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Syzygies among reduction operators

Introduction

Description and computation of syzygies for presentations of algebraic structures has been investigated by methods from homological algebra, Koszul duality and Gröbner bases theory. In homological algebra, the constructive methods using syzygies are initiated in the works of Koszul [START_REF] Koszul | Homologie et cohomologie des algèbres de Lie[END_REF] and Tate [START_REF] Tate | Homology of Noetherian rings and local rings[END_REF] who describe free resolutions by mean of higher-order syzygies. Koszul duality, introduced by Priddy [START_REF] Stewart | Koszul resolutions[END_REF] and extended by Berger [START_REF] Berger | Koszulity for nonquadratic algebras[END_REF], is inspired by these works: for homogeneous associative algebras, a candidate for the space of syzygies, that is for constructing a minimal resolution, is the Koszul dual.

For commutative algebras, methods for computing syzygies are based on Gröbner bases: the module of syzygies for a Gröbner basis is spanned by S-polynomials of critical pairs [START_REF] Schreyer | Die berechnung von syzygien mit dem verallgemeinerten weierstraßschen divisionssatz und eine anwendung auf analytische cohen-macaulay stellenalgebren minimaler multiplizität[END_REF], that is the overlapping of two reductions, also called rewriting rules, on a term. Conversely, a critical pair whose S-polynomial reduces into zero leads to a syzygy. This correspondence between syzygies and critical pairs has applications in two directions: improvements of Buchberger's completion algorithm are based on the computation of syzygies [START_REF] Gebauer | On an installation of Buchberger's algorithm[END_REF][START_REF] Möller | Gröbner bases computation using syzygies[END_REF] and construction of free resolutions of commutative algebras are based on the computation of a Gröbner basis [START_REF] Möller | New constructive methods in classical ideal theory[END_REF]. The construction of free resolutions using rewriting theory for computing syzygies also appear for other algebraic structures, such as associative algebras [START_REF] Anick | On the homology of associative algebras[END_REF][START_REF] Chouhy | Projective resolutions of associative algebras and ambiguities[END_REF] or monoids [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF][START_REF] Guiraud | Identities among relations for higher-dimensional rewriting systems[END_REF][START_REF] Kobayashi | Complete rewriting systems and homology of monoid algebras[END_REF].

In this paper, we give a method based on the lattice of reduction operators for computing syzygies for rewriting systems whose underlying set of terms is a vector space. Description of rewriting systems by mean of reduction operators was initiated in the works of Bergman [START_REF] Bergman | The diamond lemma for ring theory[END_REF] for noncommutative Gröbner bases and exploited by Berger for studying homological properties of quadratic algebras [START_REF] Berger | Confluence and Koszulity[END_REF][START_REF] Berger | Weakly confluent quadratic algebras[END_REF][START_REF] Berger | Confluence and quantum Yang-Baxter equation[END_REF]. Using reduction operators enables us to deduce a lattice criterion for detecting useless reductions during the completion procedure. As pointed out by Lazard [START_REF] Lazard | Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations[END_REF], the completion procedure is interpreted as Gaussian elimination, which leads to use linear algebra techniques for studying completion. In particular, the F 4 and F 5 algorithms [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F 4 )[END_REF][START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5 )[END_REF] are based on such techniques and adaptations of Buchberger, F 4 or F 5 algorithms to various algebraic contexts were introduced, such as associative algebras [START_REF] Mora | An introduction to commutative and noncommutative Gröbner bases[END_REF][START_REF] Xiu | Non-commutative Gröbner bases and applications[END_REF], invariant rings [START_REF] Faugère | Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases[END_REF], tropical Gröbner bases [START_REF] Vaccon | A tropical F5 algorithm[END_REF] or operads [START_REF] Dotsenko | Gröbner bases for operads[END_REF], for instance.

We consider a vector space V equipped with a well-ordered basis (G, <). For instance, if V is a polynomial algebra (respectively a tensor algebra, an invariant ring or an operad), G is a set of monomials (respectively words, orbit sums of monomials or trees) and < is an admissible order on G.

In our examples, we consider the case where V is finite-dimensional and (G, <) is a totally ordered basis of V .

Reduction operators. In this work, we describe linear rewriting systems by reduction operators. A reduction operator relative to (G, <) is an idempotent linear endomorphism T of V such that for every g / ∈ im (T ), T (g) is a linear combination of elements of G strictly smaller than g. We denote by RO (G, <) the set of reduction operators relative to (G, <).

Recall from [7, Proposition 2.1.14] that the kernel map induces a bijection between RO (G, <) and subspaces of V . Hence, RO (G, <) admits a lattice structure, where the order , the lower-bound ∧ and the upper-bound ∨ are defined by

• T 1 T 2 if ker (T 2 ) ⊆ ker (T 1 ), • T 1 ∧ T 2 = ker -1 (ker (T 1 ) + ker (T 2 )), • T 1 ∨ T 2 = ker -1 (ker (T 1 ) ∩ ker (T 2 )).
Given a subset F of RO (G, <), we denote by ∧F the lower-bound of F , that is the reduction operator whose kernel is the sums of kernels of elements of F . We have the following lattice formulation of confluence: a subset F of RO (G, <) is said to be confluent if the image of ∧F is equal to the intersection of images of elements of F . Recall from [7, Corollary 2.3.9] that F is confluent if and only if the rewrite relation on V defined by v -→ T (v), for every T ∈ F and every v / ∈ im (T ), is confluent.

Upper-bound of reduction operators and syzygies. In 2.1.3, we define the syzygies for a finite set F = {T 1 , • • • , T n } of reduction operators as being the elements of the kernel of the application

π F : ker (T 1 ) × • • • × ker (T n ) -→ ker (∧F ), mapping (v 1 , • • • , v n ) to v 1 + • • • + v n .
The set of syzygies for F is denoted by syz (F ). In 3.3, we interpret syzygies for presentations of algebras in terms of syzygies for a set of reduction operators. In Lemma 2.2.3, we show that for every integer

2 ≤ i ≤ n, syz (T 1 ∧ • • • ∧ T i-1 , T i ) is isomorphic to a supplement of syz (T 1 , • • • , T i-1 ) in syz (T 1 , • • • , T i ).
In Proposition 2.2.4, we give an explicit description of this supplement using the operator (T i ∧ • • • ∧ T i-1 ) ∨ T i . Using these two intermediate results, we obtain a procedure for constructing a basis of syz (F ): we construct inductively bases of

syz (T 1 , • • • , T i ) using the supplement of syz (T 1 , • • • , T i-1 ) defined from (T 1 ∧ • • • ∧ T i-1 ) ∨ T i . The correctness of this procedure is proven in Theorem 2.2.2. Application to completion. A completion of a set F = {T 1 , • • • , T n } of reduction operators is a confluent set F ′ containing F .
In Section 3, we present a procedure for completing F taking into account useless reductions, that is the reductions which do not change the final result of a completion procedure. This notion is formally defined in Definition 3.1.1.

We first remark that the vector space ker (T 1 ) × • • • × ker (T n ) admits as a basis the set of all e i,g = 0, • • • , 0, g -T i (g), 0, • • • , 0 , where 1 ≤ i ≤ n, g / ∈ im (T i ) and g -T i (g) is at position i. Using a well-order ⊏ on this basis, we consider the set F = T1 , • • • , Tn of reduction operators obtaining from F removing the reductions

g -→ F T i (g), (1) 
where e i,g is the leading term of an element of syz (F ) for the order ⊏. Formally, the operators Ti are defined in the following way:

Ti (g) = g
, if e i,g is a leading term of an element of syz (F ) T i (g), otherwise.

We call the set F , the reduction of F . In 3.2.4, we construct inductively a set C = {C 2 , • • • , C n } of reduction operators which leads to a completion of F . We call the set C the incremental completion of F . In Theorem 3.2.5, we show that the reductions (1) are useless in the sense that C completes F : Theorem 3.2.5. Let F be a set of reduction operators, let F be the reduction of F and let C be the incremental completion of F . Then, F ∪ C is a completion of F.

Moreover, a consequence of our method for constructing the basis of syz (F ) is that its leading terms are the elements e i,g such that g does not belong to the image of (T 1 ∧ • • • ∧ T i-1 )∨T i . Hence, we obtain the following lattice criterion: the reductions g -→

F T i (g), where g / ∈ im ((T 1 ∧ • • • ∧ T i-1 ) ∨ T i ), are useless reductions.
Useless reductions and construction of commutative Gröbner bases. In Section 3.3, we relate the confluence property and the completion procedure for reduction operators to the construction of commutative Gröbner bases. We consider a set X of variables as well as an ideal I of K[X] spanned by a set of polynomials R = {f 1 , • • • , f n }. Given an admissible order on the set of monomials, we consider the reduction operator T i whose kernel is the ideal spanned by f i . In Proposition 3.3.4, we show that R is a Gröbner basis of I if and only if the set F R = {T 1 , • • • , T n } of reduction operators associated to R is confluent. This characterisation of Gröbner bases enables us to interpret the completion of a set of reduction operators as a procedure for constructing commutative Gröbner bases. Hence, the criterion of Section 3.2 enables us to detect useless reductions during the construction of commutative Gröbner bases. In Example 3.3.6, we illustrate with an example how to use this criterion.

Organisation. In Section 2.1 we recall the definition and the lattice structure of reduction operators. We interpret the upper-bound of two reduction operators in terms of syzygies. In Section 2.2, we construct a basis of syzygies using the lattice structure of reduction operators. In particular, we characterise leading terms of syzygies using the lattice structure. In Section 2.3, we illustrate how our basis is constructed. In Section 3.1, we recall how works the completion in terms of reduction operators. In Section 3.2, we exploit the relationship between syzygies and useless reductions as well as our construction of a basis of syzygies to provide a lattice criterion for rejecting useless reductions during a completion procedure. In Section 3.3, we show how to use this criterion during the construction of commutative Gröbner bases.

Syzygies for a set of reduction operators

Conventions and notations. We fix a commutative field K as well as a well-ordered set (G, <). We denote by KG the vector space spanned by G.

For every v ∈ KG \ {0}, we denote by supp (v) the support of v, that is the set of elements of G which belongs to the decomposition of v. The greatest element of supp (v) is denoted by lt (v) and the coefficient of lt (v) in v is denoted by lc (v). The notations lt (v) and lc (v) are the abbreviations of leading term and leading coefficient of v, respectively. Given a subset E of KG, we denote by lt (E) the set of leading terms of elements of E: lt (E) = lt (v) | v ∈ E . We extend the order < on G into a partial order on KG in the following way: we have

u < v if u = 0 and v = 0 or if lt(u) < lt(v).
Let V be a subspace of KG. A reduced basis of V is a basis B of V such that the following two conditions are fulfilled: i. for every e ∈ B, lc (e) is equal to 1, ii. given two different elements e and e ′ of B, lt (e ′ ) does not belong to the support of e.

Recall from [START_REF] Chenavier | Reduction Operators and Completion of Rewriting Systems[END_REF]Theorem 2.1.13] that V admits a unique reduced basis. Definition 2.1.1. A reduction operator relative to (G, <) is an idempotent endomorphism T of KG such that for every g ∈ G, we have T (g) ≤ g. We denote by RO (G, <) the set of reduction operators relative to (G, <). Given T ∈ RO (G, <), a term g is said to be a T-normal form or T-reducible according to T (g) = g or T (g) = g, respectively. We denote by NF (T ) the set of T -normal forms and by Red (T ) the set of T -reducible terms.

Kernels of reduction operators. Let T ∈ RO (G, <). The kernel of T admits as a basis the set of elements g -T (g), where g belongs to Red (T ). Hence, every v ∈ ker (T ) admits a unique

decomposition v = λ g g -T (g) , (2) 
The decomposition ( 2) is called the T-decomposition of v.

Let L (KG) be the set of subspaces of KG. Recall from [7, Proposition 2.1.14] that the kernel map induces a bijection between RO (G, <) and L (KG). The inverse map is denoted by ker -1 . Explicitly, for every V ∈ L (KG), let B be the unique reduced basis of V . Then, T = ker -1 (V ) is defined on the basis G by:

T (g) = g -e g , if g ∈ lt (B) g, otherwise,
where e g is the unique element of B with leading term g. In Section 2.2, we need the following lemma:

Lemma 2.1.2. Let V be a subspace of KG. We have an isomorphism:

KG/V ≃ K g ∈ G | g / ∈ lt (V ) .
Proof. Let T = ker -1 (V ). The operator T being a linear map, we have an isomorphism between KG/V = KG/ ker(T ). Moreover, it is also a projector, so that we have im (T ) = KNF (T ). The latter is equal to

K g ∈ G | g / ∈ lt (V ) , which proves Lemma 2.1.2.
Lattice structure. We deduce from the bijection induced by the kernel map that RO (G, <) admits a lattice structure, where the order , the lower-bound ∧ and the upper-bound ∨ are defined by

i. T 1 T 2 if ker (T 2 ) ⊆ ker (T 1 ), ii. T 1 ∧ T 2 = ker -1 (ker (T 1 ) + ker (T 2 )), iii. T 1 ∨ T 2 = ker -1 (ker (T 1 ) ∩ ker (T 2 )).
Given a subset F of RO (G, <), the lower-bound of F is written ∧F :

∧F = ker -1 T ∈ F ker (T ) .
Moreover, recall from [7, Lemma 2.1.18] that T 1 T 2 implies that NF (T 1 ) is included in NF (T 2 ). Passing to the complement, we obtain

T 1 T 2 implies Red (T 2 ) ⊆ Red (T 1 ) . ( 3 
)
Notations. Let F = {T 1 , • • • , T n } be a finite subset of RO (G, <). The vector space ker (T 1 ) × • • • × ker (T n ) is denoted ker(F ).
We consider the linear map π F : ker (F ) -→ ker (∧F ) defined by

π F (v 1 , • • • , v n ) = n i=1 v i , for every (v 1 , • • • , v n ) ∈ ker (F ).
Definition 2.1.3. The elements of ker (π F ) are called the syzygies for F , and the set of syzygies for F is denoted by syz (F ).

In Section 2.2, we construct a basis of syz (F ). This construction requires to relate syzygies to the upper-bound of reduction operators. This link is given by the following proposition: Proposition 2.1.4. Let P = {T 1 , T 2 } be a pair of reduction operators. We have an isomorphism:

ker (T 1 ∨ T 2 ) ∼ -→ syz (P ) . v -→ (-v, v) (4) 
Proof. Since ker (T 1 ∨ T 2 ) is equal to ker (T 1 ) ∩ ker (T 2 ), the map (4) is well-defined. Moreover, it is injective since (-v, v) is equal to (0, 0) if and only if v is equal to 0. Finally, it is surjective since (v 1 , v 2 ) belongs to syz (P ) if and only if v 2 = -v 1 and in this case, v 2 belongs to ker (T 1 ) ∩ ker (T 2 ).

Construction of a basis of syzygies

Throughout the section, we fix a set

F = {T 1 , • • • , T n } of reduction operators.
For every 1 ≤ i ≤ n and for every g ∈ Red (T i ), we denote by

e i,g = 0, • • • , 0, g -T i (g), 0, • • • , 0 ,
where g -T i (g) is at position i. The set of all e i,g 's is a basis of ker (F ). Moreover, we let e i,g ⊏ e i ′ ,g ′ if i < i ′ or if i = i ′ and g < g ′ . Such defined, ⊏ is a well-order, so that ker (F ) is a vector space equipped with a well-ordered basis.

Remark 2.2.1. By definition of syzygies, we have an isomorphism of vector spaces ker(F )/syz (F ) ≃ ker (∧F ). From Lemma 2.1.2, ker (∧F ) admits as a basis the set

π F (e i,g ) | e i,g / ∈ lt (syz (F )) , (5) 
where lt (syz (F )) is the set of leading terms of elements of syz (F ) for the order ⊏. Hence, every v ∈ ker (∧F ) admits a unique decomposition

v = i,g λ i,g π F (e i,g ) = i,g λ i,g g -T i (g) , (6) 
where, for every index (i, g) in the sum, g belongs to Red (T i ). The decomposition [START_REF] Bergman | The diamond lemma for ring theory[END_REF] in called the canonical decomposition of v with respect to F .

Procedure for constructing a basis of syz (F ). For every integer i such that 2 ≤ i ≤ n, we consider the reduction operator

U i-1 = T 1 ∧ • • • ∧ T i-1 . (7) 
For every g 0 ∈ Red (U i-1 ∨ T i ), we denote by

v i,g0 = g 0 -(U i-1 ∨ T i ) (g 0 ). (8) 
The vector v i,g0 belongs to ker (U i-1 ) = ker (T 1 ) + • • • + ker (T i-1 ) and to ker (T i ), so that it admits a canonical decomposition relative to {T 1 , • • • , T i-1 } as well as well as a T i -decomposition. Let

j,g ′ λ j,g ′ (g ′ -T j (g ′ ))
and

g λ g (g -T i (g)) ,
be these two decompositions. We let:

s i,g0 = g λ g e i,g - j,g ′ λ j,g ′ e j,g ′ . ( 9 
)
We define by induction sets B 1 , • • • , B n in the following way: B 1 = ∅ and for every 2 ≤ i ≤ n,

B i = B i-1 ∪ s i,g0 | g 0 ∈ Red (U i-1 ∨ T i ) . (10) 
Theorem 2.2.2. With the previous notations, B n is a basis of syz (F ).

The proof of Theorem 2.2.2 is done at the end of the section. This is a consequence of Proposition 2.2.4, which we prove using intermediate results of Lemma 2.2.3. For that, we need to fix some notations.

Notations. For every integer i such that 2 ≤ i ≤ n, we define U i-1 , v i,g0 and s i,g0 such as in [START_REF] Chenavier | Reduction Operators and Completion of Rewriting Systems[END_REF], [START_REF] Chouhy | Projective resolutions of associative algebras and ambiguities[END_REF] and [START_REF] Dotsenko | Gröbner bases for operads[END_REF], respectively and we consider the following maps:

i. ι i : syz (T 1 , • • • , T i-1 ) -→ syz (T 1 , • • • , T i ) , (v 1 , • • • , v i-1 ) -→ (v 1 , • • • , v i-1 , 0), ii. π i : ker (T 1 ) × • • • × ker (T i ) -→ ker (U i-1 ) × ker (T i ) , (v 1 , • • • , v i ) -→ (v 1 + • • • + v i-1 , v i ), iii. πi : syz (T 1 , • • • , T i ) -→ syz (U i-1 , T i ) , (v 1 , • • • , v i ) -→ (v 1 + • • • + v i-1 , v i ).
Moreover, we abuse notations in the following ways: i. given two integers i and j such that 2 ≤ j ≤ i ≤ n, we still denote by e j,g and s j,g their images by the natural projection of ker(F ) on ker (T

1 ) × • • • × ker (T i ),
ii. using the injection ι i , we consider that we have syz

(T 1 , • • • , T i-1 ) ⊆ syz (T 1 , • • • , T i ), for every integer i such that 2 ≤ i ≤ n.
Lemma 2.2.3. Let i be an integer such that 2 ≤ i ≤ n.

i. We have im (ι i ) = ker (π i ).

ii. For every g 0 ∈ Red (U i-1 ∨ T i ), we have

π i (s i,g0 ) = (-v i,g0 , v i,g0 ) .
Proof. First, we show i.

An element v = (v 1 , • • • , v i ) ∈ syz (T 1 , • • • , T i ) belongs to the kernel of πi if and only if v i = -(v 1 + • • • + v i-1
) is equal to 0. Hence, v belongs to the the kernel of πi if and only if it belongs to the image of ι i . Let us show ii. Let

j,g ′ λ j,g ′ (g ′ -T j (g ′ )) , (11) 
be the canonical decomposition of v i,g0 with respect to {T 1 , • • • , T i }. Every index j of the sum [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F 4 )[END_REF] is strictly smaller than i, so that we have

π i   j,g ′ λ j,g ′ e j,g ′   =   j,g ′ λ j,g ′ (g ′ -T j (g ′ )) , 0   .
Moreover, letting g λ g (g -T i (g)) the canonical the T i -decomposition of v i,g0 , we have

π i g λ g e i,g = 0, g λ g (g -T i (g)) .
Hence, we have

π i (s i,g0 ) = π i   g λ g e i,g - j,g ′ λ j,g ′ e j,g ′   = 0, g λ g (g -T i (g)) -   j,g ′ λ j,g ′ (g ′ -T j (g ′ )) , 0   = (-v i,g0 , v i,g0
) .

Proposition 2.2.4. Let i be an integer such that 2 ≤ i ≤ n. We have the following direct sum decomposition:

syz (T 1 , • • • , T i ) = im (ι i ) ⊕ K s i,g0 | g 0 ∈ Red (U i-1 ∨ T i ) .
Proof. The set of all v i,g0 , where g 0 belongs to Red (U i-1 ∨ T i ), is a basis of ker (U i-1 ∨ T i ), so that the set of pairs (-v i,g0 , v i,g0 ), where g 0 belongs to Red (U i-1 ∨ T i ), is a basis of syz (U i-1 , T i ) from Proposition 2.1.4. The morphism πi is surjective, so that we have im (π i ) = syz (U i-1 , T i ). Hence, from ii. of Lemma 2.2.3, πi induces an isomorphism between the vector space V i spanned by elements s i,g0 , where g 0 belongs to Red (U i-1 ∨ T i ), and im Proof of theorem 2.2.2. We show by induction that for every integer i such that 1 ≤ i ≤ n, the set B i obtained in 10 of the procedure is a basis of syz (T 1 , • • • , T i ). If i is equal to 1, there is nothing to prove since syz (T 1 ) is reduced to {0}. Let i be an integer such that 2 ≤ i ≤ n and assume by induction hypothesis that B i-1 is a basis of syz (T 1 , • • • , T i-1 ). From Proposition 2.2.4

(π i ). In particular, V i is a supplement of ker (π i ) in syz (T 1 , • • • , T i ). From i.
B i = B i-1 ∪ s i,g0 | g 0 ∈ Red (U i-1 ∨ T i ) , is a basis of syz (T 1 , • • • , T i ). Hence, B n is a basis of syz (T 1 , • • • , T n ) = syz (F ).
We deduce the following lattice description of the set of leading terms of syzygies:

Proposition 2.2.5. Let F = {T 1 , • • • , T n } be a finite set of reduction operators. We have

lt (syz (F )) = e i,g0 | 2 ≤ i ≤ n and g 0 ∈ Red (U i-1 ∨ T i ) .
Proof. By definition, for every 2 ≤ i ≤ n and for every g 0 ∈ Red (U i-1 ∨ T i ), lt (s i,g0 ) is equal to e i,g0 . Hence, the leading terms of the elements of B n are pairwise distinct, so that we have lt

(KB n ) = lt (B n ) = e i,g0 | 2 ≤ i ≤ n and g 0 ∈ Red (U i-1 ∨ T i ) .
From Theorem 2.2.2, B n is a basis of syz (F ), so that Proposition 2.2.5 holds.

Illustration

In this section we illustrate the construction of B n with an example. For that, we use the implementation of the lattice structure of reduction operators available online 1 .

Notations. We consider G = {g 1 < g 2 < g 3 < g 4 < g 5 }. We let F = {T 1 , T 2 , T 3 , T 4 , T 5 }, where the operators T i are defined by their matrices with respect to the basis G:

T 1 =       1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0       , T 2 =       1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0       , T 3 =       1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0       T 4 =      
1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1

      and T 5 =       1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1       .
The vector space ker(F ) is spanned by the following eight vectors: e 1,g5 = (g 5g 3 , 0, 0, 0, 0) , e 2,g3 = (0, g 3g 2 , 0, 0, 0) , e 2,g5 = (0, g 5g 2 , 0, 0, 0) e 3,g5 = (0, 0, g 5g 1 , 0, 0) , e 4,g4 = (0, 0, 0, g 4g 3 , 0) , e 5,g4 = (0, 0, 0, 0, g 4g 1 ) .

We simplify notations: In particular, we have e 1 < e 2 < • • • < e 6 . Moreover, as done in the previous section, we let

e 1 = e 1,
U i-1 = T 1 ∧ • • • ∧ T i-1 , for 2 ≤ i ≤ 5.
Step 1. We have B 1 = ∅.

1 https://pastebin.com/Ds5haArH

Step 2. We have

U 1 ∨ T 2 =       1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0      
.

The set Red (T 1 ∨ T 2 ) is reduced to {g 5 } and g 5 -(T 1 ∨ T 2 ) (g 5 ) is equal to g 5g 3 . We have

g 5 -g 3 = g 5 -T 1 (g 5 ) ,
and its T 2 -decomposition is

g 5 -g 3 = g 5 -g 2 -g 3 -g 2 = g 5 -T 2 (g 5 ) -g 3 -T 2 (g 3 ) .
Hence, we get B 2 = e 3e 2e 1 .

Step 3. The operator U 2 ∨ T 3 is equal to the identity of KG, so that we have

B 3 = B 2 .
Step 4. The operator U 3 ∨ T 4 is equal to the identity of KG, so that we have B 4 = B 3 .

Step 5. We have

U 4 ∨ T 5 =       1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1      
.

The set Red (U 4 ∨ T 5 ) is reduced to {g 4 } and g 4 -(U 4 ∨ T 5 ) (g 4 ) is equal to g 4g 1 . The canonical decomposition of g 4g 1 with respect to {T 1 , T 2 , T 3 , T 4 } is equal to

g 4 -g 1 = g 4 -g 3 -g 5 -g 3 + g 5 -g 1 = g 4 -T 4 (g 4 ) -g 5 -T 1 (g 5 ) + g 5 -T 3 (g 5 ) ,
and

g 4 -g 1 = g 4 -T 5 (g 4 ) .
Hence, we get B 5 = e 3e 2 + e 1 , e 6e 5e 4 + e 1 .

Useless reductions for the completion procedure

In this section, we interpret leading terms of syzygies as useless reductions during a completion procedure in rewriting theory. We apply this criterion to the construction of commutative Gröbner bases.

Reduction operators and completion

In this section, we recall from [7, Section 2.3] the basic notions from rewriting theory used in the sequel and how reduction operators are related to abstract rewriting theory, confluence and completion.

Abstract rewriting systems, confluence and completion. An abstract rewriting system is a pair (A, -→), where A is a set and -→ is a binary relation on A, called rewrite relation. An element of -→ is called a reduction and we write a -→ b instead of (a, b) ∈ -→ such a reduction. We denote by * -→ the reflexive transitive closure of -→. If we have a * -→ b, we say that a rewrites into b. Let (A, -→) be an abstract rewriting system. We say that the rewrite relation -→ is confluent if for every a 1 , a 2 , a 3 ∈ A such that a 1 * -→ a 2 and a 1 * -→ a 3 , there exists a 4 ∈ A such that a 2 * -→ a 4 and a 3 * -→ a 4 :

a 2 * a 1 * 2 2 * , , a 4 
a 3 * = =
A completion of an abstract rewriting system (A, -→) is an abstract rewriting system

(A ′ , -→ ′ ) such that i. A ⊆ A ′ , ii. the relation -→ ′ is confluent,
iii. the residual sets obtained by taking the quotients of A and A ′ by the equivalence relations induced by -→ and -→ ′ , respectively are equal.

In Section 3.2, we introduce a lattice criterion for detecting useless reductions during completion. Let us define formally the notion of useless reduction: Definition 3.1.1. Let (A, -→) be an abstract rewriting system. A reduction a -→ b is said to be useless if a completion of (A, -→ ′ ), where -→ ′ is -→ without the reduction a -→ b, leads to a completion of (A, -→).

Reduction operators and abstract rewriting. Let F be a subset of RO (G, <). We let:

NF (F ) = T ∈ F NF (T ) .
For every T ∈ F , we have ∧F T , so that NF (∧F ) is included in NF (T ) from (3). Hence, NF (∧F ) is included in NF (F ) and we let Obs F = NF (F ) \ NF (∧F ). We say that F is confluent if Obs F is equal to the empty set.

Given a subset F of RO (G, <), we consider the abstract rewriting system KG, -→

F defined by v -→ F T (v), for every T ∈ F and for every v / ∈ KNF (T ). Recall from [7, Corollary 2.3.9] that F is confluent if and only if -→ F is confluent.
Example 3.1.2. We consider the example of Section 2.3:

G = {g 1 < g 2 < g 3 < g 4 < g 5 } and F = {T 1 , T 2 , T 3 , T 4 , T 5 },
where

T 1 =       1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0       , T 2 =       1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0       , T 3 =       1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0       T 4 =       1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1       and T 5 =       1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1      
.

We have

∧F =       1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       .
We have NF (∧F ) = {g 1 } and NF (F ) = {g 1 , g 2 }, so that we have Obs F = {g 2 }, that is F is not confluent. We check that the rewrite relation induced by F is not confluent, since we have

g 5 T3 ! ! ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ T1 } } ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ T2 g 3 T2 / / g 2 g 1 g 4 T4 a a ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ T5 = = ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④
Indeed, g 4 and g 5 rewrite into g 2 and g 1 , but there is no reduction between g 2 and g 1 .

Definition 3.1.3. The completion procedure in terms of reduction operators is formalised as follows:

i. Let F be a subset of RO (G, <). A completion of F is a subset F ′ of RO (G, <) such that i. F ′ is confluent, ii. F ⊆ F ′ and ∧F ′ = ∧F .
ii. We define the reduction operator C F by C F = (∧F )∨ ∨F , where ∨F is equal to ker -1 (KNF (F )).

Recall from [7, Theorem 3.2.6] that the set F ∪ C F is a completion of F .

Example 3.1.4. Consider Example 3.1.2. We have:

C F =       1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1       .
We check that F ∪ C F is a completion of F by the following diagram:

g 5 T3 ! ! ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ T1 } } ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ T2 g 3 T2 / / g 2 C F / / g 1 g 4 T4 a a ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ T5 = = ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ Remark 3.1.5.
Given a subset F of RO (G, <), an ambiguity of F is a triple (g 0 , T, T ′ ) such that g 0 belongs to Red (T ) ∩ Red (T ′ ). The possible obstructions to confluence come from these ambiguities, as it is the case in Example 3.1.2 since we have the following non confluent diagrams

g 5 T3 ! ! ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ T1 } } ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ g 3 T2 / / g 2 g 1 g 5 T3 ! ! ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ T2 } } ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ g 2 g 1 g 4 T5 ! ! ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ ❈ T4 } } ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ ④ g 3 T2 / / g 2 g 1
We see that among the three ambiguities (g 5 , T 1 , T 2 ), (g 5 , T 2 , T 3 ) and (g 4 , T 4 , T 5 ), two can be avoided during the completion procedure since they are completed using a single reduction: g 2 -→ g 1 . In particular, detecting useless reductions enables us to remove ambiguities.

Completion procedure using syzygies

In this section, we define formally incremental completion procedures for reduction operators (see Definition 3.2.4) and we introduce a lattice criterion for detecting useless reductions during this procedure. This lattice criterion comes from the fact that leading terms of syzygies provide useless reductions as we will see in the sequel. We fix a finite subset

F = {T 1 , • • • , T n } of RO (G, <).
Definition 3.2.1. For every integer i such that 1 ≤ i ≤ n, let Ti be the reduction operator defined by Ti (g) = g, if g ∈ Red (T i ) and e i,g ∈ lt (syz (F ))

T i (g), otherwise, for every g ∈ G. The set F = T1 , • • • , Tn is called the reduction of F .

In Theorem 3.2.5 we show that a completion of F leads to a completion of F . This is a consequence of the following two propositions: Proposition 3.2.2. We have ∧ F = ∧F and Obs F ⊆ Obs F .

Proof. First we prove that ∧ F = ∧F . Let S be the set of pairs (i, g) such that e i,g belongs to lt (syz (F )). For every pair (i, g) such that 1 ≤ i ≤ n and g ∈ Red (T i ), we let u i,g = g -T i (g).

We have ker (∧F ) =

(j,g ′ ) / ∈ S Ku j,g ′ + (i,g) ∈ S Ku i,g , and 
ker ∧ F = (j,g ′ ) / ∈ S Ku j,g ′ .
Hence, in order to prove that ∧ F = ∧F , it is sufficient to show that each u i,g such that (i, g) ∈ S belongs to the vector space spanned by u j,g ′ 's such that (j, g ′ ) / ∈ S. Let B be the reduced basis of syz (F ). From Proposition 2.2.5, lt (B) is equal to the set of e i,g 's such that (i, g) ∈ S. Let b i,g = e i,g -

(j,g ′ ) / ∈ S
λ j,g ′ e j,g ′ , be the element of B such that lt (b i,g ) is equal to e i,g . The element b i,g being a syzygy, we have

u i,g = g -T i (g) = j,g ′ / ∈ S λ j,g ′ g ′ -T j (g ′ ) ,
which proves that ∧ F = ∧F . Let us show that Obs F ⊆ Obs F . For every integer i such that 

1 ≤ i ≤ n, NF (T i ) is included in NF Ti , so that NF (F ) is included in NF F . Moreover, we have ∧ F = ∧F , so that Obs F = NF (F ) \ NF (∧F ) is included in Obs F = NF F \ NF (∧F ). Proposition 3.2.3. Let C be a subset of RO (G, <). Then, F ∪ C is a completion of F if and only if Obs F ⊆ T ∈ C Red ( 
F is included in Red (C). Let C ⊂ RO (G, <) such that ∧F ∧C, that is ∧ (F ∪ C) = ∧F . The set F ∪ C is confluent if and only if NF (F ∪ C) = NF (∧ (F ∪ C)), that is F ∪ C is confluent if and only if NF (F ) ∩ NF (C) is equal to NF (∧F ). By definition of Obs F , we have NF (F ) ∩ NF (C) = NF (∧F ) ∩ NF (C) Obs F ∩ NF (C) .
From (3), the inequality ∧F ∧C implies that NF (∧F ) is included in NF (∧C), which is included in NF (C). Hence, we have

NF (F ) ∩ NF (C) = NF (∧F ) Obs F ∩ NF (C) .
Hence, F ∪ C is confluent if and only if Obs F ∩ NF (C) is empty, that is if and only if Obs F is included in the complement of NF (C). The latter is equal to Red (C), which concludes the proof.

We can now introduce incremental completion procedures and establish the main result of the section. Definition 3.2.4. We define by induction subsets F 1 , • • • , F n of RO (G, <) in the following way:

F 1 = {T 1 } and for every 2 ≤ i ≤ n, F i = F i-1 ∪ {T i , C i } , where C i = C Fi-1∪{Ti} . The set C = {C 2 , • • • , C n } is called the incremental completion of F .
Theorem 3.2.5. Let F be a set of reduction operators, let F be the reduction of F and let C be the incremental completion of F . Then, F ∪ C is a completion of F. Proof. By construction, F ∪ C is a completion of F . From Proposition 3.2.3, Obs F is included in the union Red (C) of the sets Red (C i ) and ∧ F is smaller than ∧C. From Proposition 3.2.2, Obs F is included in Red (C) and ∧F is smaller than ∧C for . Using again Proposition 3.2.3, F ∪ C is a completion of F .

Lattice criterion for detecting useless reductions. Combining Theorem 2.2.2 and Theorem 3.2.5, we deduce a lattice criterion for detecting useless reductions during a completion procedure: they are the reductions g -→ T i (g), where g belongs to Red (U i-1 ∨ T i ).

Example 3.2.6. We consider Example 3.1.2. For that, we use the basis of syzygies constructed in Section 2.3. The set lt (syz (F )) contains two elements: e 2,g3 and e 5,g4 . In particular, Ti is equal to T i for i = 1, 2, 3, and for i = 2 or 5, we have 

Useless reductions and commutative Gröbner bases

In this section, we relate syzygies for reduction operators to classical syzygies for presentations of algebras, and we illustrate how to use the lattice criterion introduced in 3.2 for constructing commutative Gröbner bases.

Syzygies for reduction operators and presentations of algebras. Consider a commutative or a noncommutative algebra A. Given a generating set X of A, we denote by K[X] and T (X) the polynomial algebra and the tensor algebra over X, respectively. Let G be the set of commutative or noncommutative monomials over X, according to A is commutative or not, and let < be an admissible order on G. Let R = {f 1 , • • • , f n } be a a generating set of relations of A: R is a subset of K[X] or T (X), according to A is commutative or not. For every integer 1 ≤ i ≤ n, we denote by T i ∈ RO (G, <) the reduction operator whose kernel is the ideal of K[X] or the two-sided ideal of T (X) spanned by f i , according to A is commutative or not. Then, the syzygies for the presentation X | R are the syzygies for (T 1 , • • • , T n ). Remark 3.3.1. The set B n constructed in Section 2.2 is a basis of syzygies for presentations of algebras. However, in this context of presentations of algebras, the set of terms is a set of monomials, so that it is an infinite set and the construction of B n is not an algorithm.

i. x 2 z 3 is reducible both by f 2 and f 4 , ii. xyz 3 is reducible both by f 3 and f 4 .

The polynomials x 2 z 3y 2 z 3 + xz 4yz 4 and xyz 3y 3 z 3 belong to the kernel of (T 1 ∧ T 2 ∧ T 3 )∨T 4 . Indeed, we have:

(x + y + z) f 4 = z 3 (f 2f 1 ) and yf 4 = z 2 f 3 .

Hence, the reductions induced by xf 4 and yf 4 are useless reductions, so that we can reject the two critical pairs. Hence, {f 1 , f 2 , f 3 , f 4 } is a Gröbner basis of the ideal spanned by {f 1 , f 2 , f 3 }.

Conclusion.

We presented a method based on lattice constructions for constructing a basis of the space of syzygies for a set of reduction operators. Using the relationship between syzygies and useless reductions during the completion procedure, we deduced a lattice criterion for detecting these reductions and thus for avoiding useless critical pairs during the construction of commutative Gröbner bases. When syzygies are infinite dimensional, our method does not lead to an algorithm since infinite computations are necessary. However, this work was motivated by computation of syzygies for richer structures than vector spaces. Hence, a further work is to exploit these structures for obtaining an algorithm.

  g5 , e 2 = e 2,g3 , e 3 = e 2,g5 e 4 = e 3,g5 , e 5 = e 4,g4 , e 6 = e 5,g4 .

  T ) and ∧ F ∧C. Proof. We denote by Red (C) the union of the sets Red (T ), where T belongs to C. The relation ∧F ∧C is equivalent to (∧F ) ∧ (∧C) = ∧F , that is it is equivalent to the relation ∧ (F ∪ C) = ∧F . Hence, we have to show that given a set C of reduction operators such that ∧F ∧C, F ∪ C is confluent if and only if Obs

..

  We have C i = Id KG for i = 3 and Hence, F ∪ {C 3 } is a completion of F .

  of Lemma 2.2.3, ker (π i ) is equal to im (ι i ), which proves Proposition 2.2.4.

	Now, we can show Theorem 2.2.2.

Computation of syzygiesIn this section, we define syzygies for a set of reduction operators and we compute these syzygies using the lattice structure of reduction operators.
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Now, we relate the completion of a set of reduction operators to the construction of commutative Gröbner bases. Let X be a set of variables and let us denote by [X] and K[X] the set of monomials and the polynomial algebra over X, respectively. We fix a set R = {f 1 , • • • , f n } of polynomials as well as an admissible order < on [X]. Definition 3.3.2. We associate to R the set F R = {T 1 , • • • , T n } of reduction operators with respect to ([X], <), where the kernel of T i is the ideal of K[X] spanned by f i , for every integer i such that 1 ≤ i ≤ n.

Remark 3.3.3. For every integer 1 ≤ i ≤ n and for every monomial m, T i (m) satisfies one of the following two conditions:

In particular, NF (T i ) is the set of monomials which are not divisible by lt (f i ), so that NF (F ) is the set of monomials which do not belong to the monomial ideal spanned by lt (R). 

Proof. This is a consequence of Proposition 3.3.4, and Theorem 3.2.5.

Useless reductions. From Theorem 3.3.5, we deduce the following criterion for detecting useless reductions during the construction of Gröbner bases: they are the reductions induced by mf i , where m is a monomial such that mlt

We illustrate this criterion with the following example:

Example 3.3.6. Consider the example from [START_REF] Eder | Signature-based algorithms to compute standard bases[END_REF]Example 4.3.4]: let X = {x, y, z, t}, let < be the DRL-order induced by t < z < y < x and let R = {f 1 , f 2 , f 3 }, where f 1 = y 2xz, f 2 = x 2yz and f 3 = xyzy 2 z. We denote by T i the reduction operator whose kernel is the ideal spanned by f i . There is no critical pair between f 1 and f 2 , so that {f 1 , f 2 } is a Gröbner of the ideal spanned by f 1 and f 2 . When considering f 3 , there are two critical pairs:

i. xy 2 z is reducible both by f 1 and f 3 ,

ii. x 2 yz is reducible both by f 2 and f 3 .

The polynomial g = x 2 yzy 3 z + xyz 2y 2 z 2 belongs to the kernel of (T 1 ∧ T 2 ) ∨ T 3 since we have:

Hence, the reduction induced by xf 3 is a useless reduction so that we can reject the second critical pair. Moreover, when reducing the S-polynomial of the first critical pair, we get the new polynomial f 4 = xz 3yz 3 . We obtain two new critical pairs: