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STATISTICAL THEORY OF HEAT

TIAN MA AND SHOUHONG WANG

Abstract. In this paper, we present a new statistical theory of
heat based on the statistical theory of thermodynamics and on
the recent developments of quantum physics. One motivation of
the theory is the lack of physical carriers of heat in classical ther-
modynamics. Another motivation is the recent discovered photon
cloud structure of electrons. This leads to a natural conjugate
relation between electrons and photons, reminiscent of the conju-
gate relation between temperature and entropy. The new theory in
this paper provides a natural connection between these two con-
jugate relations: at the equilibrium of absorption and radiation,
the average energy level of the system maintains unchanged, and
represents the temperature of the system; at the same time, the
number (density) of photons in the sea of photons represents the
entropy (entropy density) of the system. The theory contains four
parts: 1) the photon number formula of entropy, 2) the energy level
formula of temperature, 3) the temperature theorem, and 3) the
thermal energy formula. In particular, the photon number entropy
formula is equivalent to the Boltzmann entropy formula, and, how-
ever, possesses new physical meaning that the physical carrier of
heat is the photons.
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1. Introduction

The main objective of this paper is to establish a new theory of heat,
based on the statistical theory of thermodynamics and on the recent
developments of quantum physics. The theory contains four closely
related parts:

(1) photon number formula of entropy,
(2) energy level formula of temperature,
(3) a temperature theorem, and
(4) thermal energy formula.

Hereafter first we address the main motivations and main results of
the theory, and we recapitulate the needed theoretical foundations on
statistical physics and quantum physics.

Motivations.

The main motivations of the new theory are three-fold.
First, as we know the current accepted theory of heat is also called

the mechanical theory of heat, which related the heat with mechanical
work. The theory was first introduced in 1798 by Benjamin Thompson,
and further developed by such great scientists as Sadi Carnot, Rudolf
Clausius, and James Clerk Maxwell. This is further developed into the
modern theory of thermodynamics and statistical physics; see among
many others [18, 22, 2, 19, 8].
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However one of the remaining puzzling question is how the heat is
transferred. As we know heat transfer is classified into various mecha-
nisms, such as thermal conduction, thermal convection, thermal radia-
tion, and transfer of energy by phase changes. However, the nature of
heat transfer is still not fully understood.

To be precise, by classical thermodynamics, for a thermodynamic
system, the thermal energy Q0 is given by

(1.1) Q0 = ST.

Here T is the temperature of the system and S is the entropy given by
the Boltzmann formula:

(1.2) S = k lnW,

where k is the Boltzmann constant, andW is the number of microscopic
configurations of the system. It is then clear that

(1.3)

in modern thermodynamics, there is simply no physical heat
carrier in both the temperature T and the entropy S, and
hence there is no physical carrier for thermal energy Q0 =
ST .

Historically, the caloric theory of heat was developed for such a pur-
pose, and becomes now an obsolete theory. Basically, the caloric theory
says that heat is made up of a fluid called caloric that is massless and
flows from hotter bodies to colder bodies. It was considered that caloric
was a massless gas that exists in all matter, and is conserved. How-
ever the transfer between heat and mechanical work makes the caloric
theory obsolete.

Known physical facts show that the essence of thermal radiation is
the absorption and radiation of photons, and as we shall see below, the
new statistical theory of heat makes precise that photons are indeed
the needed physical carrier of heat.

The second motivation of the study is the recent developments in
particle physics, which reveal the photon cloud structure of electrons;
see Section 3.2, as well as [13] for details. It is shown that there is an
attracting shell region of weak interaction between the naked electron
and photons as in Figure 1.1. Since photons carry weak charges, they
are attached to the electron in the attracting shell region forming a
cloud of photons.

The attracting shell region in Figure 1.1 of an electron results in the
ability for the electron to attract and emit photons. A macroscopic
system is immersed in a sea of photons (mediators). When a photon
enters the attracting shell region of an electron, it will be absorbed by
the electron. An electron emits photons as its velocity changes, which
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Figure 1.1. A cloud of photons forms in the region
ρ1 < r < ρ2 near the naked electron.

is called the bremsstrahlung. Also, when the orbiting electron jumps
from higher energy level to a lower energy level, it radiates photons.
Hence electrons in the system are constantly in a state of absorbing
and emitting photons, resulting changes on their energy levels. In
other words, we reach the following physical conclusion:

(1.4)
in the microscopic world, electrons and photons form a nat-
ural conjugate pair of physical carriers for emission and ab-
sorption.

This physical conclusion leads to the third motivation of the theory
of heat developed in this paper. Namely, in view of (1.1), heat is
attributed to the conjugate relation between temperature and entropy.
Hence by (1.4), a theory of heat has to make connections between the
two conjugate relations:

(1.5)
conjugation between electrons and photons

m
conjugation between temperature and entropy.

The new theory in this paper provides precisely such a connection: at
the equilibrium of absorption and radiation, the average energy level
of the system maintains unchanged, and represents the temperature of
the system; at the same time, the number (density) of photons in the
sea of photons represents the entropy (entropy density) of the system.

Main results

We now ready to address briefly the four parts of the statistical
theory of heat developed in this paper.

1. Energy level formula of temperature. In view of the relation (1.5),
temperature must be associated with the energy levels of electrons,
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since it is an intensive physical quantity measuring certain strength of
heat, reminiscent of the basic characteristic of energy levels of electrons.
Also notice that there are abundant orbiting electrons and energy levels
of electrons in atoms and molecules. Hence the energy levels of orbit-
ing electrons, together with the kinetic energy of the system particles,
provide a truthful representation of the system particles.

We derive the following energy level formula of temperature using
the well-known Maxwell-Boltzmann, the Fermi-Dirac, and the Bose-
Einstein distributions:

(1.6) kT =



∑
n

(
1− an

N

)
anεn

N(1 + βn ln εn)
for classical systems,

∑
n

(
1 +

an
gn

)
anεn

N(1 + βn ln εn)
for Bose systems,

∑
n

(
1− an

gn

)
anεn

N(1 + βn ln εn)
for Fermi systems.

Here εn are the energy levels of the system particles, N is the total
number of particles, gn are the degeneracy factors (allowed quantum
states) of the energy level εn, and an are the distributions, representing
the number of particles on the energy level εn.

If we view

ε =
1

N

∑
n

anεn

as the average energy level for the thermodynamical system, then
the above formulas amount to saying that temperature is simply the
(weighted) average energy level of the system.

Formulas (1.6) enable us to have a better understanding on the na-
ture of temperature.

In summary, the nature of temperature T is the (weighted) average
energy level. Also, the temperature T is a function of distributions
{an} and the energy levels {εn} with the parameters {βn} reflecting
the property of the material.

From the temperature formula, we can easily see that for a thermo-
dynamic system with temperature at absolute zero, all particles fill the
lowest energy levels. Also, it is not hard to see from the temperature
formula the existence of highest temperature.

2. Photon number formula of entropy. In view of (1.5), since en-
tropy S is an extensive variable, we need to characterize entropy as
the number of photons in the photon gas between system particles, or
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the photon density of the photon gas in the system. Also, photons are
Bosons and obey the Bose-Einstein distribution.

Then we can make a connection between entropy and the number of
photons and derive

(1.7) S = kN0

[
1 +

1

kT

∑
n

εnan
N0

]
,

where εn are the energy levels of photons1, and an are the distribution of
photons at energy level εn, N0 =

∑
n an is the total number of photons

between particles in the system, and
∑

n
εn
kT
an represents the number

of photons in the sense of average energy level.
It is worth mentioning that this new entropy formula is equivalent to

the Boltzmann entropy formula (1.2). However, their physical mean-
ings have changed: the new formula (1.7) provides explicitly that

(1.8) the physical carrier of heat is the photons.

3. Temperature theorem. By the temperature and the entropy for-
mulas (1.6) and (1.7), we arrive immediately at the following results of
temperature, stated in Theorem 5.2 as the law of temperature:

(1) There are minimum and maximum values of temperature with
Tmin = 0 and Tmax being given by (4.33);

(2) When the number of photons in the system is zero, the temper-
ature is at absolute zero; namely, the absence of photons in the
system is the physical reason causing absolute zero temperature;

(3) (Nernst Theorem) With temperature at absolute zero, the en-
tropy of the system is zero;

(4) With temperature at absolute zero, all particles fills all lowest
energy levels.

4. Thermal energy formula. Thanks to the entropy formula (1.7),
we derive immediately the following thermal energy formula:

(1.9) Q0 = ST = E0 + kN0T,

where E0 =
∑

n anεn is the total energy of photons in the system, εn
are the energy levels of photons, and an are the distribution of photons
at energy level εn, and N0 is the number of photons in the system.

Statistical physics and quantum physics foundations

1We emphasize here that for brevity we use the same εn to denote, respectively,
the energy levels for photons in (1.7), and the energy levels for system particles
(electrons) in (1.6).
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The theory of heat presented in this paper is established based on
physical theories on fundamental interactions, the photon cloud model
of electrons, the first law of thermodynamics, statistical theory of ther-
modynamics, radiation mechanism of photons, and energy level theory
of micro-particles. The theory utilizes rigorous mathematics to reveal
the physical essence of temperature, entropy and heat.

1. Statistical physics foundation. In deriving the temperature and
the entropy formulas (1.6) and (1.7), we make a direct use of the
Maxwell-Boltzmann (MB), the Fermi-Dirac (FD), and the Bose-Einstein
(BE) distributions. These distributions are respectively for classical
systems, the Fermi systems, and the Bose systems.

In a recent paper [17], the authors postulated the potential-descending
principle (PDP). We show that PDP is a more fundamental principle
than the first and second laws in thermodynamics, gives rise to dy-
namical equations for non-equilibrium systems, and serves as the first
principle to describe irreversibility of all thermodynamic systems. Also,
together with the Boltzmann entropy formula (1.2) and the classical
principle of equal probability stated in Principle 2.2, PDP leads to all
three distributions. Hence for the new theory of heat, the needed sta-
tistical physics foundation is the Boltzmann entropy formula, principle
of equal probability and the potential descending principle.

2. Quantum physics foundation. It is clear that a theory of heat
depends on the quantum behavior of basic microscopic constituents
of matter. We refer interested readers to [24, 5, 4, 6, 13] for modern
theory of quantum mechanics and particle physics.

The following recent developments in quantum physics play a crucial
role for our study in this paper:

(1) weak interaction force formula,
(2) weakton model of elementary particles,
(3) photon cloud structure of electrons,
(4) photon absorption and radiation mechanism of electrons, and
(5) energy levels of micro-particles.

These quantum physics foundations are recapitulated in Section 3, and
we also refer the interested readers to [13] and the references therein
for more details.

The paper is organized as follows. Section 2 recalls the potential-
descending principle (PDP) and the three basic statistics: the Maxwell-
Boltzmann distribution, the Fermi-Dirac distribution and the Bose-
Einstein distribution. Section 3 recapitulates quantum physics basis
needed for the theory of heat. In Sections 4 and 5 we establish the
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main components of the theory, and Section 6 addresses the nature of
heat based on the new theory.

2. Principles of Statistical Physics

In this section, we introduce some basic principles for statistical
physics, serving as the statistical foundation of the statistical theory
of heat to be developed in Sections 4-6. We refer interested readers to
[20, 21, 9, 12, 11, 7, 3, 23, 1] among many others for classical theories
of statistical physics. The potential-descending principle is introduced
by the authors in [17].

2.1. Potential-descending principle. For a given thermodynamic
system, the order parameters (state functions) u = (u1, · · · , uN), the
control parameters λ, and the thermodynamic potential (or potential
in short) F are well-defined quantities, fully describing the system. The
potential is a functional of the order parameters, and is used to repre-
sent the thermodynamic state of the system. There are four commonly
used thermodynamic potentials: the internal energy, the Helmholtz
free energy, the Gibbs free energy, and the enthalpy.

After a thorough examination of thermodynamics, we discovered in
[17] that the following Potential-Descending Principle (PDP) is a fun-
damental principle in statistical physics.

Principle 2.1 (Potential-Descending Principle). For each thermody-
namic system, there are order parameters u = (u1, · · · , uN), control pa-
rameters λ, and the thermodynamic potential functional F (u;λ). For a
non-equilibrium state u(t;u0) of the system with initial state u(0, u0) =
u0, we have the following properties:

1) the potential F (u(t;u0);λ) is decreasing:

d

dt
F (u(t;u0);λ) < 0 ∀t > 0;

2) the order parameters u(t;u0) have a limit

lim
t→∞

u(t;u0) = ū;

3) there is an open and dense set O of initial data in the space
of state functions, such that for any u0 ∈ O, the corresponding
ū is a minimum of F , which is called an equilibrium of the
thermodynamic system:

δF (ū;λ) = 0.
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We have shown that PDP is a more fundamental principle than the
first and second laws, and provides the first principle for describing
irreversibility, leads all three distributions: the Maxwell-Boltzmann
distribution, the Fermi-Dirac distribution and the Bose-Einstein dis-
tribution in statistical physics. Consequently, the potential-descending
principle is the first principle of statistical physics.

Also importantly, based on PDP, the dynamic equation of a thermo-
dynamic system in a non-equilibrium state takes the form

du

dt
= −AδF (u, λ) for isolated systems,(2.1) 

du

dt
= −AδF (u, λ) +B(u, λ),∫
AδF (u, λ) ·B(u, λ) = 0

for coupled systems,(2.2)

where δ is the derivative operator, B represents coupling operators,
and A is a symmetric and positive definite matrix of coefficients. We
refer interested readers to [17] for details.

2.2. Statistical distributions. For a thermodynamic system, a main
component of statistical theory is to study the probability distribution
of particles in different energy levels of the system in equilibrium. In
this section, we aim to derive all three distributions: the Maxwell-
Boltzmann distribution, the Fermi-Dirac distribution and the Bose-
Einstein distribution, based only on 1) the principle of equal a priori
probabilities, and 2) the potential-descending principle (PDP). The
latter was stated in the last section, and the principle of equal a priori
probabilities can be stated as follows:

Principle 2.2 (Principle of Equal Probability (PEP)). An equilibrium
thermodynamic system has an equal probability of being in any mi-
crostate that is consistent with its current macrostate.

2.2.1. Maxwell-Boltzmann statistics. Now consider an isolated classical
thermodynamic system, the total energy E and the total number of
particles N are constants. Each particle in the system must be situated
on a energy level ε, and the total energy is finite. Since the system is
in equilibrium, we have

(2.3) an
def
= [number of particles on εn] = [probability at εn]×N.

The PEP ensures the time-independence of an. We have then the
following arrangement of number of particles on different energy levels:
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(2.4)

ε1 < ε2 < · · · < εNE ,

g1 g2 · · · gNE ,

a1 a2 · · · aNE ,

where gn represents the degeneracy factor (allowed quantum states) of
the energy level εn. For an isolated system,

(2.5) N =
∑
n

an = constant, E =
∑
n

anεn = constant.

It is clear that the multiplicity function W for the distribution (2.4) is
given by:

(2.6) W = W (a1, · · · , aNE).

The aim is then to find the relations between εn and an under constraint
(2.5):

(2.7) an = f(εn, T ) for 1 ≤ n ≤ NE.

For an isolated thermodynamic system, the temperature T is a con-
trol parameter, and consequently, its thermodynamic potential func-
tional is

(2.8) F = E − ST,
where E is the total energy, and S is the entropy. Classically, the
entropy is given by the famous Boltzmann formula:

(2.9) S = k lnW,

where k = 1.381× 10−23J/K is the Boltzmann constant.
By the potential-descending principle, Principle 2.1, the distribution
{an} at the thermodynamic equilibrium solves the following minimal
potential variational equations of the potential functional (2.8):

(2.10)
δ

δan

[
− kT lnW + α0

∑
n

an + β0

∑
n

anεn
]

= 0,

where α0 and β0 are the Lagrangian multipliers of constraints (2.5).
In view of the distribution of particles (2.4), the multiplicity function

W is given by

(2.11) W =
N !∏
n

an!

∏
n

gann ,

By the Stirling formula

k! = kke−k
√

2πk,
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and using ln(2πk)� k, we have

lnW = N lnN −N −
∑
n

an ln an +
∑
n

an +
∑
n

an ln gn.

Since
∑

n an = N , we arrive at

lnW = N lnN −
∑
n

an ln
an
gn
,

which implies from (2.10) that

ln
an
gn

+ α + βεn = 0 for 1 ≤ n ≤ NE.

This gives rise to the famous Maxwell-Boltzmann distribution:

(2.12) an =
N

Z
gne
−εn/kT .

Here Z is the partition function defined by

(2.13) Z =
∑
n

gne
−βεn ,

Also, direct computation shows that the MB distribution is indeed the
minimal point of the potential functional (2.8) under the constraints
(2.5).

The partition function Z defined by (2.13) is another important ther-
modynamical quantity in statistical mechanics. In fact, once we know
the detailed expression of the partition function, we can derive other
related thermodynamical quantities as follows:

(2.14)

U = −N ∂

∂β
lnZ internal energy,

S = Nk

(
lnZ − β ∂

∂β
lnZ

)
entropy,

f = −N
β

∂

∂X
lnZ generalized force,

F = −NkT lnZ potential functional.

2.2.2. Bose-Einstein distribution. The Maxwell-Boltzmann statistics is
for classical systems of particles. For systems where quantum behavior
is prominent, quantum statistics is then ultimately needed. Quan-
tum statistics consists of the Bose-Einstein (BE) statistics for sys-
tems of bosonic particles, and the Fermi-Dirac statistics for systems
of fermionic particles.
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The goal here is the same as the statistics for classical particle sys-
tems: to find the relations (2.7) between εn and an under constraint
(2.5).

For a quantum system of bosonic particles, the multiplicity function
associated with (2.4) is

(2.15) WBE =
∏
n

gn + an − 1)!

an!(gn − 1)!
.

As for the Maxwell-Boltzmann distribution, solving (2.10) leads to the
following Bose-Einstein distribution:

(2.16) an =
gn

e(εn−µ)/kT − 1
,

where µ is the chemical potential.
For a quantum system of bosonic particles, the partition function is

given by

(2.17) Z =
∏
n

(
1− e−α−βεn

)−gn
, α = − µ

kT
, β =

1

kT
.

Also we can derive other related thermodynamical quantities, the total
number of particles N , the total energy E, the generalized force f , the
pressure p, the entropy S, the free energy F , and the Gibbs energy G,
in terms of the partition function Z as follows:

(2.18)

N = − ∂

∂α
lnZ,

E = − ∂

∂β
lnZ,

f = − 1

β

∂

∂X
lnZ,

p =
1

β

∂

∂V
lnZ,

S = k

[
lnZ −

(
α
∂

∂α
+ β

∂

∂β

)
lnZ

]
,

F = E − ST = −kT
(

lnZ − α ∂

∂α
lnZ

)
,

G = −NkTα = kTα
∂

∂α
lnZ.
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2.2.3. Fermi-Dirac distribution. Fermions obey the Pauli exclusion prin-
ciple. Hence for a quantum system of fermions, the multiplicity func-
tion is given by

(2.19) WFD =
∏
n

gn!

an!(gn − an)!
.

Then it is easy to find the following Fermi-Dirac distribution (2.7)
between εn and an under constraint (2.5):

(2.20) an =
gn

e(εn−µ)/kT + 1
,

where µ is the chemical potential.
Also the partition function for a Fermi system is given by

(2.21) Z =
∏
n

(
1 + e−α−βεn

)gn
, α = − µ

kT
, β =

1

kT
.

The relations between the partition function and other thermodynam-
ical quantities are given by (2.18) as well.

3. Quantum Physics Foundations

We introduce in this section some recent developments in quantum
physics, which serve as the quantum physics foundations for the sta-
tistical theory of heat that we introduce in this paper. For a more
detailed account of these recent developments, see [13].

3.1. Weakton model of elementary particle. The weakton model
of elementary particle was first introduced by the authors [14, 13]. This
theory proposes six elementary particles, which we call weaktons, and
their anti-particles:

(3.1)
w∗, w1, w2, νe, νµ, ντ ,

w̄∗, w̄1, w̄2, ν̄e, ν̄µ, ν̄τ ,

where νe, νµ, ντ are the three generation neutrinos, and w∗, w1, w2 are
three new particles, which we call w-weaktons. These are all massless
particles with spin J = 1

2
. Each of them carries a weak charge, and

only w∗ and w̄∗ carry a strong charge. Also, the neutrinos do not carry
electric charge, w∗ carries 2/3 electric charge, w1 carries −1/3 electric
charge and w2 carries −2/3 electric charge.

1) Weakton constituents of particles
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The weakton constituents of charged leptons and quarks are given
by

(3.2)

e = νew1, w2, µ = νµw1w2, τ = ντw1w2,

u = w∗w1w̄1, c = w∗w2w̄2, t = w∗w2w̄2,

d = w∗w1w2, s = w∗w1w2, b = w∗w1w2,

where c, t and d, s, b are distinguished by the spin arrangements.
The weakton constituents of the mediators and their dual mediators

are given by

(3.3)

γ = cos θww1w̄1 − sin θww2w̄2 (�,�) vector photon,

γ0 = cos θww1w̄1 − sin θww2w̄2 (↑↓, ↓↑) scalar photon,

gk = w∗w̄∗(�,�), vector gluons,

gk0 = w∗w̄∗(↑↓, ↓↑) scalar gluons

The ν-mediator ν has spin-0 with the following weakton constituents:

(3.4) ν = α1νeν̄e + α2νµν̄µ + α3ντ ν̄τ (↓↑),
3∑
l=1

α2
l = 1.

Each gluon carries two strong charges and two weak charges, and par-
ticipates both the weak and strong interactions. Both photon and the ν
mediator only carry respectively two weak charges, and participate the
weak interaction, but not the strong interaction. All three mediators
carry no electric charge.

2) Mass generation mechanism

For a particle moving with velocity v, its mass m and energy E obey
the Einstein relation

(3.5) E =
mc2√
1− v2

c2

.

Usually, we regard m as a static mass which is fixed, and energy is a
function of velocity v.

Now, taking an opposite viewpoint, we regard energy E as fixed,
mass m as a function of velocity v, and the relation (3.5) is rewritten
as

(3.6) m =

√
1− v2

c2

E

c2
.

Thus, (3.6) means that a particle with an intrinsic energy E has zero
mass m = 0 if it moves at the speed of light v = c, and will possess
nonzero mass if it moves with a velocity v < c.



STATISTICAL THEORY OF HEAT 15

All particles including photons can only travel at the speed suffi-
ciently close to the speed of light. Based on this viewpoint, we can
think that if a particle moving at the speed of light (approximately) is

decelerated by an interaction force ~F , obeying

d~P

dt
=

√
1− v2

c2
~F ,

then this massless particle will generate mass at the instant. In partic-
ular, by this mass generation mechanism, several massless particles can
yield a massive particle if they are bound in a small ball, and rotate at
velocities less than the speed of light.

For the mass problem, we know that the mediators:

(3.7) γ, gk, ν and their dual particles,

have no masses. To explain this, we note that these particles in (3.3)
and (3.4) consist of pairs as

(3.8) w1w̄1, w2w̄2, w∗w̄∗, νlν̄l.

The weakton pairs in (3.8) are bound in a circle with radius R0 as shown
in Figure 3.1. Since the interacting force on each weakton pair is in
the direction of their connecting line, they rotate around the center 0
without resistance. As ~F = 0 in the moving direction, by the relativistic
motion law:

(3.9)
d

dt
~P =

√
1− v2

c2
~F ,

the massless weaktons rotate at the speed of light. Hence, the compos-
ite particles formed by the weakton pairs in (3.8) have no rest mass.

Figure 3.1

For the massive particles

(3.10) e, µ, τ, u, d, s, c, t, b,
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by (3.2), they are made up of weakton triplets with different electric
charges. Hence the weakton triplets are arranged in an irregular trian-
gle as shown in Figure 3.2. Consequently, the weakton triplets rotate
with nonzero interacting forces ~F 6= 0 from the weak and electromag-
netic interactions. By (3.9), the weaktons in the triplets at a speed less
than the speed of light due to the resistance force. Thus, by the mass
generating mechanism above, the weaktons become massive. Hence,
the particles in (3.10) are massive.

Figure 3.2

3.2. Photon cloud model of electrons.

3.2.1. Photon clouds of electrons. The weakton constituents of an elec-
tron are νew1w2. Therefore, an electron carries three weak charges,
which are the source of the weak interaction. A photon has the weak-
ton constituents as given by (3.3), and carries two weak charges.

The weak force formula between the naked electron and a photon γ
is given by; see [13]:

F =− gw(ργ)gw(ρe)
d

dr

[
1

r
e−kr − B

ρ
(1 + 2kr)e−2kr

]
,(3.11)

=gw(ρm)gw(ρe)e
−kr
[

1

r2
+

1

rr0

− 4B

ρ

r

r2
0

e−kr
]
,

where k = 1/r0 = 1016 cm−1, gw(ρm) and gw(ρe) are the weak charges
of mediators and the naked electron, expressed as

gw(ργ) = 2

(
ρw
ργ

)3

gw, gw(ρe) = 3

(
ρw
ρe

)3

gw,

and B/ρ is a parameter determined by the naked electron and the
photon.



STATISTICAL THEORY OF HEAT 17

By the weak force formula (3.11), there is an attracting shell region
of weak interaction between naked electron and the photon

(3.12) F < 0 for ρ1 < r < ρ2,

as shown in Figure 1.1, which is reproduced in Figure 3.3 for conve-
nience. Since photons carry weak charges, they are attached to the

Figure 3.3. Electron structure.

electron in the attracting shell region (3.12), forming a cloud of pho-
tons. The irregular triangle distribution of the weaktons νe, w1, w2 gen-
erate a small moment of force on the mediators. Meanwhile there also
exist weak forces between them. Therefore the bosons will rotate at a
speed less than the speed of light, and generate a small mass attached
to the naked electron νew1w2.

3.2.2. Angular momentum rule. The Angular Momentum Rule 3.1 be-
low was first discovered in [14, 13, 15]. It ensures that the photons in
the clouds of electrons can only be scalar photons J = 0, and conse-
quently the photon cloud of an electron does not change the spin of
the electron J = 1/2.

Angular Momentum Rule 3.1. Only the fermions with spin J = 1
2

and the bosons with J = 0 can rotate around a center with zero moment
of force. The particles with J 6= 0, 1

2
will move on a straight line unless

there is a nonzero moment of force present.

Also we remark that based on the mechanism of decay and scat-
tering of particles, weakton exchanges may occur during the following
γ-γ scattering process, leading to the transformation between scalar
photons and vector photons:

γ + γ −→ γ + γ,
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and the corresponding weakton constituent exchange is given by

w1w1(�) + w1w1(�) � w1w1(↑↓) + w1w(↑↓).
This observation shows that although the photons in the photon

cloud of an electron can only scalar photons, both scalar and vector
photons are abundant in Nature.

3.3. Photon absorption and radiation mechanism of electrons.
The attracting shell region in Figure 3.3 of an electron results in the
ability for the electron to attract and emit photons. A macroscopic
system is immersed in a sea of photons (mediators). When a photon
enters the attracting shell region of an electron, it will be absorbed by
the electron. An electron emits photons as its velocity changes, which
is called the bremsstrahlung. Also, when the orbiting electron jumps
from higher energy level to a lower energy level, it radiates photons.
Hence electrons in the system are constantly in a state of absorbing
and emitting photons, resulting changes on their energy levels. As we
shall see in the next section, at the equilibrium of absorption and radi-
ation, the average energy level of the system maintains unchanged, and
represents the temperature of the system; at the same time, the num-
ber (density) of photons in the sea of photons represents the entropy
(entropy density) of the system.

The reasons why bremsstrahlung can occur is unknown in classical
theories. Based on the electron structure theory in Section 3.2, this
phenomenon can be easily explained.

Figure 3.4. (a) The naked electron is accelerated or
decelerated in an electromagnetic field; and (b) the medi-
ators (photons) fly away from the attracting shell region
under a perturbation of moment of force.

In fact, if an electron is situated in an electromagnetic field, then
the electromagnetic field exerts a Coulomb force on the naked electron
νew1w2, but not on the attached neutral mediators. Thus, the naked
electron changes its velocity, which draws the mediator cloud to move
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as well, causing a perturbation to moment of force on the mediators.
As the attracting weak force in the shell region (3.6) is small, under
the perturbation, the centrifugal force makes some mediators in the
cloud, such as photons, flying away from the attracting shell region,
and further accelerated by the weak repelling force outside this shell
region to the speed of light, as shown in Figure 3.4.

3.4. Energy levels of particles. This section is based on [16, 13].
The mass m, energy E and the momentum ~p of a particle obey the
Einstein energy-momentum relation; see among many others [10, 13]:

(3.13) E2 = m2c4 + c2p2.

There are different energy levels, which can undergo changes by 1)
absorbing and/or emitting photons, and 2) exchanging the interior
constituents. The weaktons are elementary particles, and all other
particles are composite. For composite particles, the energy levels de-
termined by their constituents are called intrinsic energy levels, which
can change through exchanging constituents.

Energy levels of particles play an important role in statistical physics.
There are many particles in Nature, and we are interested in energy
levels of the following particles, which play crucial role in statistical
physics:

(3.14) photons, electrons, and atoms.

Hereafter we focus on the energy levels of these particles.

3.4.1. Energy levels of photons. The weakton constituents of a photon
are the following two weaktons, symmetrically bounded together by
the weak force:

γ = wiw̄i i = 1, 2.

It suffices for us to consider the bounded states of one weakton. As the
weakton wi(i = 1, 2) are massless, the wave function describing them
is the two-component Weyl spinor:

(3.15) ψ = (ψ1, ψ2),

and the corresponding wave equations are

(3.16) (~σ · ~D)
∂ψ

∂t
= c(~σ · ~D)2ψ − igw

2~
{(~σ · ~D), A0}ψ,

where {A,B} = AB + BA is the anti-commutator, ~σ = (σ1, σ2, σ3) is

the Pauli matrix operator, the operator ~D is defined by

(3.17) ~D = ∇+ i
gw
~c

~W,
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with Wµ = (W0, ~W ) bering the weak interaction potential of weaktons.
The spectral equation of photons can be derived by setting

ψ = e−iλt/~ϕ, ϕ =

(
ϕ1

ϕ2

)
,

where λ is the bounding energy. We infer from (3.16) that

(3.18) −~c(~σ · ~D)2

(
ϕ1

ϕ2

)
+
igw
2~
{(~σ · ~D),W0}

(
ϕ1

ϕ2

)
= iλ(~σ · ~D)

(
ϕ1

ϕ2

)
.

Since the weaktons are confined in the photon, we can set ψ = 0
outside of the photon. Consequently, we have the following boundary
condition:

(3.19) ϕ = 0 for |x| = ργ,

where ργ is the radius of photons.
We can then derive the following conclusions for energy levels of

photons using the above linear eigenvalue problem (3.18) and (3.19).

(1) There are finite number of negative eigenvalues for (3.18) and
(3.19), representing the bounding energies of the weaktons:

(3.20) ∞ < λ1 ≤ λ2 ≤ · · · ≤ λN < 0;

(2) There are finite number of energy levels for photons, given by

(3.21) Ek = E0 + λk for 1 ≤ k ≤ N,

where E0 is the intrinsic energy of the two weakton constituents of the
photon. Hence the energy levels of a photon are finite:

(3.22) 0 < E1 ≤ E2 ≤ · · · ≤ EN ;

(3) The frequencies of a photon are discrete:

(3.23) ωk = Ek/~, ∆ωk = ωk+1 − ωk = (λk+1 − λk)/~;

(4) The number of energy levels of photons can be estimated as
follows:

(3.24) N =

(
Bwργg

2
w

β1ρw~c

)3

' 1090,

and the energy differences can be estimated as

(3.25) ∆E ' Emax − Emin

N
=
λN − λ1

N
' 10−45eV,

which is small and unobservable.
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3.4.2. Energy levels of electrons. The electrons are massive with three
weakton constituents: νew1w2. As mentioned earlier, these three weak-
tons possess different electric charges, and are arranged in an irregular
triangle as shown in Figure 3.2, becoming the massive. Hence they are
governed by three Dirac spinors:

ψj = (ψj1, · · · , ψ
j
4), j = 1, 2, 3.

It is then easy to derive the energy level equation for an electron as
follows:

(3.26)
− ~2

2mj

(∇+ i
2gw
~c

W)2ϕj + 2(2gwW0 + ~µj · curlW)ϕj = λϕj,

ϕj = 0 for j = 1, 2, 3, |x| = ρe,

where ρe is the radius of an electron, Wµ = (W0,W) is the weak inter-

action potential, ϕj = (ϕj1, ϕ
j
2) are the eigenstates of the j-th weakton,

and

~µj =
~gw
2mj

~σ

is the weak magnetic moment of the j-th weakton.
We derive from (3.26) the following conclusions:

1) The intrinsic energy levels of electrons are finite and discrete.
2) The number N of intrinsic energy levels of an electron can be

approximately estimated as

N =

[
4

λ1

Bwρ
2
e

ρw

mwc

~
g2
w

~c

]3/2

∼ 1045,

where ρe is the radius of th electron, ρw is the radius of the weakton,
Bw is the weak interaction parameter in (3.11), mw is the mass of
the constituent weaktons of the electron caused by nonzero interacting
force from the weak and the electromagnetic interactions, and λ1 is the
first eigenvalue of −∆.

3) In view of the photon cloud structure that an electron consists of
the naked electron and the shell-layer of its photons cloud, the total
number N of energy levels of electrons is about

N = number of intrinsic energy levels

× number of energy levels of photon ' 10135.

3.4.3. Energy levels of atoms. Classical energy levels was developed
based on the Bohr atomic models and the Schrödinger equations. The
is made up of nucleus and the orbiting electrons, the nucleus is made
up of protons p and neutrons n, which are made up of three quarks:
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p = uud, n = udd. In addition, the weakton constituents of upper
and down quarks are u = w∗w1w̄1 and d = w∗w1w2. Therefore, the
energy levels of an atom is the sum of energy levels of the nucleus and
the energy levels of the orbiting electrons, and the energy levels of the
nucleus are determined by

energy levels of a nucleus = E1
k + λ1

j ,

where E1
k are the energy levels of nucleons, λ1

j are the negative eigen-
values of the spectral equation for the atom, representing the bounding
energies bounding the nucleons. Therefore,

E1
k = E2

l + λ2
j + energy levels of absorbed mediators of the nucleons.

Here E2
l are the energy levels of quarks, λ2

j are the negative eigenvalues
of the spectral equation of the nucleons, representing the bounding
energy between quarks. Finally,

E2
l = E3

0 + λ3
j + energy levels of the mediators absorbed by quarks,

where E3
0 is the intrinsic energy of the weaktons in the quark, and

λ3
j is the negative eigenvalues of the spectral equation for the quark,

representing the bounding energies bounding the weaktons inside the
quarks.

3.4.4. Physical conclusions of energy levels of particles. In summary,
we have the following physical conclusions for energy levels of particles,
which provide the particle physics foundation of statistical physics.

(1) The energies of micro-particles are on their energy levels, and
there are finite number of energy levels, which are discrete;

(2) Particles can jump to different different energy levels by a)
absorbing or emitting photons, and b) exchanging their con-
stituent particles.

(3) The energy of a particle obeys the Einstein energy-momentum
relation (3.13). When the energy level of a particle changes,
its mass and momentum will undergo changes as well. For a
fixed energy level, the mass and the momentum can undergo
transformations between each other.

(4) The number N of energy levels is large, and the gas between
adjacent energy levels are small; they can be estimated roughly
estimated as

number of energy levels '


1090 for photons,

10135 for electrons,

10300 for atoms,
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∆Ek = Ek+1 − Ek ' 10−45 eV for photons.

4. Energy Level Formula of Temperature

We have introduced the photon cloud structure of subatomic parti-
cles in the previous section. In this section, we use such structure of
sub-atomic particles to reveal the nature of temperature and entropy.

Basically, among basic constituents of matter, electrons, protons and
neutrons are fundamentally important. Both protons and neutrons are
confined in the nucleons, and electrons are the only charged particles
abundant inside the matter. The essence of thermal radiation is the
radiation and absorption of photons. With the photon cloud structure
of electrons, electrons and photons form a pair of conjugate physical
carriers for absorption and emission associated with thermal radiation.
On the other hand, thermal energy is the conjugate relation between
temperature and entropy. Hence a correct statistical theory of heat
must make a precise connection of the following correspondence:

(4.1)
conjugation between electrons and photons

m
conjugation between temperature and entropy.

4.1. Derivation of temperature formula. The main objective of
this section is to derive the following temperature formula:

(4.2) kT =



∑
n

(
1− an

N

)
anεn

N(1 + βn ln εn)
for classical systems,

∑
n

(
1 +

an
gn

)
anεn

N(1 + βn ln εn)
for Bose systems,

∑
n

(
1− an

gn

)
anεn

N(1 + βn ln εn)
for Fermi systems.

If we view

ε =
1

N

∑
n

anεn

as the average energy level for the thermodynamical system, then the
above formulas shows that temperature is simply the weighted average
energy level of the system.

Hereafter we derive these formulas using the basic distributions.

Classical systems. Consider a classical equilibrium thermodynamic
system with energy levels of the particles given by

(4.3) ε1, ε2, · · · , εNE .
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By the MB distribution (2.12), the total energy of the system is

(4.4) E =
∑
n

anεn =
N

Z

∑
n

gnεne
−εn/kT ,

where N is the total number of particles, and Z =
∑

n gne
− εn
kT is the

partition function.
When we find the total energy E , we can view (4.4) as an equation

defining an implicit function of the temperature T in terms of the
energy levels in (4.3):

T = T (ε1, · · · , εNE).

Physically, it means that under the invariance of the total energy E,
the distribution {an} changes as {εn} vary, leading to the change of
the temperature T . Hence we can assume the following expression of
T :

(4.5) T =
∑
n

αnT (εn),

where the coefficients αn are to be determined.
Physically, it is natural to assume that

(4.6)
fluctuations on a specific energy level εn will only lead to fluc-
tuations on the energy anεn on the level εn in the total energy
E =

∑
m amεm.

Mathematically, by (4.6), the implicit function relation can be de-
termined using the following variation:

0 =
∂E

∂εn
= Ngn

∂

∂εn

[
εn
Z
e−εn/kT

]
(4.7)

= N

[
gn

(
1

Z
− εn
Z2

∂Z

∂εn

)
e−εn/kT

+
gnεn
Z

e−εn/kT
(
− 1

kT
+

εn
kT 2

∂T

∂εn

)]
,

∂Z

∂εn
=

(
− gn
kT

+
gnεn
kT 2

∂T

∂εn

)
e−εn/kT(4.8)

= −Z
N

an
kT

+
anεn
kT 2

Z

N

∂T

∂εn
.

Consequently, we have

0 = an −
anεn
Z

∂Z

∂εn
− anεn

kT
+
anε

2
n

kT 2

∂T

∂εn
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= an +
a2
nεn
N

1

kT
− a2

nε
2
n

NkT 2

∂T

∂εn
− anεn

kT
+
anε

2
n

kT 2

∂T

∂εn
,

which implies the following differential equation for T (εn):

(4.9)
∂T

∂εn
=
T

εn
− k
(

1− an
N

)−1
T 2

ε2
n

.

Let x = ε, then we infer from (4.9) that

(4.10) T ′ =
T

x
− k
(

1− an
N

)−1
T 2

x2
.

Now let

y
def
=

T

x
, then T ′ = xy′ + y.

Equation (4.10) becomes

(4.11) xy′ = −k
(

1− an
N

)−1

y2.

Physically, we may assume that

(4.12)
an
N
' constant.

Then (4.11) is equivalent to

(4.13) −
(

1− an
N

)∫
dy

ky2
=

∫
dx

x
.

Since x = εn carries the dimension of energy, we write the solution
of (4.13) as follows:

(1− an/N)

ky
= ln

εn
ε0

+ Cn,

where ε0 is the unit of energy. Hence we obtain that

kT (ε) =

(
1− an

N

)
εn

Cn + ln ε/ε0

.

As discussed earlier, all T (εm) should take the same form, we obtain
that

kT =
∑(

1− an
N

)
αnεn

Cn + ln εn/ε0

.

Let βn = 1/Cn and θn = αn/Cn, then we have

(4.14) kT =
∑
n

(
1− an

N

)
θnεn

1 + βn ln ε/ε0

.
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We now try to determine the coefficients θn. For this purpose, we
first define the translational derivative with respect to all energy levels:

T ′ = lim
∆ε→0

1

∆ε

[
T (ε1 + ∆ε, ε2 + ∆ε, · · · )− T (ε1, ε2, · · · )

]
(4.15)

=
∑
n

θn

(
1− an

N

)(
1− βn − βn ln

εn
ε0

)
.

Then we take the translation derivative on both sides of (4.4). By the
physical assumption (4.6), we obtain that δεn = δε for all n and

(4.16) 0 = δE =
∑
n

gn
∂

∂εn

[εn
Z
e−εn/kT

]
δεn.

Also by (4.6), we have

gn
∂

∂εn

[εn
Z
e−εn/kT

]
=gn

(
1

Z
− εn
Z2

∂Z

∂ε

)
e−εn/kT(4.17)

+
gnεn
Z

(
− 1

kT
+

εn
kT 2

T ′
)
e−εn/kT ,

where T ′ is as in (4.15), and by (4.6), we use the following approxima-
tion for the contribution of ∂Z/∂ε to the n-th energy level:

(4.18)
∂Z

∂ε
= gn

(
− 1

kT
+

εn
kT 2

T ′
)
e−εn/kT .

Hence by (4.16)-(4.18), we obtain that

(4.19) kT =
∑
n

an
N

(
1− an

N

)
εn −

∑
n

an
N

(
1− an

N

)
T ′

T
ε2
n.

On the other hand,

kT =
∑
n

θn

[
1− an

N

]
εn ×

1

1 + βn ln εn/ε0

(4.20)

=
∑
n

{
θn

[
1− an

N

]
εn − θn

[
1− an

N

]
βnεn ln

εn
ε0

}
.

We deduce then from (4.19) and (4.20) that

(4.21) θn =
an
N
, βn =

T ′εn
T ln(εn/ε0)

,

and consequently (4.2) for classical systems follows.
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Quantum systems. For a quantum system, we first recall the Bose-
Einstein statistics (2.16) or the Fermi-Dirac statistics (2.20):

(4.22) an =
gn

e(εn−µ)/kT ± 1

(
+ for FD
− for BE

)
.

The total energy is written as

(4.23) E =
∑
n

gnεn
e(εn−µ)/kT ± 1

.

As in the classical particle system case, with the assumption (4.6), by
differentiating E with respect to εn, we obtain that

(4.24)
an
gn

εn(εn − µ)

kT 2
e
εn−µ
kT T ′ =

an
gn

εn
kT

e
εn−µ
kT − 1.

By (4.22), we have

(4.25) e
εn−µ
kT =

gn ± an
an

(
+ for FD
− for BE

)
.

We infer then from (4.24) and (4.25) that

(4.26) T ′ =
T

ε− µ
− gn
gn ± an

kT 2

ε(ε− µ)
.

Here T ′ = ∂T
∂εn

and ε = εn. The solution of (4.26) is

(4.27) kT (εn) =

(
1± an

gn

)
ε

Cn + ln ε

(
+ for FD
− for BE

)
.

Then as in the case for classical particle systems, we derive the following
temperature formula:

(4.28) kT =
∑
n

(
1± an

gn

)
anεn

N(1 + βn ln εn)

(
+ for FD
− for BE

)
.

4.2. Physical meaning of the temperature formula. Equation
(4.2) enables us to have a better understanding on the essence of tem-
perature. In short,

1) the essence of temperature T is (weighted) average
energy level,

2) the temperature T is a function of distributions {an}
and the energy levels {εn}, and

3) the parameters {βn} in the temperature formula re-
flects the property of the material.
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We now discuss some further physical implications of the tempera-
ture formula.

1) Absolute zero for Fermi particle systems. For a Fermi particle
thermodynamic system,

(4.29) T = 0 K ⇐⇒ either an = gn or an = 0.

Basic quantum mechanics shows that if the lower energy level is not
fully occupied, then particles on the higher energy level are not stable,
and will spontaneously jump to lower energy levels, unless there are
always photons that excite the particles on the higher energy level.
Consequently, (4.29) can be rewritten as

(4.30) T = 0 K ⇐⇒
{
an = gn for n = 1, · · · ,m,
an = 0 for n > m.

This is an exact solution of the temperature formula for Fermi particle
systems.

Solid state systems at T = 0 Kelvin are usually Fermi systems, since
in a solid state system, atoms and molecules are fixed at lattice points,
and the corresponding energy levels are determined by the orbiting
electrons. Therefore such systems can be regarded as Fermi systems
consisting of orbiting and free electrons.

2) Absolute zero for Bose particle systems. For a Bose particle sys-
tem, we have

(4.31) T = 0 K ⇐⇒ ε1 = 0, a1 = N and an = 0 ∀ n > 1.

This corresponds exactly to the Bose-Einstein condensation. With tem-
perature at absolute zero, states in a Bose particle system can only be
in two forms: a gaseous state or a condensed state of a subsystem in
an object.

3) Classical systems. For a classical particle system with temperature
at absolute zero, we have

(4.32) T = 0 K ⇐⇒ a1 = N and an = 0 ∀ n > 1.

Here we do not need to assume ε1 = 0, which corresponds to supercon-
ductivity or condensation states of superfluids.

The above results derived from the temperature formula are in agree-
ment with physical facts on T = 0K.

4) Existence of highest temperature. Based on the theory of energy
levels in Section 3.4, the number of energy levels of all particles are
finite. Consequently, we infer from the temperature formula (4.2) the
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upper limit of T :

(4.33) kTmax < εmax, εmax
def
= max

n

εn
1 + βn ln εn

.

We used the temperature formula for classical particle systems to
derive (4.33), since at high temperature, the system can be regarded
as a classical particle system.

5. Theory of Entropy

5.1. Physical meaning of entropy. As the electrons in the system
represent in a natural way all the particles in the system, the energy
level theory of temperature amounts to saying that

(5.1) temperature T = average energy level of electrons.

We now develop the theory of entropy based on the dual relation (4.1).
In view of both (4.1) and (5.1), we deduce the following new description
of entropy:

(5.2) entropy = certain sense of number of photons in the system.

This equivalence (5.2) provides a starting point for the new theory
of entropy, which we shall explore in this section.

5.1.1. Physical supports of entropy as number of photons. 1) The first
law of thermodynamics amounts to saying that for a given thermody-
namical system, the internal energy consists of thermal energy, mechan-
ical energy, interaction energy, etc, which can transform among each
other and from one system to another, maintaining the total internal
energy invariant. In particular we have

(5.3) SdT + TdS = 0,

which shows that in an isolated system, thermal fluctuation follows the
rule that temperature increasing or decreasing corresponds to entropy
decreasing or increasing.

At the same time, it is clear that

(5.4)

• a particle absorbs photons if and only if its energy level
increases and the number of photons between particles
in the system decreases, and
• a particle emits photons if and only if its energy level

decreases and the number of photons between particles
in the system increases.

It is clear that (5.3) and (5.4) are consistent. This shows clearly that
the first law of thermodynamics offers a strong support for entropy
being the number of photons in the system depicted in (5.2).
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2) Long-range transfer is one important characteristic of thermal
energy Q = TS. The temperature T is the average energy levels of
particles, does not possess the long-range transfer feature, and can
only be transferred through kinetic energies of particles. Therefore,
the long-range transfer can only be achieved through the entropy S.
On the other hand, it is clear that photons radiation is the only possible
candidate. Hence (5.2) should be valid, and in other words, the char-
acteristic of long-range transfer of thermal energy provides a physical
support for (5.2).

3) First we call have the following law of entropy transfer.

Law of Entropy Transfer 5.1. Assume the transfer of thermal and
other forms energies is negligible. When two thermodynamic systems
undergo thermal exchange, the entropy increasing for one system always
leads to the entropy decreasing for the other system. Also, the entropy
increases for the heat input system, and decreases for the heat output
system.

This law supports (5.2). Without particle exchange, thermal energy
can only be transferred through either thermal radiation or transfer of
kinetic energy of the system particles. With thermal radiation, energy
levels of particles in heat output system decreases. It is clear then that
with photon numbers and energy levels in equilibrium, decreasing of
energy levels leads to the absorption of more photons, reducing the
number of photons. For heat input system, the kinetic energy and
energy levels of particles increase. This increase of energy levels causes
emission of more photons, for photon numbers and energy levels to
returning to their original equilibrium.

This verifies the agreement between the law of entropy transfer and
the entropy theory (5.2).

5.2. Photon number formula of entropy. For a given thermody-
namic system, in view of (5.2), we characterize entropy as the number
of photons in the photon clouds between system particles, or the photon
density of the photon gas in the system. As discussed earlier, thermal
radiation is simply photon radiation (γ radiation). Also, photons are
Bosons and obey the Bose-Einstein distribution. In this case, since the
total number of photons is not fixed, the chemical potential µ = 0.
Then the BE distribution is written as

(5.5) an =
gn

e(εn−µ)/kT − 1
.
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Hence the total energy of the photon gas in the system is given by

(5.6) E =
∑
n

anεn.

The corresponding partition function Z is given by

(5.7) ZB =
∏
n

[1− e−εn/kT ]−gn , lnZB =
∑
n

gn ln[1− e−εn/kT ]−1.

Consequently, by the entropy formula (2.18):

S = k

[
lnZB − β

∂

∂β
lnZB

]
,

we obtain that

(5.8) S = k
∑
n

[
gn ln

eεn/kT

eεn/kT − 1
+

gn
eεn/kT − 1

· εn
kT

]
.

By the distribution (5.5), we have

eεn/kT

eεn/kT − 1
= 1 +

an
gn
,

by which we infer from (5.8) that

(5.9) S = k
∑
n

[
gn ln

(
1 +

an
gn

)
+
anεn
kT

]
.

Since for any photon gaseous system, we always have an � gn, which
implies that

ln

(
1 +

an
gn

)
' an
gn
.

Therefore, we derive from (5.9) the following photon number formula
of entropy:

S = kN0

[
1 +

1

kT

∑
n

εnan
N0

]
,(5.10)

where N0 =
∑

n an is the total number of photons, and
∑

n
εn
kT
an repre-

sents the number of photons in the sense of average energy level. Notice
that N0 accounts only the photons between systems particles, not those
in the clouds of electrons. Basically, thanks to the mechanism of photon
radiation and absorption mechanism, at the equilibrium of absorption
and radiation, the average energy level of the system maintains un-
changed, and represents the temperature of the system; at the same
time, the number (density) of photons in the sea of photons represents
the entropy (entropy density) of the system.
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5.3. Law of Temperature. By the temperature formula and the en-
tropy formula, we arrive immediately the following law of temperature.

Theorem 5.2 (Law of temperature). The following physical assertions
hold true for temperature:

(1) There are minimum and maximum values of temperature with
Tmin = 0 and Tmax being given by (4.33);

(2) When the number of photons in the system is zero, the temper-
ature is at absolute zero; namely, the absence of photons in the
system is the physical reason causing absolute zero temperature;

(3) (Nernst Theorem) With temperature at absolute zero, the en-
tropy of the system is zero;

(4) With temperature at absolute zero, all particles fills all lowest
energy levels.

6. Nature of Heat

The theory of temperature and entropy developed in the previous
sections provide a theoretical foundation for the theory of heat. We
further explore in this section the consequence of the theory to reveal
the nature of heat.

6.1. Thermal energy. First, in classical thermodynamics, thermal
energy is defined as

(6.1) ∆Q = ∆U −∆W,

where ∆Q represents the thermal energy absorbed by the system, ∆U
is the change of internal energy, and ∆W is the work done by the
system. At a thermal equilibrium, we have

(6.2) dU = TdS − pdV.
Physically, this differential equation can be understood as follows. First,
for a given thermodynamical system, the absorbed (released) heat dQ
is given by

dQ = dU.

On the other hand,
dQ = TdS + SdT,

Therefore

(6.3) dU = TdS + SdT.

Since the volume of the system can change, the change of system tem-
perature corresponds to the work done by the system:

(6.4) SdT = work (= −pdV ).
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Then substituting SdT in (6.3) by (6.4), we arrive at (6.2).
Now we use the statistical theory of heat presented in the previous

two sections to explain the above thermodynamic process. By the
entropy formula (5.10), the thermal energy can be written as

(6.5) Q0 = ST = E0 + kN0T,

where E0 is the total energy of photons as given by (5.6), and N0 is the
number of photons. By (6.5), the absorbing thermal energy is given by

dQ = dQ0 = dE0 + kTdN0 + kN0dT,

by which we infer from (6.3) that

(6.6) dU = dE0 + kTdN0 + kN0dT.

With the same reason as (6.4), we obtain then that

(6.7) dU = dE0 + kTdN0 − pdV.
Eq. (6.7) is the differential equation for the new theory of heat

expressed in (6.5), which is the equivalent form of the classical equation
(6.2). Its physical meaning is clear: When the system absorbs thermal
energy dQ (photon energy), the increased internal energy consists of
two parts: one is to do the work −pdV , and the other is to change
the total energy E0 and the number of photons N0 in the system. By
the entropy formula (5.10), the change of E0 and N0 amounts to the
change of entropy with constant temperature; namely,

dE0 + kTdN0 = TdS.

Hence the new theory of heat we established in this article is consis-
tent with the classical theory, and importantly, offers the new physical
meaning.

6.2. Balance between temperature and entropy. The statistical
theory of heat presented in the previous sections tells us that thermal
energy is the product of temperature and entropy, representing the
energy of the photons in the system. Entropy represents the number of
photons, and the temperature is the average energy level of the matter
particles in the system.

Also, temperature and entropy can transfer between each other.
When the system matter particles absorb photons, the temperature
increases and the entropy decreases; while the particles radiate pho-
tons, the temperature decreases and the entropy increases. We need
now to examine conditions for radiation and absorption of photons.

1) Absorption condition. Based on the photon cloud structure of
electrons, each electron possesses a layer which absorbs photons. The



34 MA AND WANG

allowable photons in each such layer is finite, and if the layer is satu-
rated with photons, no more photons can be absorbed. Based on the
Bohr atomic theory, the orbiting energy level of an atom is given by

(6.8) E1 < E2 < · · · < Ek < Emax,

where Ek is the highest energy level, and Emax is the escaping energy.
For an electron at thr energy level, it can absorb photons with energy
level E = Ei+j − Ei such that E < Emax − Ei.

2) Radiation condition. There is no photon radiation for particles
with uniform motion. Also, for an electron at energy level Ei with
all lower energy levels in (6.8) filled, it will not radiate photons. The
typical particle radiations include: atomic radiation, bremsstrahlung,
Cherenkov radiation, and the radiation of electromagnetic polaritons.
Basic electromagnetism shows that for bremsstrahlung, the emitting
energy per unit time is given by

(6.9) W =
1

6π2ε0

e2a2

c3
,

where ε0 is the electric permittivity, e is the electric charge, a is the
acceleration, and c the speed of light.

3) Vibration mechanism of photon absorption and radiation. We can
see then that a particle can only absorb and radiate photons while
experiencing vibratory motion. By (6.9), the higher the frequency of
the vibration of the particle, the larger the absorbing and radiating
energy. Also, only the vibratory kinetic energy of the particle can
be transferred to the energy levels of the particles, and the average
kinetic energy of the macroscopic system does not effect much of the
energy levels of the micro-particles in the system. The vibration of the
particles in the system is caused by collisions between system particles,
by collisions between the system particles and the photons (mediators),
and by absorbing and radiating photons.

4) Transformation and balance between temperature and entropy. For
particles in high speed vibration and collision, the rate of photon emis-
sion and absorption increases, causing the energy and number density
of photons to increase, and consequently leading to the increase of en-
tropy density. Conversely, absorbing more photons by the system leads
to the temperature increase. Hence it is clear that there is a natural
connection between temperature and entropy.

6.3. Zeroth law of thermodynamics. The zeroth law of thermody-
namics states as follows
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Zeroth Law of Thermodynamics 6.1. If two thermodynamic sys-
tems are each in thermal equilibrium with a third, then they are in
thermal equilibrium with each other.

This law is considered as the basis for temperature, and it is a com-
mon views that this law would lead to the following conclusion:

(6.10)
the temperatures are the same for all thermodynamic systems
that are in equilibrium with each other.

We examine this conclusion with the new theory of heat. First we
recall the energy level temperature equation (4.2), restated here for
convenience:

(6.11) kT =
∑
n

(
1− an

N

)
anεn

N(1 + βn ln εn)
,

which shows clearly that the temperature depends on three ingredients:
the distribution {an}, the energy levels {εn} and the parameters {βn}.
The energy levels {εn} and the parameters {βn} are system (object)-
dependent. The distribution {an} depends also on the total energy
E0 of photons and the total number N0 of photons in the system.
Hence with the same total photon energy and the same photon density,
different systems (objects) induce different temperatures. Therefore
the conclusion (6.10) is meaningless for different objects.

With the new theory of heat, what the zeroth law truly implies is
that

(6.12)
the energies and number densities of photons are the same
for all thermodynamic systems that are in equilibrium with
each other.

Therefore, with the new theory the photon density in the object can
be viewed as a measure for its temperature.

6.4. Caloric theory of heat. The current accepted theory of heat
is also called the mechanical theory of heat, which related the heat
with mechanical work. The theory was first introduced in 1798 by
Benjamin Thompson, and further developed by such great scientists as
Sadi Carnot, Rudolf Clausius, and James Clerk Maxwell.

The caloric theory of heat is an obsolete theory that heat is made up
of a fluid called caloric that is massless and flows from hotter bodies to
colder bodies. It was considered that caloric was a massless gas that
exists in all matter, and is conserved. However the transfer between
heat and mechanical work makes the caloric theory obsolete.

The statistical theory of heat presented in this article is developed
based on physical theories on fundamental interactions, the photon
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cloud model of electrons, the first law of thermodynamics, statistical
theory of thermodynamics, radiation mechanism of photons, and en-
ergy level theory of micro-particles. The theory utilizes rigorous mathe-
matics to reveal the physical essence of temperature, entropy and heat.

The statistical theory of heat established in this paper revives the
old caloric theory in the sense that

(6.13) photons are the caloric of heat.

Photons possess all the required characteristics of caloric of heat: mass-
less, ability to penetrate to matter, conserved in a certain sense, as-
sociation of temperature with the quantity of photons in the system
(object), and so on. One most important characteristic of the new
theory is that it gives a natural explanation of the long-range heat
transfer.

For example, for the heat phenomena associated with friction, the
new theory indicates that the kinetic energy is transferred to system
particles through friction, increasing the vibration kinetic energy of
the particles. Then based on the radiation and vibration mechanism
of photons, the high speed vibration of particles increases the energy
levels of the particles and the absorbing and radiating frequencies of
the surrounding photons; this leads to the cumulation of high density
and high energy level photons. Hence the friction will increase the
temperature of the object.
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