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Abstract 

We discuss here the key features of a new methodology that enables professional caregivers to 

teach a socially assistive robot (SAR) how to perform the assistive tasks while giving verbal 

and coverbal instructions, demonstrations and feedbacks. We describe here how socio-

communicative gesture controllers – which actually control the speech, the facial displays and 

hand gestures of our iCub robot – are driven by multimodal events captured on a professional 

human demonstrator performing a neuropsychological interview. The paper focuses on the 

results of two crowd-sourced experiments where we asked raters to evaluate the multimodal 

interactive behaviors of our SAR. We demonstrate that this framework allows decreasing the 

behavioral errors of our robot. We also show that human expectations of functional capabilities 

increase with the quality of its performative behaviors. 

1. Introduction 

Socially assistive robots 

SAR are typically facing two situations with quite different timescales and related challenges: long-

term vs. short-term interactions. Long-term interactions often target one single user with the 

challenge of engaging into open-domain conversations, establishing affective relation, such as 

performed by ) (see Robinson et al., 2014 for a review). In contrast, short-term interactions are 

typically task-oriented (e.g. welcoming a client, giving directions, serving cocktails (Foster et al., 

2014), conducting interviews (Bethel et al., 2016), repetitive and should cope with a large variety 

of user profiles. 

Our work focuses on the development of socio-communicative abilities for short-term interactions. 

The target scenario is a neuropsychological interview with an elderly person. 

2. The SOMBRERO Framework 

The multimodal interactive behavioral model learning is performed by three main steps illustrated 

in Figure 23. Firstly, we collect representative interactive behaviors from human tutors especially 

by professional coaches. Secondly, the comprehensive models are trained from the collected data 

with considering a priori knowledge of users’ models and task decomposition. Finally, the gesture 

controllers are built in order to execute the desired behaviors driven by the interactive model. 

The interactive models of HRI systems are mostly inspired by Human-Human interaction (HHI). 

Therefore, they face several issues: (1) adapting the human model to the robot’s interactive 

capabilities; (2) the drastic changes of human partner behaviors in front of robots or virtual agents; 

(3) the modeling of joint interactive behaviors; (4) the validation of the robotic behaviors by human 

partners until they are perceived as adequate and meaningful. The two first issues are solved by the 

framework used in SOMBRERO (Gomez et al., 2015) which allows coaches to involve and 

demonstrate an expected HRI behavior through immersive teleoperation technique: the so-called 

beaming method driving gaze, head movements and mouth of the robot in real-time during the 

interaction. The third issue has been addressed by (Mihoub et al., 2015; Mihoub et al., 2016). They 
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proposed to train statistical behavioral models that encapsulate discrete multimodal events 

performed by the interlocutors into a single dynamical system that could be further used to monitor 

behaviors of one interlocutor and generate behaviors of the other. 

In this paper, we propose a method to address the fourth issue: the replay of interactive behaviors 

by the robot and its assessment by human raters. 

 

 
Figure 1. The iCub humanoid (named Nina) 

robot from the subject’s perspective. 

 
Figure 2. Capturing the multimodal behavior of the human tu- 

tor during HHI. Movements of the upper limbs (head, arms and 

hands) are captured by tracking 22 markers glued on these seg- 

ments with a Qualysis ® mocap system. Gaze was tracked using 

Pertech ® head-mounted eye tracker. 

 

 
Figure 3. The three main steps of learning interaction by demonstration: collecting HRI data, learning a 

behavioral model and building appropriate sensorimotor controllers. 

From HHI to HRI 

The short-term interactive scenario involved here is a French adaptation of the Selective 

Reminding Test, so-called RL/RI 16 (Dion et al., 2015). It is often used to diagnose early loss of 

episodic memory. The test includes four phases: (1) words memorization (aka learning), (2) testing 

the words recall capability, (3) recognition of the words and (4) distractive task, which were 

described detail in (Nguyen et al., 2016). 

In order to avoid complex gestures usually performed by human interviewers using scoring sheets 

and paper-based notes, the SAR uses two tablets as physical medium: one facing the robot to fake 

the note taking activity and the other facing the subject to display word items. 

HHI demonstrations were performed by a female professional psychologist. We collected her 

multimodal behavior (speech, head movement, arm gestures and gaze, see Figure 2) when 

interviewing five different elderly patients together with the speech of the interviewees. These 

continuous signals were then semi-automatically converted into time-stamped events using Elan 

(Wittenburg et al., 2006) and Praat (Boersma and Weenink 1996) editors. With Elan, we basically 

determined hand strokes triggered by the interviewer to grasp and act on resources (workbook, 

notebook, chronometer) and regions of interest for fixations. With Praat, we hand-checked the 

phonetic alignment performed by an automatic speech recognition system and added prosodic 

annotations as well as special phonetic events related to backchannels and breath noises. The HHI 

multimodal score consists thus in time-stamped speech, head/arm/hands gestures and gaze events. 
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We then developed modality-specific gesture controllers to map these events to robotic behaviors. 

HHI to HRI retargeting is thus performed using multimodal events as pivots. This HHI multimodal 

score is available for download (see section 6). 

Speech and Gesture controllers 

We built four gesture controllers: arm, gaze, eyelids and speech, which will cooperate together to 

enable SAR to replicate the RL/RI scenario. The arm gesture controller is based on the iCub 

Cartesian Interface (Pattacini et al., 2010) and handles three basic gestures: resting, preparing to 

click and clicking to trigger display/hide items. The gaze gesture controller triggers fixations 

towards three regions of interest: subject’s face, subject’s tablet and robot’s tablet. The gaze gesture 

controller synchronizes with the gesture controller for ensuring sensory-motor control, e.g. locking 

the gaze at finger target when initiating arm gesture. Conversely, when no such sensory-motor 

control is required, the gaze is driven by the other socio-communicative events. The eyelid gesture 

controller was added to cope with gaze direction, speech and blinking. Despite blinking rate is 

known to correlate with emotional state and cognitive state – notably thinking, speaking vs. 

listening (see Bailly et al., 2010) – blinks are generated according to a Gaussian distribution at 0.5 

Hz +/- 0.1 Hz. Finally, the speech gesture controller was handled by our in-house audiovisual text-

to-speech system (Bailly et al., 2009). The corpus-based of AV synthesis is fed with articulatory 

movements from a female adult that have been scaled to NINA’s degrees of freedom and time-

aligned with voice segments from a female teenager. 

3.  Evaluation 

We want to evaluate if the coordinated behaviors are perceived and interpreted as expected by 

subjects. Since subjects can not both live and rate the interaction on-line, we thus asked third 

parties (observers or raters) to rate the final rendering of a multimodal score recorded during HHI – 

and replayed by our robotic embodiment. 

State of the art 

Most subjective evaluations of HRI behavior have been performed using questionnaires, where 

subjects or third parties are asked to score specific dimensions of the interaction on a Likert scale. 

(Fasola and Mataric, 2013) rated several aspects such as pleasure, interest, satisfaction, 

entertainment and excitation. (Huang and Mutlu, 2014) assessed a narration of a humanoid robot 

along several dimensions such as immediacy, naturalness, effectiveness, likability and credibility. 

(Zheng et al., 2015) compared control strategies for robot arm gestures along dimensions such as 

intelligibility, likeability, anthropomorphism and safety. Although delivering very useful 

information notably for sorting between competing control policies or settings, these questionnaire-

based evaluations provide developers with poor information about how to correct faulty behaviors 

since the evaluation is performed offline and questions address global properties of the entire 

interaction. 

Designing and performing on-line vs off-line evaluation 

Following the procedure proposed by (Kok and Heylen, 2011), we opted for a method that enable 

raters to signal faulty events, since the HRI behaviors are essentially controlled by events. We thus 

designed an on-line evaluation technique that consists in asking raters to immediately signal faulty 

behaviors by pressing on the ENTER key of their computer when they just experience them. 

Following Kok & Heylen, we will use the term yuck responses to name these calls for rejection. 

In order to gather a significant amount of yuck responses for a set of identical stimuli, we here ask 

our raters to evaluate the replay by the robot of the multimodal behavior, originally performed by 

our psychologist in front of one unique subject. We in fact filmed the robot’s performance as fed by 

the multimodal score of the original situated interaction (arm gestures, head movement, gaze...). 

For now, the only original play-backed behavior is the subject speech. The camera remains fixed at 

the mean position of the location of the eyes of the subject. The raters can see the robot facing 

them, but not the patient that they replace. They can hear the robot, as well as what the subject 

says: they are spectators, but occupy the seat of the subject. For our first experimental assessment 

(Nguyen et al., 2016), we created a website (see section 6) where we ask people to look at a first-
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person video and to press the ENTER key anytime they feel the robot behavior is incorrect. This 

provides a time-varying normalized histogram of incorrect behaviors. The maxima of the density 

function are cueing time-intervals for which a majority of raters estimate the behavior is 

inappropriate or hinders the interaction. Further diagnostic of what cues cause these faulty 

behaviors are later performed by roboticists and system designers. This on-line evaluation task is 

preceded by a quick screening of subjects (age, sex and mother tongue) and a familiarization 

exercise, and followed by a questionnaire that asks the subjects judgments (five-level Likert) on 

nine points: “Did the robot adapt to the subject?”; “Did the subject adapt to the robot?”; “Did you 

feel relaxed?”; “Did you feel secure?”; “Was the rhythm of the robots behavior well adapted?”; 

“Was the interaction pleasant?”; “ Was the multimodal behavior appropriate?”; “Did the robot pay 

attention while speaking?”; “Did the robot pay attention while listening?” 

The present paper builds up new results upon a previous experiment (Nguyen et al., 2016) 

performed by 50 French native subjects (26 males, 24 females, 32±12 years). The 25 most signaled 

events were related to the following problems: (1) Ungrounded pointing gestures; 

Underrepresented gaze contacts; (2) Inactivity during reverse counting or covert thinking; (3) 

Inadequate speech articulation; (4) Lack of facial expressions. 

 
Figure 4. Comparing the yucking probability as a function of time for first vs. second assessment by the subjects 

(blue area: first evaluation, pink area: second evaluation, purple area: overlap between the first and second 

evaluations, dot-lines: annotated yuck).  

 

For the current study, after correcting these faulty behaviors, we performed a new experimental 

assessment using the same experimental protocol. The second experimental assessment was 

performed by 46 French native subjects (16 males, 30 females, 36±16 years), 38 of whom already 

participated in the first assessment. 

Results 

Yuck responses 

We remedied to these faulty behaviors by adding extra-rules to our gesture controllers. For 

example, in order to avoid immobility due the periods of poor external stimulation, the gaze 

controller automatically randomly loops on the two last regions of interest when the delay from the 

last fixation exceeds 3 sec. 

With this rule, the number of yucks at timestamps 10, 11, 12, 13, 16, 18, 19 and 23 are significantly 

reduced as shown in Figure 4. However, this randomization should not be equally distributed and 

should favor the subject’s face, since the participants still complain about its lack of engagement 

with the human subject (e.g. around peak 11, 12, 13 in counting task). This problem will be 

suppressed by systematically adding the subject’s face to the current attention stack and favoring 

this region of interest in the gaze distribution. 

In the first evaluation, yucks occuring at timestamps 2, 3, 4 were due to the wait-motion-done 

setting. In the redesign, theses faulty behaviors have been removed by disabling the wait-motion-

done option that discards any new command while the current gesture has not reached its target 
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given a given precision. This policy is efficient: the yuck responses at landmarks 2, 3, 4 are 

significantly reduced in the second evaluation. The yucks at landmarks 14 and 15 were repaired by 

forcing the closing gesture at the end of phonation. Although many of the faulty behaviors are 

suppressed, several faulty detections still remain while some new yucks emerge from the 

background, notably the absence of expressiveness, e.g. smile responses to subject’s 

embarrassment or head nodding normally associated with incentives, respectively cued by yellow 

vs. cyan extrema. 

Subjective ratings and comments 

We also compared subjective ratings from the first vs. second assessment (see Figure 5). While the 

new behavioural score results in an effective decrease of the yuck responses and descent behavior 

effectively improves – most other off-line subjective ratings degrade. Likelihood ratio tests 

comparing the combined multinomial model RATINGS ~ SEX+SESSION+EXPOSURE with the 

individual models RATINGS ~ SEX+SESSION, RATINGS ~ SEX+EXPOSURE and RATINGS ~ 

EXPOSURE+SESSION show that sex significantly contributes to the ratings of questions robot 

adaptation. In addition, the version (p = 0.049) and the number of evaluations (p = 0.041) has 

significant contributions on feels_relaxed. This means that people feel more relaxed and the robot 

was rated as more friendly in the second evaluation. 

 

 
Figure 5. Comparing subjective ratings according to conditions 

 

In the free comments, some raters of the first evaluation campaign mentioned the rather directive 

style of our female interviewer and the absence of emotional vocal and facial displays on our SAR 

e.g. laughs and smiles. While most raters of the second evaluation campaign underly the quality of 

gaze behavior, the majority criticize the poorness of emotional displays: “robot without human 

warmth!”, “why robots never smile?”, etc. It seems that the increased behavioral quality and 

appropriateness also increased the participant’s expectations. When they have the impression that 

the robot is reactive, aware of the situation and monitors the interaction task in an appropriate way, 

they can allocate more attentional resources to the social and emotional aspects of the interactive 

behavior.  

4. Conclusions 

We have put forward an original framework for the on-line evaluation of HRI behavior that offers 

subsequent glass-box assessment: On-line evaluation provides developers with when something 

goes wrong. Post-hoc reverse engineering should be then performed by the socially assistive robot 

(SAR) designers to remedy for the potential causes of the most salient yuck responses, i.e. what 

went wrong. Off-line assessment provides developers with what is missing. These local vs global 

assessment procedures should be combined to maintain SAR at the top of the uncanny cliff. 

We should augment the socio-communicative skills of our SAR with more expressive dimensions. 

While Nina is missing facial displays (notably articulated eyebrows), its available degrees-of-

freedom (notably head, arm and body gestures) together with speech should be recruited to encode 

more linguistic and paralinguistic functions. 
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6. Appendix 

The test page is available at http://www.gipsa-lab.fr/~duccanh.nguyen/assessment 

Multimodal data/labels are freely available at: http://www.gipsa-lab.fr/projet/SOMBRERO/data 
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