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ABSTRACT

We investigate a novel, parallel implementation of active contours
for image segmentation combining a multi-agent system with a
quad-edge representation of the contour. The control points of
the contour evolve independently from one another in a parallel
fashion, handling contour deformation, and convergence, while the
quad-edge representation simplifies contour manipulation and local
re-sampling during its evolution. We illustrate this new approach
on biological images, and compare results with a conventional ac-
tive contour implementation, discussing its benefits and limitations.
This preliminary work is made freely available as a plug-in for our
open-source Icy platform, where it will be developed with future
extensions.

Index Terms— Image segmentation, active contours, quad
edge, parallel computing, multi-agent systems

1. INTRODUCTION & RELATED WORK

Since their original appearance in computer vision 30 years ago [1],
deformable models (also popularly referred to as active contours)
have received extensive and continued attention from numerous
scientific domains including biomedical imaging, with applications
ranging from image segmentation to object tracking, shape mod-
elling and matching [2–4]. Briefly, the principle is to deform an
initial curve towards a target object boundary by minimising some
cost functional that comprises data-attachment and regularisation
terms, as well as user-defined priors to ensure optimal segmenta-
tion. The curve is traditionally represented in one of two ways: a)
explicitly, either via a parametric [1, 5, 6] or a discrete [7–9] formal-
ism, or b) implicitly, by embedding the contour as the zero-level of
a higher-dimensional Lipschitz function, a formalism well-known
as level sets [10–13]. The former approach is generally preferred
for its interactivity and relative computational efficiency as com-
pared to level sets (especially in 3D), while the latter approach
is typically favoured for its topological flexibility and naturally
multi-dimensional notation. These historical limitations have how-
ever been progressively addressed by the community, most notably
with the introduction of topological constraints within the level set
framework [14–16], and conversely with the implementation of
topological operations (splitting and merging) for discrete active
contours [9, 17, 18].

Correspondence: adufour@pasteur.fr
This work was funded by Institut Pasteur. L.R. was partially funded by

an interdisciplinary grant from the CNRS GdR MIV.

Despite their flexibility and robustness, deformable models have
long remained infamously known for their substantial computational
burden as compared to simpler yet faster alternatives. Fortunately,
this situation has drastically evolved over the last decade, notably
with the advent of GPU1-oriented computing [19]. Level sets in
particular have largely benefited from such massively parallel imple-
mentations [20–22]. Explicit approaches have also benefited from
GPU acceleration, although to a lesser extent, with benefits mostly
impacting heavy image-centric pre-processing operations, rather
than the contour deformation itself [23–25]. Aside from such GPU-
centric approaches, very few alternatives have been investigated.
In [26], an original reformulation of the contour deformation was
proposed using the concept of Multi-Agent-Systems [27], whereby
all contour points behave pseudo-independently of one another. This
concept carries high potential for parallel computing (independently
of the hardware), however the approach was not developed for
computational efficiency, and therefore remained limited to a small
number of agents (contour points). Also, convergence detection and
local topological operations are not parallelised. More recently, a
distributed approach was proposed in [28], where both the image
and the contour are split into sub-images and sub-contours, thereby
generating multiple sub-segmentation problems running in parallel.
This solution is particularly appealing for the analysis of very large
data sets (typically surpassing both computer or graphics memory
capacities), however the management of contour connectivity and
fusion accross neighbouring sub-problems remains a challenge.

In this work we investigate for the first time a novel, parallel
implementation of explicit active contours that draws from the the-
ories of Multi-Agent Systems and the Quad-Edge formalism. The
contributions of such a framework are two-fold:

• We propose an implementation of the contour deformation
heavily inspired from Multi-Agent Systems (improving on
the work of [26]), whereby in addition to handling their dis-
placement and interaction with their neighbours, each control
point is responsible for handling local resampling operations
(adding or removing control points) without the intervention
of a global observer. We also improve on the convergence de-
tection algorithm of each agent in order to significantly speed
up the segmentation of complex objects.

• We represent the control points of the contour (i.e. the agents
of the system) using the quad-edge formalism [29,30], which
offers an efficient and elegant framework that simplifies con-
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tour manipulation and implementation (notably in a paral-
lel context). Moreover, the quad-edge formalism is readily
adaptable to any dimension and contour topology, permitting
the design of contour with complex geometries.

We describe in section 2 the general concept of our approach and
its application to closed 2D contours, and report preliminary results
in section 3, including a quantitative comparison of the proposed ap-
proach with the equivalent, non-parallel formalism. We finally dis-
cuss the benefits and limitations of the proposed approach in section
4, as well as its potential extensions and applications in biomedical
imaging. Following reproducible research principles, the proposed
algorithm is available in the form of a user-friendly plug-in in our
open-source Icy bioimaging platform2 [31].

2. METHOD

The starting point of our work is a fast, discrete implementation of
multiple coupled self-resampling active contours with and without
edges [9]. For the sake of simplicity, yet without loss of generality,
we illustrate the proposed approach using the 2D single-contour case
without edges (other cases can be derived by analogy). We then
present the two contributions of this work, namely our Multi-Agent
strategy and the Quad-Edge implementation.

2.1. 2D discrete active contours without edges

The general problem of object segmentation using active contours
can be expressed as follows:

argmin
C
J(C, I), s.t. J(C, I) = Jdata(C, I) + Jreg(C) (1)

where C is the curve or contour evolving inside the image I , Jdata
is the data attachment term (which we derive here from the classical
Chan-Vese-Mumford-Shah functional [32]), and Jreg is a regulariser
of this ill-posed problem (here minimising local curvature [1]). In
a discrete setting, the cost functional can be approximated by the
sum of costs over the control points of the contour. Following a
steepest gradient descent with explicit time-stepping, the iterative
minimisation of J can be expressed as a set of forces applied to each
control point of the contour C (see [9] for more details):

xt+1
i = xt

i + τ ·
(
~fdata(x

t
i, I) +~freg(x

t
i, Ct)

)
, (2)

where t is the imaginary time discretisation variable representing the
iterative minimisation process, τ is the minimisation time step, and
xi,t represents a control point of the contour Ct at iteration t. ~fdata
represents the data attachment term, reading

~fdata(x
t
i, I) =

(
|I(xt

i)− c1(I, Ct)|2 − |I(xt
i)− c2(I, Ct)|2

)
· ~Ni

(3)
where I(xt

i) is the image value at the contour point (sampled with
linear interpolation), while c1 and c2 are the average intensities of I
outside and inside Ct, respectively. ~freg represents the regularisation
term, reading

~freg(x
t
i, Ct) =

α

2

(
xt
i−1 + xt

i+1 − 2xt
i

)
(4)

where xt
i−1 and xt

i+1) are the 2 neighbours of xt
i , and α is a non-

negative weight balancing the influence between the data attachment
and regularisation terms.

We shall now describe below how this minimisation framework
can benefit from a multi-agent implementation.
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2.2. Multi-Agent Active Contours

The principle of Multi-Agent Systems (a field of research closely re-
lated to distributed artificial intelligence [27]) is to carry out a large,
potentially intractable task, using a set of cooperative agents that in-
dividually solve a sub-portion of the initial problem. It can be easily
noticed that the problem described above is well suited to benefit
from a Multi-Agent formalism, where the individual control points
xi can be seen as a swarm of individual agents evolving within the
image space I under the influence of the forces defined in Eqs. 2,
3, and 4, until they minimise (as a whole) the target functional J .
In practice, the Multi-Agent implementation is achieved by evolving
each control point (or agent) in an independent thread handling local
force computations and deformation (as suggested in [26]). How-
ever, 2 remaining tasks require a global synchronisation step and
must be parallelised:

• Convergence criterion In our previous implementation, we
detect convergence by globally monitoring the contour in a
periodic manner (typically after every iteration), assuming
that convergence is reached whenever the change in contour
area from the previous iteration falls under a given ε > 0.
To parallelise this step, we first replace this criterion by mon-
itoring instead the stability of each control point over time,
which can be done asynchronously. An additional benefit of
this strategy is that control points can converge independently
of one another, without necessarily waiting for a global crite-
rion to be met. This heuristic criterion drastically reduces the
computational load when the number of points is high, and
is most useful when segmenting complex objects, as we shall
illustrate below.

• Contour resampling Explicit active contours need to be
regularly resampled (or re-parameterised) throughout their
evolution to ensure proper image sampling. In previous
works, the contour was globally resampled at the end of
every iteration, by adding a new control point between neigh-
bouring points becoming too distant, or removing a control
point that is too close to any of its neighbours [9, 17, 26].
We propose here to confer this resampling ability to the con-
trol points themselves, which already have a dependency
on their immediate neighbours for force computation. This
asynchronous step however requires that the data structure
holding the control points is well suited for this purpose,
which is where the Quad-Edge formalism comes into play.

2.3. Quad-Edge implementation

A quad-edge is a data structure used to model planar subdivisions.
The elementary structure is an edge that stores its local topological
and geometrical data [29]. In practice, the edge stores its end-points,
the faces on each side, and holds a reference to its neighbouring
edges with same starting point (called the O-ring) and to one of its
neighbouring faces (called the dual of the edge). The structure is
illustrated in Fig. 1. From a geometrical point of view, quad-edges
allow keeping coherent references to points and faces on plane sub-
divisions. Moreover, this data structure permits efficient adjacency
queries (neighbouring edges are accessible in constant time) and lo-
cal topological operations (point addition or deletion is achievable in
logarithmic time [30]).

To summarise, starting from an initial contour (e.g. a region of
interest), a global manager (the entry point of the algorithm) cre-
ates an edge for each control point, and ensures their connectivity.
It then creates and assigns a separate thread for each control point,



such that all points run in a fully autonomous manner, i.e. dealing
with force computation, local resampling, and convergence detec-
tion. The global manager is responsible for updating global image-
centric features (notably the average intensity inside and outside the
contour, cf. Eq. 3), and for displaying the contour on screen. These
two operations do not require a synchronisation step, and are there-
fore run in the background on a regular basis.

3. EXPERIMENTS

We illustrate here the performance of the proposed implementation,
in comparison to our previous approach [9]. Both algorithms have
been in written in Java and are available as ready-to-use plug-ins
for the open source Icy platform [31]. Both algorithms were set
to minimise the same cost functional (described in section 2), and
were given the same parameters (initial contour, sampling, time step,
weights). We performed all tests on a 2GHz quad-core processor,
and report both absolute times (best of 10 consecutive runs) as well
as relative times between implementations for more clarity, taking
our previous implementation as the baseline.

We start by segmenting a simulated binary image of size 512×
512 pixels containing a circle of diameter 300 pixels in its centre. We
initialise both algorithms with a regular octagon place in the centre
of the circle with a diameter of 128 pixels. In this experiment, we
imposed a global convergence criterion on both algorithms (i.e. all
control points evolve until the contour globally stabilises), so as to
measure solely the impact of parallelising the force computation and
local contour resampling steps. Results are presented in Table 1. It
can be seen that for contours with few control points, the parallel
implementation is slightly slower, this is due to the overhead of cre-
ating individual threads for parallel processing, which is non negligi-
ble in comparison to the total computation time. This trend quickly
reverses as soon as the sampling rate decreases to a more realistic
value (thus increasing the total number of points), where the parallel
implementation can yield more than double the performance of its
non-parallel counterpart.

In a second example, we now segment a real biological image
representing a neurone 2. In this example, we compare two vari-
ants of the proposed algorithm to the baseline: one with global con-
vergence detection (similar to the previous example), and the fully
parallel implementation, where control points handle convergence
asynchronously. Results are presented in Table 2. Given the ob-
ject complexity, computation times are higher than in the previous
example. While the semi-parallel version is not noticeably faster,
the fully parallel implementation clearly outperforms the baseline
method. The gain factor is well illustrated on such complex biolog-
ical objects, since the vast majority of the control points converge
rapidly (around the soma and along the branches), while most of the
”active” computation occurs solely at the leading edge of the con-
tour, thus concerning only a handful of control points.

4. DISCUSSION

We have presented a novel, parallel implementation of discrete active
contours using the concept of Multi-Agent Systems and the Quad-
Edge formalism, whereby the evolution of the control points is fully
asynchronous, from force computation to local topological resam-
pling and convergence detection. By reworking the core components
of the contour optimisation process, we were able to significantly
speed up the segmentation process, yielding improved performance
compared to the standard implementation even without the need for

Fig. 1. Representation of a portion of a (closed) 2D contour using a
Quad-Edge. Neighbouring edges are accessible in constant time (via
oNext), while the ”inside” of the contour is always known (via rot).
This structure is used to facilitate the implementation of discrete ac-
tive contours.

Sampling (px) 16 8 4 2 1

Nb. control points 54 102 197 383 783

Baseline [9] (ms) 97 123 215 631 2251

Proposed (ms) 121 117 179 336 952

Gain factor 0.8× 1.0× 1.2× 1.9× 2.4×

Table 1. Performance comparison between the proposed active
contour implementation and the equivalent, non-parallel algorithm.
The number of points is given after convergence and is the same for
both algorithms.

Sampling (px) 4 2 1

Nb. control points 344 651 1253

Baseline [9] (ms) 497 1443 6844

Proposed, GC (ms) 827 (0.6×) 2067 (0.7×) 6536 (1.1×)

Proposed, LC (ms) 715 (0.7×) 1010 (1.4×) 2086 (3.3×)

Table 2. Performance comparison of two version of the pro-
posed Quad-Edge Parallel active contours against the equivalent,
non-parallel implementation on a real biological image (cf. Fig. 2).
GC: semi parallel version with global convergence detection. LC:
fully parallel version with local convergence detection.

Fig. 2. Fluorescence microscopy image of a neurone in culture
(image size: 400×400). Left: original image. Right: initial con-
tour (green) and segmentation result (magenta) superimposed on the
original image. Contour sampling: 2 pixels.



a GPU-specific implementation. Thanks to the Quad-Edge formal-
ism, we expect that these preliminary but promising results will lead
us to a number of new and exciting developments in the field of ac-
tive contours. Indeed, in addition to being GPU-friendly, the Quad-
Edge implementation offers great topological flexibility. Not only
does this facilitate the extension of the method to 3D meshes, but the
Quad-Edge structure can be adapted to handle open contours as well
as contours with a hybrid topology (e.g. a combination of closed,
open, 2D and 3D geometries). Our future work will investigate these
extensions and their applications in biomedical imaging.
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