

(i) uT is 2-Lipschitz continuous.

(ii) uT is definitively a Lyapunov function for φ, that is

uT (φt(x)) ≤ uT (x) for any x ∈ X and t ≥ T.

(iii) uT is definitively strict outside AT
2
, that is

uT (φt(x)) < uT (x) for any x ∈ X \ AT
2
and t ≥ T.

Proof. (i) Thanks to property (iii) of Proposition 2.1, for any x, y ∈ X it holds that

|uT (y)− uT (x)| ≤
∑
j∈N

1

2j
|LT (xj , y)− LT (xj , x)| ≤ 2d(x, y)

(ii) By point (i) of Proposition 2.1, for any x, y ∈ X we have that

uT (y)− uT (x) =
∑
j∈N

1

2j
(LT (xj , y)− LT (xj , x)) ≤ 2LT (x, y)

For y = φt(x) and t ≥ T , we obtain

uT (φt(x))− uT (x) ≤ 2LT (x, φt(x)) = 0

where –in the last equality– we use property (ii) of Proposition 2.1.
(iii) Arguing by contradiction, let us suppose that uT is not definitively strict outside AT

2
. This

means that there exist z ∈ X \ AT
2
and s ≥ T such that

uT (φs(z))− uT (z) =
∑
j∈N

1

2j
(LT (xj , φs(z))− LT (xj , z)) = 0. (8)

Since from properties (i) and (ii) of Proposition 2.1, it holds

LT (xj , φt(x))− LT (xj , x) ≤ 0 ∀x ∈ X, j ∈ N and t ≥ T,

hypothesis (8) equals to

LT (xj , φs(z))− LT (xj , z) = 0 ∀j ∈ N. (9)

Let m ∈ N be fixed. In the sequel we prove that there exists xj(m) ∈ K such that

LT (xj(m), φs(z)) <
1

m
. (10)

Notice that, since K is a dense sequence in X, it is always possible to take xj(m) ∈ K such that

d(xj(m), z) <
1

mM2T
. By hypothesis (6), this implies

d(φt(xj(m)), φt(z)) <
1

m
∀t ∈ [0, 2T ]. (11)
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We now explicitly exhibit a chain C ∈ CT (xj(m), φs(z)) such that

lT (C) <
1

m
.

From one hand, if s ∈ [T, 2T ] then C = (xj(m), s). Indeed, by (11), we have

lT (C) = d(φs(xj(m)), φs(z)) <
1

m
.

From the other hand, if s > 2T , let consider the chain C ∈ CT (xj(m), φs(z)) defined as follows:

C =
(
(xj(m), T ), (φT (z), s− T )

)
.

By (11) again, it holds

lT (C) = d(φT (xj(m)), φT (z)) + d(φs(z), φs(z)) <
1

m
+ 0 =

1

m
.

Since LT (xj(m), φs(z)) ≤ lT (C) for any C ∈ CT (xj(m), φs(z)), inequality (10) immediately fol-
lows. Consequently –see (9)– we obtain:

LT (xj(m), z) <
1

m
. (12)

By using previous inequality, we are now going to conclude that LT
2

(z, z) = 0. Given an arbitrary
chain C ∈ CT (xj(m), z) from xj(m) to z:

C =
(
(xj(m), t1), (y2, t2), . . . , (yn, tn)

)
,

let us consider the chain C̃ ∈ CT
2

(z, z) obtained by C and defined as follows:

C̃ =

((
z,
T

2

)
,

(
φT

2
(xj(m)), t1 −

T

2

)
, (y2, t2) , . . . , (yn, tn)

)
.

By (11), we have

LT
2

(z, z) ≤ lT
2

(C̃) = d(φT
2

(z), φT
2

(xj(m))) + d(φt1(xj(m)), y2) + · · ·+ d(φtn(yn), z) <
1

m
+ lT (C).

Since LT (xj(m), z) <
1
m , by taking the infimum over all possible chains in CT (xj(m), z), we have

LT
2

(z, z) <
1

m
+

1

m
=

2

m
.

From the arbitrariness of m ∈ N, we obtain LT
2

(z, z) = 0. Since z ∈ X \ AT
2
, previous equality

gives the desired contradiction.

4 Existence of Lipschitz Lyapunov functions strict outside SCR(φ)
For a continuous flow φ : X → X satisfying hypothesis (6), this section is devoted to prove the
existence of a Lipschitz continuous Lyapunov function which is strict outside SCR(φ). The proof
–see Theorem 4.1– is preceded by two technical lemmas aiming to overcome the fact that the
function (7) constructed in Proposition 3.1 is only definitively a strict Lyapunov function for φ.
We then proceed to discuss some consequences of Theorem 4.1 and to give various examples.

For any T ≥ 0, we start by defining

ũT : X → R
ũT (x) := max

s∈[0,T ]
uT (φs(x)) (13)
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and

ūT : X → R

ūT (x) :=
1

MT

∫ +∞

0

e−s

Ms
ũT (φs(x))ds.

(14)

We remark that the above definitions are inspired by the ones given by Conley in the proof of the
so-called fundamental theorem of dynamical systems, see [7][Chapter II, Section 5, Page 33] and
[Chapter II, Section 6, Page 39]. The main properties of functions (13) and (14) are presented
in the next two lemmas.

Lemma 4.1. Let φ : X × R → X be a continuous flow on a compact metric space (X, d),
uniformly Lipschitz continuous on compact subsets of [0,+∞). For any fixed T ≥ 0, the following
properties hold:

(i) ũT is 2MT -Lipschitz continuous.

(ii) ũT is a Lyapunov function for φ.

(iii) ũT is definitively strict outside AT
2
, that is

ũT (φt(x)) < ũT (x) for any x ∈ X \ AT
2
and t ≥ T.

Proof. Thanks to property (i) of Proposition 3.1 and assumption (6) on the flow, for any x, y ∈ X

ũT (y)− ũT (x) = max
s∈[0,T ]

uT (φs(y))− max
s∈[0,T ]

uT (φs(x)) ≤ max
s∈[0,T ]

(uT (φs(y))− uT (φs(x))) ≤

≤ 2 max
s∈[0,T ]

d(φs(y), φs(x)) ≤ 2MTd(x, y).

We conclude by exchanging the role of x and y.
(ii) By property (ii) of Proposition 3.1, we know that

uT (φτ (x)) ≤ max
s∈[0,T ]

uT (φs(x)) ∀x ∈ X and τ ≥ 0.

By taking the maximum for τ ∈ [t, T + t], we obtain

max
τ∈[t,T+t]

uT (φτ (x)) ≤ max
s∈[0,T ]

uT (φs(x)) = ũT (x)

Since now
max

τ∈[t,T+t]
uT (φτ (x)) = max

s∈[0,T ]
uT (φs+t(x)) = ũT (φt(x)),

the thesis immediately follows.
(iii) By property (iii) of Proposition 3.1, for any x ∈ X \ AT

2
and t ≥ T , we have

ũT (φt(x)) = max
s∈[0,T ]

uT (φs+t(x)) < uT (x) ≤ max
s∈[0,T ]

uT (φs(x)) = ũT (x).

Lemma 4.2. Let φ : X × R → X be a continuous flow on a compact metric space (X, d),
uniformly Lipschitz continuous on compact subsets of [0,+∞). For any fixed T ≥ 0, the following
properties hold:

(i) ūT is 2-Lipschitz continuous.

(ii) ūT is a Lyapunov function for φ.
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(iii) ūT is strict outside AT
2
for any t > 0.

Proof. (i) By property (i) of Lemma 4.1 and assumption (6) on the flow, we immediately obtain
that for all x, y ∈ X

ūT (y)−ūT (x) =
1

MT

∫ +∞

0

e−s

Ms
(ũT (φs(y))− ũT (φs(x))) ds ≤ 2

∫ +∞

0

e−s

Ms
d(φs(y), φs(x))ds ≤ 2d(y, x).

We conclude by exchanging the role of x and y.
(ii) The statement is a direct consequence of property (ii) of Lemma 4.1. Indeed, for any x ∈ X
and t ≥ 0, it clearly holds

ūT (φt(x))− ūT (x) =
1

MT

∫ +∞

0

e−s

Ms
(ũT (φs+t(x))− ũT (φs(x))) ds ≤ 0

(iii) By definition,

ūT (φt(x))− ūT (x) =
1

MT

∫ +∞

0

e−s

Ms
(ũT (φs+t(x))− ũT (φs(x))) ds.

Let us introduce
s̄ := max{s ∈ [0,+,∞] : ũT (φs(x)) = ũT (x)}

and notice that –by property (iii) of Lemma 4.1– s̄ ∈ [0, T ). Consequently, for any x ∈ X \ AT
2

and t > 0, we have
ũT (φs̄+t(x)) < ũT (x) = ũT (φs̄(x)).

By the previous strict inequality, we deduce that

ūT (φt(x))− ūT (x) < 0 ∀x ∈ x ∈ X \ AT
2
and t > 0.

We finally prove

Theorem 4.1. Let φ : X × R → X be a continuous flow on a compact metric space (X, d),
uniformly Lipschitz continuous on compact subsets of [0,+∞). Then

u : X → R

x 7→ u(x) :=
∑
n∈N

1

2n
ūn(x)

(15)

is a Lipschitz continuous Lyapunov function for φ such that N (u) = SCR(φ).

Proof. The Lipschitz continuity of u is a direct consequence of property (i) of Lemma 4.2. Indeed,
for any x, y ∈ X, we have

u(y)− u(x) =
∑
n∈N

1

2n
(ūn(y)− ūn(x)) ≤ 4d(x, y)

and we conclude by exchanging the role of x, y.
Moreover, from property (ii) of Lemma 4.2, it holds

u(φt(x))− u(x) =
∑
n∈N

1

2n
(ūn(φt(x))− ūn(x)) ≤ 0 ∀x ∈ X and t ≥ 0.

This means that u is a Lyapunov function for φ.
Finally, let x ∈ X \ SCR(φ) and t > 0. We first notice that the strong chain recurrent set
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for φ –see (5)– can be equivalently expressed as SCR(φ) =
⋂
n∈NAn

2
. As a consequence, if

x ∈ X \ SCR(φ) = X \
(⋂

n∈NAn
2

)
=
⋃
n∈N

(
X \ An

2

)
, then there exists n̄ ∈ N such that

x ∈ X \ A n̄
2
. By property (iii) of Lemma 4.2, we then have

ūn̄(φt(x))− ūn̄(x) < 0

and therefore

u(φt(x))− u(x) =
∑
n∈N
n6=n̄

1

2n
(ūn(φt(x))− ūn(x)) +

1

2n̄
(ūn̄(φt(x))− ūn̄(x)) < 0.

This proves that u is strict outside SCR(φ), that is N (u) ⊆ SCR(φ). However, by Proposition
1.6 in [1], the neutral set of every Lipschitz continuous Lyapunov function for φ contains the
strong chain recurrent set of φ, so SCR(φ) ⊆ N (u). We then conclude that N (u) = SCR(φ).

The above theorem implies the following characterization of the strong chain recurrent set in
terms of Lipschitz continuous Lyapunov functions.

Corollary 4.1. Let φ : X × R → X be a continuous flow on a compact metric space (X, d),
uniformly Lipschitz continuous on the compact subsets of [0,+∞). Then,

SCR(φ) =
⋂

f∈L(φ)

N (f).

where L(φ) denotes the set of all Lipschitz continuous Lyapunov functions for φ.

Proof. By Proposition 1.6 in [1], the neutral set of every Lipschitz continuous Lyapunov function
for φ contains the strong chain recurrent set of φ, that is

SCR(φ) ⊆
⋂

f∈L(φ)

N (f).

Since –by Theorem 4.1– the function u defined in (15) is such that SCR(φ) = N (u), the thesis
immediately follows.

We stress that the corollary above has been already proved in [1][Theorem 2.2]. However, in [1]
the inclusion ⊇ is obtained by an accurate adaptation of Fathi and Pageault’s techniques. While,
in our proof, it is an immediate consequence of the existence of the Lyapunov function (15).

Let now (M, g) be a C∞ closed connected Riemannian manifold and V : M → TM be
a Ck vector field, k ≥ 2, inducing the flow φ : R ×M → M . Denote by ‖v‖x the norm of an
element v ∈ TxM relatively to the metric g and introduce the Mañé Hamiltonian

HV : T ∗M → R, HV (x, p) =
1

2
‖p‖2x + p(V (x)).

We indicate by AV the projected Aubry set associated to HV . Since the constant functions are
solutions of the Hamilton-Jacobi equation HV (x, dxv) = 0, the Mañé critical level is c(HV ) = 0.
From one hand, it holds that AV ⊆ CR(φ), see e.g. [14][Section I, Theorem V], [16][Introduction,
Section 3, Proposition 3.2] and [5][Corollary 2]. From the other hand, we know that there exists a
C1,1 critical sub-solution u : M → R of HV (x, dxv) = 0 which is strict outside AV , see [4][Lemma
7]. In particular, dxu(V (x)) ≤ 0 and therefore u is a C1,1 Lyapunov function for φ. Since u
is strict outside AV , it holds N (u) ⊆ AV . Furthermore, recall that for any x ∈ AV and any
sub-solution

1

2
‖dxv‖2x + dxv(V (x)) ≤ 0, (16)

11



dxv does not depend on v (see [17][Proposition 5.1.23]). Consequently, since the constant func-
tions are (sub-)solutions of H(x, dxv) = 0, we have dxv = 0 on AV . In particular, this implies
dxu(V (x)) = 0 for all x ∈ AV or equivalently AV ⊆ N (u). Summarizing, u is a C1,1 Lyapunov
function for φ with N (u) = AV . Therefore, by the previous corollary, SCR(φ) ⊆ AV . From
both inclusions, we conclude that in general

SCR(φ) ⊆ AV ⊆ CR(φ). (17)

Corollary 4.2. If SCR(φ) = CR(φ) then there exists a C1,1 Lyapunov function such that N (u) =
SCR(φ).

Proof. If SCR(φ) = CR(φ) then necessarily SCR(φ) = AV = CR(φ) and the C1,1 critical sub-
solution u : M → R of HV (x, dxu) = 0 which is strict outside AV gives the desired Lyapunov
function with N (u) = SCR(φ).

Next basic Example 4.1 shows two different smooth flows on T1 = R/Z, having the following
properties:

(i) For the first flow, the hypothesis of Corollary 4.2 holds and therefore it exists a differentiable
Lyapunov function which is strict outside the strong chain recurrent set.

(ii) For the second flow, we have that SCR(φ) $ AV = T1. In such a case, even if every sub-
solution given by weak KAM theory provides a first integral for φ, the dynamical system
admits a differentiable Lyapunov function strict outside SCR(φ).

Example 4.1. On the circle T1 = R/Z equipped with the standard quotient metric, consider
the dynamical systems of Figures 1 and 2, where the bold line and the arrows denote respectively
fixed points and the direction of the flow φ.
Relatively to the dynamical system of Figure 1, the hypothesis of Corollary 4.2 is satisfied since
SCR(φ) = CR(φ) = Fix(φ) and it clearly exists a C1,1 (also C∞) Lyapunov function whose
neutral set is the strong chain recurrent set.
Otherwise, in the case of the dynamical system of Figure 2, SCR(φ) = Fix(φ) and CR(φ) = T1.
Moreover –see point (i) of Theorem 4.8 and point (i) of Lemma 4.14 in [11]– the projected Aubry
set associated to the corresponding Mañé Hamiltonian coincides with CR(φ) = T1. Consequently,
every sub-solutions given by weak KAM theory is a first integral but –according to Theorem 4.1–
it clearly exists a Lipschitz continuous (even smooth) Lyapunov function strict outside Fix(φ).

Figure 1: First dynamical
system of Example 4.1.

Figure 2: Second dynamical
system of Example 4.1.

Another case where sub-solutions of weak KAM theory provide first integrals while the Lyapunov
function of Theorem 4.1 is not a first integral, is discussed in the next

Example 4.2. On T2 = R2/Z2 endowed with the standard quotient metric, consider the flow φ
associated to the vector field (see Figure 3):

V (x, y) = (cos(4πx) + 1, 1). (18)
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In such a case, the strong chain recurrent set coincides with the set of periodic points, that is

SCR(φ) =

[
1

4
,
3

4

]
× T1

and CR(φ) = T2. Moreover –by points (i) of Theorem 4.8 and (i) of Lemma 4.14 in [11] again–
the projected Aubry set associated to the Mañé Hamiltonian

1

2
(p2

1 + p2
2) + (cos(4πx) + 1)p1 + p2

is AV = CR(φ) = T2. Consequently, every sub-solutions given by weak KAM theory is a first
integral for φ while function (15) of Theorem 4.1 gives a Lyapunov function for φ which is strict
outside

[
1
4 ,

3
4

]
× T1.

Figure 3: The vector field (18).

We finally remark that the converse implication of Corollary 4.2 does not in general hold
true. For example, consider the dynamical system of Figure 2. In such a case, it is easy to
construct a smooth Lyapunov function which is strict outside SCR(φ) = Fix(φ). However,
SCR(φ) $ CR(φ) = T1. A necessary and sufficient condition for the strong chain recurrent and
chain recurrent sets to be equal is proved in Proposition 5.3 of the next section.

5 Strong chain transitivity and Lipschitz Lyapunov functions

In this section, φ : X × R→ X is a continuous flow on a compact metric space (X, d).
We first introduce LT -dominated and L-dominated functions and then we explain their re-

lation with Lipschitz continuous Lyapunov functions and the strong chain recurrent set. Next
definitions and results are the continuous-time versions of the ones appearing in [16][Chapter 2,
Section 4] and [12][Section 2.2] for homeomorphisms.

Definition 5.1. (Dominated function)

(i) A function f : X → R is said to be LT -dominated if there exists KT > 0 such that

f(y)− f(x) ≤ KTLT (x, y) ∀x, y ∈ X.

(ii) A function f : X → R is said to be L-dominated if it is LT -dominated for any T ≥ 0.

The proof of the next proposition is an easy adaptation for flows of the proof of Lemma 4.3 in
[16].

Proposition 5.1. A Lipschitz continuous function f : X → R is LT -dominated if and only if it
is definitively a Lyapunov function for φ, that is

f(φt(x)) ≤ f(x) for any x ∈ X and t ≥ T.

13



Proof. From one hand, let f : X → R be a LT -dominated, Lipschitz continuous function for φ.
Thanks to point (ii) of Proposition 2.1, for any fixed x ∈ X and t ≥ T it holds

f(φt(x))− f(x) ≤ KTLT (x, φt(x)) = 0,

that is f is a definitively Lyapunov function.
On the other hand, let f : X → R be a K-Lipschitz continuous, definitively Lyapunov function
for φ. Fixed x, y ∈ X, let C = (xi, ti)i=1,...,n ∈ CT (x, y) be a chain from x to y. Then

f(xi+1)− f(xi) ≤ f(xi+1)− f(φti(xi)) ≤ Kd(φti(xi), xi+1) ∀i = 1, . . . , n.

By adding all the inequalities, we conclude that

f(y)− f(x) =
n∑
i=1

(f(xi+1)− f(xi)) ≤ K
n∑
i=1

d(φti(xi), xi+1) = K lT (C).

Finally, by considering the infimum over all possible chains in CT (x, y), we obtain

f(y)− f(x) ≤ KLT (x, y) ∀x, y ∈ X.

Corollary 5.1. A Lipschitz continuous function f : X → R is L-dominated if and only if it is
a Lyapunov function for φ.

In the sequel, we denote by L1
T (φ) the set of 1-Lipschitz continuous functions f : X → R such

that f(φt(x)) ≤ f(x) for any x ∈ X and t ≥ T . The next lemma is the continuous-time version
of Proposition 4.6 in [16].

Lemma 5.1. For any x ∈ SCR(φ) and y ∈ X, we have

LT (x, y) = sup
f∈L1

T (φ)

f(y)− f(x). (19)

Proof. By the previous Proposition 5.1, if f ∈ L1
T (φ) then f is LT -dominated; moreover, it

results that KT = 1. This means that

f(w)− f(z) ≤ LT (z, w) ∀z, w ∈ X

and consequently
LT (z, w) ≥ sup

f∈L1
T (φ)

(f(w)− f(z)) ∀z, w ∈ X.

In order to prove the other inequality, let us fix x ∈ SCR(φ) and define fx(·) := LT (x, ·). We
notice that the function fx(·) ∈ L1

T (φ). Indeed:

fx(z)− fx(y) = LT (x, z)− LT (x, y) ≤ d(y, z) ∀y, z ∈ X

and
fx(φt(y))− fx(y) = LT (x, φt(y))− LT (x, y) ≤ LT (y, φt(y)) = 0

for any y ∈ X and t ≥ T . Moreover, it holds that

LT (x, y) = LT (x, y)− LT (x, x) = fx(y)− fx(x)

because LT (x, x) = 0. As a consequence,

LT (x, y) ≤ sup
f∈L1

T (φ)

(f(y)− f(x)) ∀x ∈ SCR(φ) and y ∈ X.
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Previous Lemma 5.1 leads to prove the following results for Lyapunov functions f ∈ L(φ).
The corresponding version for homeomorphisms is given by Corollary 4.7 and Theorem 4.8. of
Chapter 2 in [16].

Proposition 5.2. Any f ∈ L(φ) is constant on every strong chain transitive component of
SCR(φ). Moreover, if x, y ∈ SCR(φ) belong to different strong chain transitive components of
SCR(φ), then there exists a function f ∈ L(φ) such that f(x) 6= f(y).

Proof. Given f ∈ L(φ) with Lipschitz constant Kf > 0, it clearly holds that f
Kf
∈ L1

T (φ) for any
T ≥ 0. Let now x, y ∈ SCR(φ) be in the same strong chain transitive component of SCR(φ),
that is LT (x, y) = 0 = LT (y, x) for all T ≥ 0. By equality (19), one has

0 = LT (x, y) = sup
g∈L1

T (φ)

g(y)− g(x) ≥ f(y)

Kf
− f(x)

Kf

and
0 = LT (y, x) = sup

g∈L1
T (φ)

g(x)− g(y) ≥ f(x)

Kf
− f(y)

Kf

so that f(y) = f(x).
Conversely, let x, y ∈ SCR(φ) be in different strong chain transitive components of SCR(φ).
Exchanging the role of x, y if needed, this means that there exists a time T ≥ 0 such that
LT (x, y) > 0. By using equality (19) again, we conclude that there exists a function f ∈ L1

T (φ)
such that f(y) 6= f(x). Let us now define

f̃(z) := max
s∈[0,T ]

f(φs(z))

which is in L(φ). Moreover, there exist s̄ = s̄(x) ∈ [0, T ] and ŝ = ŝ(y) ∈ [0, T ] such that

f̃(x) = f(φs̄(x)) and f̃(y) = f(φŝ(y)).

Since now –by Proposition 2.2– if z ∈ SCR(φ) and s ∈ R then z and φs(z) belong to the same
strong chain transitive component of SCR(φ), we conclude that

f̃(x) = f(φs̄(x)) = f(x) and f̃(y) = f(φŝ(y)) = f(y).

As a consequence, we have proved that f̃ ∈ L(φ) is such that f̃(x) 6= f̃(y).

The proof of the next theorem is essentially the same of Theorem 4.8 in Chapter 2 in [16] and it
is omitted. We notice that Fathi and Pageault’s statement is formulated by using the so-called
d-Mather classes, corresponding exactly to the strong chain transitive components of the strong
chain recurrent set for a given homeomorphism.

Theorem 5.1. Let φ : X × R → X be a continuous flow on a compact metric space (X, d).
SCR(φ) has a unique strong chain transitive component if and only if the only Lipschitz contin-
uous Lyapunov functions for φ are the constants.

In the fundamental theorem of dynamical systems recalled in the introduction (see [7][Chapter
II]), Conley made explicit a so-called complete Lyapunov function for φ, whose properties are
listed below.

Definition 5.2. (Complete Lyapunov function)
Let φ : X × R → X be a continuous flow on a compact metric space (X, d). A continuous
Lyapunov function f : X → R for φ is called complete if:

(i) N (f) = CR(φ).
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(ii) If x, y ∈ CR(φ), then f(x) = f(y) if and only if x and y belong to the same chain transitive
component of CR(φ).

(iii) f(CR(φ)) is a compact nowhere dense subset of R.

We notice that the function given by Theorem 4.1 cannot be in general assumed to be complete
with respect to SCR(φ). For example, look at the dynamical system of Figure 2. In such a
case, every fixed point is a strong chain transitive component of SCR(φ) = Fix(φ) but it is not
possible to construct a continuous Lyapunov function such that properties:

(i)′ N (f) = SCR(φ)

and

(ii)′ If x, y ∈ SCR(φ), then f(x) = f(y) if and only if x and y belong to the same strong chain
transitive component of SCR(φ)

simultaneously hold. In particular, if we change the setting from chain recurrence to strong chain
recurrence, it is crucial the next notion of pseudo-complete Lyapunov function, first introduced
(at least at our knowledge) by Katsuya Yokoi for homeomorphisms (see [19][Definition 5.1] and
also [18][Section 6]).

Definition 5.3. (Pseudo-complete Lyapunov function)
Let φ : X × R → X be a continuous flow on a compact metric space (X, d). A continuous
Lyapunov function f : X → R for φ is called pseudo-complete if N (f) = SCR(φ) and f is
constant on every strong chain transitive component of SCR(φ).

Indeed, from Theorem 4.1 and the first part of Proposition 5.2, we immediately deduce the next

Corollary 5.2. Let φ : X × R → X be a continuous flow on a compact metric space (X, d),
uniformly Lipschitz continuous on compact subsets of [0,+∞). Then there exists a pseudo-
complete Lyapunov function for φ.

We finally remark that the notion of pseudo-complete Lyapunov function is useful to discuss the
condition for the strong chain recurrent and chain recurrent sets to be equal (see [19][Theorem
5.3] for the case of a homeomorphism).

Proposition 5.3. Let φ : X × R → X be a continuous flow on a compact metric space (X, d).
Then, SCR(φ) = CR(φ) if and only if there exists a pseudo-complete Lyapunov function f : X →
R such that f(SCR(φ)) is totally disconnected.

Proof. Let SCR(φ) = CR(φ). By Conley’s fundamental theorem (see [7][Chapter II, Section
6.4]), there exists a complete Lyapunov function f for φ. Clearly, f is also a pseudo-complete
Lyapunov function for φ such that f(SCR(φ)) = f(CR(φ)) is totally disconnected.
Conversely, let f : X → R be a pseudo-complete Lyapunov function for φ such that f(SCR(φ))
is totally disconnected. Without loss of generality, we suppose that f(x) ≥ 0 for any x ∈ X. In
order to show that CR(φ) ⊆ SCR(φ), we remind that the next conditions are equivalent:

(i) x /∈ CR(φ).

(ii) There exists an attractor K such that x /∈ K but ω(x) ⊆ K.

See [7][Chapter II, Section 6.2, Page 37] for this equivalence. Let x /∈ SCR(φ) and t̄ > 0 such
that f(φt̄(x)) < f(x). Since f(SCR(φ)) is totally disconnected, there exists r0 > 0 such that
f(φt̄(x)) < r0 < f(x) and r0 /∈ f(SCR(φ)). We define U := {y ∈ X : f(y) ∈ [0, r0)}. Since f is
a Lyapunov function for φ, we have that K := ω(U) ⊆ U , which means that K is an attractor.
Moreover, x /∈ K but, since φt̄(x) ∈ U , ω(x) ⊆ K. From the equivalence of points (i) and (ii)
recalled above, we conclude that x /∈ CR(φ). This prove that CR(φ) ⊆ SCR(φ) and therefore
CR(φ) = SCR(φ).
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