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An accurate algorithm for evaluating rational functions

StefGraillat*

August 29, 2017

Abstract

Several diòerent techniques intend to improve the accuracy of results computed in �oating-point
precision. Here, we focus on amethod to improve the accuracy of the evaluation of rational functions. We
present a compensated algorithm to evaluate rational functions. his algorithm is accurate and fast. he
accuracy of the computed result is similar to the one given by the classical algorithm computed in twice
the working precision and then rounded to the current working precision. his algorithm runs much
more faster than existing implementation producing the same output accuracy.

Keywords: �oating-point, error-free transformation, rational function,Horner scheme, accuracy, rounding
errors

AMS Subject Classiûcations: 15-04, 65G99, 65-04

1 Introduction

Evaluating a polynomial or a rational function is ubiquitous in computational sciences and their applications.
For example, in signal processing, transfer functions are very o�en rational functions. Moreover, real functions
are o�en approximated by polynomials or rational functions.

In this paper, we present fast and accurate algorithms to compute the evaluation of a rational function. Our
aim is to increase the accuracy at a ûxed precision. We show that the results have the same error estimates as
if computed in twice the working precision and then rounded to working precision. his paper was motivated
by papers [14, 7, 6], where similar approaches are used to compute summation, dot product, and polynomial
evaluation.

his outline of this article is as follows. In Section 2, we quickly recall some information on �oating-point
arithmetic and we give some deûnitions and notations used in the sequel. In Section 3, we recall the com-
pensatedHorner scheme [7, 6]. his algorithm makes it possible to evaluate a polynomial whose accuracy
of the computed result is similar to the one given by the classical algorithm computed in twice the working
precision and then rounded to the current working precision. Section 4 is devoted to the study of the accuracy
of the classic algorithm to evaluate a rational function with Horner scheme. We also deûne and compute
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a closed formula for the condition number of rational function evaluation. A compensated algorithm for
evaluating rational functions is presented in Section 5. his algorithm evaluates a fractional function and gives
an accuracy of the computed result that is similar to the one given by the classical algorithm computed in twice
the working precision and then rounded to the current working precision. Finally, numerical experiments
showing the accuracy and the performance of our new compensated algorithm to evaluate fractional functions
are presented in Section 6.

2 Floating-point arithmetic

hroughout the paper,we assume toworkwith a �oating-point arithmetic adhering to IEEE 754 �oating-point
standard [9]. We assume that no over�ow nor under�ow occur. he set of �oating-point numbers is denoted
by F, the relative rounding error by u. For IEEE 754 double precision, we have u = 2−53 and for single precision
u = 2−24.

We denote by �(⋅) the result of a �oating-point computation, where all operations inside parentheses are done
in �oating-point working precision. Floating-point operations in IEEE 754 satisfy [8]

�(a ○ b) = (a ○ b)(1 + ε1) = (a ○ b)/(1 + ε2) for ○ = {+,−, ⋅, /} and ∣εν∣ ≤ u.

his implies that

∣a ○ b − �(a ○ b)∣ ≤ u∣a ○ b∣ and ∣a ○ b − �(a ○ b)∣ ≤ u∣�(a ○ b)∣ for ○ = {+,−, ⋅, /}. (2.1)

We use standard notation for error estimations. he quantities γn are deûned as usual [8] by

γn ∶=
nu

1 − nu
for n ∈ N,

where we implicitly assume that nu ≤ 1.

Following [8], we also use the following classic properties in error analysis (we always assume that nu < 1):
γk < γk+1 and (1 + u)γk ≤ γk+1.

One can notice that a ○ b ∈ R and a ⊚ b ∶= �(a ○ b) ∈ F but in general we do not have a ○ b ∈ F. It is known
that for the basic operations +,−,×, the rounding error of a �oating-point operation is still a �oating-point
number (see for example [3]):

x = a ⊕ b ⇒ a + b = x + y with y ∈ F,
x = a ⊖ b ⇒ a − b = x + y with y ∈ F,
x = a ⊗ b ⇒ a × b = x + y with y ∈ F.

(2.2)

hese are error-free transformations of the pair (a, b) into the pair (x , y).

Fortunately, the quantities x and y in (2.2) can be computed exactly in �oating-point arithmetic. For the
algorithms, we useMatlab-like notations. For addition, we can use the following algorithm by Knuth [12,
hm B. p.236].

Algorithm 2.1 (Knuth [12]). Error-free transformation of the sum of two �oating-point numbers

function [x , y] = TwoSum(a, b)
x = a ⊕ b
z = x ⊖ a
y = (a ⊖ (x ⊖ z))⊕ (b ⊖ z)
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Another algorithm to compute an error-free transformation is the following algorithm from Dekker [3]. he
drawback of this algorithm is that we have x + y = a + b provided that ∣a∣ ≥ ∣b∣.

Algorithm 2.2 (Dekker [3]). Error-free transformation of the sum of two �oating-point numbers.

function [x , y] = FastTwoSum(a, b)
x = a ⊕ b
y = (a ⊖ x)⊕ b

For the error-free transformation of a product, we ûrst need to split the input argument into two parts. Let p
be given by u = 2−p and deûne s = ⌈p/2⌉. For example, if the working precision is IEEE 754 double precision,
then p = 53 and s = 27. he following algorithm by Dekker [3] splits a �oating-point number a ∈ F into two
parts x and y such that

a = x + y and x and y nonoverlapping with ∣y∣ ≤ ∣x∣.

Algorithm 2.3 (Dekker [3]). Error-free split of a �oating-point number into two parts

function [x , y] = Split(a)
factor = 2s + 1
c = factor⊗ a
x = c ⊖ (c ⊖ a)
y = a ⊖ x

With this function, an algorithm from Veltkamp (see [3]) makes it possible to compute an error-free transfor-
mation for the product of two �oating-point numbers. his algorithm returns two �oating point numbers x
and y such that

a × b = x + y with x = a ⊗ b.

Algorithm 2.4 (Veltkamp [3]). Error-free transformation of the product of two �oating-point numbers

function [x , y] = TwoProduct(a, b)
x = a ⊗ b
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = a2 ⊗ b2 ⊖ (((x ⊖ a1 ⊗ b1)⊖ a2 ⊗ b1)⊖ a1 ⊗ b2)

he TwoProduct algorithm can be re-written in a very simpleway if a Fused-Multiply-and-Add (FMA) operator
is available on the targeted architecture [13, 2]. his means that for a, b, c ∈ F, the result of FMA(a, b, c) is the
nearest �oating-point number of a ⋅ b + c ∈ R. he FMA satisûes

FMA(a, b, c) = (a ⋅ b + c)(1 + ε1) = (a ⋅ b + c)/(1 + ε2) with ∣εν∣ ≤ u.

Algorithm 2.5 (Ogita, Rump and Oishi [14]). Error-free transformation of the product of two �oating-point
numbers using an FMA.

function [x , y] = TwoProductFMA(a, b)
x = a ⊗ b
y = FMA(a, b,−x)

3



3 CompensatedHorner scheme

We recall herea�er the compensated algorithm for Horner scheme. One can ûnd amore detailed description
of the algorithm in [7, 6]. We ûrst recall the classic algorithm for Horner scheme and give an error bound. We
then present the compensatedHorner scheme together with an error bound.

he classical method for evaluating a polynomial

p(x) =
n

∑
i=0
aix i

is theHorner scheme which consists in the following algorithm.

Algorithm 3.1. Polynomial evaluation with Horner’s scheme

function res = Horner(p, x)
sn = an

for i = n − 1 ∶ −1 ∶ 0
si = si+1 ⊗ x ⊕ ai

end
res = s0

A forward error bound for the result of Algorithm 3.1 is (see [8, p.95]):

∣p(x) − res∣ ≤ γ2n

n

∑
i=0

∣ai ∣∣x∣i = γ2n p̃(∣x∣) (3.3)

where p̃(x) = ∑n
i=0 ∣ai ∣x i . It is very interesting to express and interpret this result in terms of the condition

number of the polynomial evaluation deûned by

cond(p, x) ∶= lim
ε→0

sup{∣p(x) − p̂(x)∣
ε∣p(x)∣

∶ ∣ai − âi ∣ ≤ ε∣ai ∣, i = 0, . . . , n} .

It is well-known that
cond(p, x) = ∑

n
i=0 ∣ai ∣∣x∣i
∣p(x)∣

= p̃(∣x∣)
∣p(x)∣

. (3.4)

hus we have
∣p(x) − res∣

∣p(x)∣
≤ γ2n cond(p, x). (3.5)

We can modify theHorner scheme to compute the rounding error at each elementary operation that are a
sum and a product. his is done in Algorithm 3.2.

Algorithm 3.2 (Graillat, Langlois, Louvet [7, 6]). Polynomial evaluationwith a compensatedHorner’s scheme

function res = CompHorner(p, x)
sn = an

rn = 0
for i = n − 1 ∶ −1 ∶ 0

[pi , πi] = TwoProduct(si+1, x)
[si , σi] = TwoSum(pi , ai)
ri = ri+1 ⊗ x ⊕ (πi ⊕ σi)

end
res = s0 ⊕ r0
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If we denote by pπ and pσ the two following polynomials

pπ =
n−1

∑
i=0

πix i , pσ =
n−1

∑
i=0

σix i ,

then one can show, thanks to error-free transformations that

p(x) = s0 + pπ(x) + pσ(x).

If one looks at the previous algorithm closely, it is then clear that s0 = Horner(p, x). As a consequence, we
can derive a new error-free transformation for polynomial evaluation

p(x) = Horner(p, x) + pπ(x) + pσ(x).

he compensatedHorner scheme ûrst computes pπ(x) + pσ(x) which corresponds to the rounding errors
and then adds the obtained value to the result of the classicHorner scheme Horner(p, x).

We will show that the results computed by Algorithm 3.2 admits signiûcantly better error-bounds than those
computed with the classical Horner scheme. We argue that Algorithm 3.2 provides results as if they were
computed using twice the working precision. his is summed up in the following theorem.

heorem 3.1 (Graillat, Langlois, Louvet[7, 6]). Consider a polynomial p of degree n with �oating-point coeõ-
cients, and a �oating-point value x. he forward error in the compensated Horner algorithm is such that

∣CompHorner(p, x) − p(x)∣ ≤ u∣p(x)∣ + γ2
2n p̃(x). (3.6)

It is interesting to interpret the previous theorem in terms of the condition number of the polynomial
evaluation of p at x. Combining the error bound (3.6) with the condition number (3.4) for polynomial
evaluation gives

∣CompHorner(p, x) − p(x)∣
∣p(x)∣

≤ u + γ2
2n cond(p, x). (3.7)

In other words, the bound for the relative error of the computed result is essentially γ2
2n times the condition

number of the polynomial evaluation, plus the unavoidable term u for rounding the result to the working
precision. In particular, if cond(p, x) < γ−12n, then the relative accuracy of the result is bounded by a constant
of the order of u. his means that the compensatedHorner algorithm computes an evaluation accurate to
the last few bits as long as the condition number is smaller than γ−12n ≈ (2nu)−1. Besides that, (3.7) tells us that
the computed result is as accurate as if computed by the classic Horner algorithm with twice the working
precision, and then rounded to the working precision.

4 Classic evaluation of rational functions

In this Section, we present a classic algorithm to evaluate a rational function. It is based on the evaluation of
the numerator and denominator (which are polynomials) with the Horner scheme. We then give a deûnition
of the condition number of the rational functions evaluation and give an explicit formula to compute it. We
then study the numerical stability of the algorithm in terms of the condition number.

Let p, q two polynomials of degree n (it is not complicated to deal with polynomials with diòerent degrees
but for simplicity, we assume they both have the same degree). hey are denoted by

p(x) =
n

∑
i=0
aix i and q(x) =

n

∑
i=0
bix i .

he rational fraction f (x) is f (x) = p(x)/q(x). A classic way to compute f (x) is via the evaluation of p(x)
and q(x) with Horner scheme as explained in Algorithm 4.1
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Algorithm 4.1. Rational function evaluation with Horner scheme

function res = RatEval(p, q, x)
res = Horner(p, x)⊘ Horner(q, x)

he condition number of the evaluation of a rational function measures the sensitivity of the evaluation with
respect to perturbations on the coeõcients of the rational function. It can be deûned as follows.

Deûnition 4.1. Let f (x) = p(x)/q(x) be a rational function. he condition number of the evaluation of f in
x is deûned by

cond( f , x) ∶= lim
ε→0

sup{∣(p̂/q̂)(x) − (p/q)(x)
ε(p/q)(x)

∣ ∶ ∣âi − ai ∣ ≤ ε∣ai ∣, ∣b̂ j − b j∣ ≤ ε∣b j∣ for i = 1, . . . , n, j = 1, . . . ,m} .

where âi and b̂i are respectively the coeõcients of p̂ and q̂.

It is possible to obtain an explicit expression for this condition number.

heorem 4.1. Let f (x) = p(x)/q(x) be a rational function. he condition number of the evaluation of f at x
satisûes

cond( f , x) = cond(p, x) + cond(q, x).

Proof. It is easy to show that

(p̂/q̂)(x) − (p/q)(x)
ε(p/q)(x)

= p̂(x)(q(x) − q̂(x)) − q̂(x)(p(x) − p̂(x))
εp(x)q̂(x)

,

= 1
ε
[ p̂(x)
p(x)

⋅ q(x) − q̂(x)
q̂(x)

− p(x) − p̂(x)
p(x)

] .

As a consequence, we have

∣(p̂/q̂)(x) − (p/q)(x)
ε(p/q)(x)

∣ ≤ 1
ε
[∣ p̂(x)

p(x)
∣ ⋅ ∣q(x) − q̂(x)∣

∣q̂(x)∣
+ ∣p(x) − p̂(x)∣

∣p(x)∣
] .

By deûnition of p and p̂, we have

∣p(x) − p̂(x)∣ ≤ ε p̃(∣x∣) and ∣q(x) − q̂(x)∣ ≤ εq̃(∣x∣).

It follows that

∣(p̂/q̂)(x) − (p/q)(x)
ε(p/q)(x)

∣ ≤ ∣ p̂(x)q(x)
p(x)q̂(x)

∣ ⋅ cond(q, x) + cond(p, x).

By taking the supremum and the limit for ε → 0, we obtain

cond( f , x) ≤ cond(p, x) + cond(q, x).

To show that we, indeed, have equality, let us deûne p̂(x) = p(x) + ε∑n
i=0 sign(aix i)aix i and q̂(x) = q(x) −

ε∑n
i=0 sign(bix i)bix i . In that case, we have

(p̂/q̂)(x) − (p/q)(x)
ε(p/q)(x)

= p̂(x)q(x)
p(x)q̂(x)

⋅ q̃(∣x∣)
∣q(x)∣

+ p̃(∣x∣)
∣p(x)∣

.

Taking the supremum and the limit for ε → 0 proves that it is possible to construct a sequence of polynomials
such the limit in the deûnition of the condition number converges to cond(p, x) + cond(q, x).
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It is now possible to evaluate the numerical stability of the classic algorithm. It is shown in heorem 4.2 that
this algorithm is backward-stable.

heorem 4.2. Let f (x) = p(x)/q(x) be a rational function with �oating-point coeõcients, and x be a �oating-
point value. hen if no under�ow occurs, and res = RatEval(p, q, x),

∣res − f (x)∣
∣ f (x)∣

≤ u + [γ2n +O(u2)] cond( f , x).

Proof. We have

∣�( p(x)
q(x)

) − p(x)
q(x)

∣ = ∣(1 + ε)�(p(x))
�(q(x))

− p(x)
q(x)

∣

with ∣ε∣ ≤ u. As a consequence,

∣�( p(x)
q(x)

) − p(x)
q(x)

∣ ≤ u ∣�(p(x))
�(q(x))

∣ + ∣�(p(x))
�(q(x))

− p(x)
q(x)

∣ . (4.8)

hanks to Equation (3.3), we know that

�(p(x)) ≤ p(x) + γ2n p̃(∣x∣) and q(x) − γ2n q̃(∣x∣) ≤ �(q(x)).

We can then deduce that

∣�(p(x))
�(q(x))

∣ ≤ ∣ p(x) + γ2n p̃(∣x∣)
q(x) − γ2n q̃(∣x∣)

∣ = ∣ f (x)∣ ∣1 + γ2n cond(p, x)
1 − γ2n cond(q, x)

∣ ,

≤ ∣ f (x)∣(1 + γ2n cond( f , x) +O(u2)). (4.9)

Moreover, using Equation (3.5), we have

∣�(p(x))
�(q(x))

− p(x)
q(x)

∣ = ∣q(x)�(p(x)) − p(x)�(q(x))
q(x)�(q(x))

∣ ,

= ∣[q(x) − �(q(x))]�(p(x)) − [p(x) − �(q(x))]�(q(x))
q(x)�(q(x))

∣ ,

≤ ∣�(p(x))
�(q(x))

∣ ⋅ ∣q(x) − �(q(x))
q(x)

∣ + ∣ p(x)
q(x)

∣ ⋅ ∣ p(x) − �(p(x))
p(x)

∣ ,

≤ ∣�(p(x))
�(q(x))

∣ γ2n cond(q, x) + ∣ p(x)
q(x)

∣ γ2n cond(p, x)∣.

Now, using Equations (4.8) and (4.9), we can deduce that

∣�( f (x)) − f (x)∣ ≤ u∣ f (x)∣(1 + γ2n cond( f , x) +O(u2))+
∣ f (x)∣(1 + γ2n cond( f , x) +O(u2))γ2n cond(q, x) + ∣ f (x)∣γ2n cond(p, x),

that can be simpliûed into

∣�( f (x)) − f (x)∣ ≤ ∣ f (x)∣ ⋅ [u + (γ2n +O(u2)) cond( f , x)],

which concludes the proof.
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5 A compensated algorithm for evaluating rational functions

In this Section, we present a compensated version of the classic algorithm for evaluating rational functions.
he idea is to replace theHorner scheme used to evaluate the numerator and denominator by the compensated
Horner scheme followed by a �oating-point division. his is Algorithm 5.1.

Algorithm 5.1. Rational function evaluation with compensatedHorner scheme

function res = CompRatEval(p, q, x)
res = CompHorner(p, x)⊘ CompHorner(q, x)

he following heorem shows that the error bound on the accuracy of the computed result given by the
compensated algorithm is improved compared to the one for the classic algorithm.

heorem 5.1. Let f (x) = p(x)/q(x) be a rational function with �oating-point coeõcients, and x be a �oating-
point value. hen if no under�ow occurs, and res = CompFracEval(p, q, x),

∣res − f (x)∣
∣ f (x)∣

≤ 3u +O(u2) + [2γ2
2n+1 +O(u3)] cond( f , x). (5.10)

Proof. For better readability,wewill denoteCH(p, x) the computed result of CompHorner(p, x). By deûnition
we have

∣CompRatEval(p, q, x) − f (x)∣ = ∣�(CH(p, x)
CH(q, x)

) − f (x)∣ = ∣(1 + ε)CH(p, x)
CH(q, x)

− f (x)∣

with ∣ε∣ ≤ u. As a consequence,

∣CompRatEval(p, q, x) − f (x)∣ ≤ u ∣CH(p, x)
CH(q, x)

∣ + ∣CH(p, x)
CH(q, x)

− f (x)∣ . (5.11)

Moreover, using Equation (3.7), we have

∣CH(p, x)∣ ≤ ∣p(x)∣(1 + u) + γ2
2n p̃(∣x∣) and (1 − u)∣q(x)∣ − γ2

2n q̃(∣x∣) ≤ ∣CH(q, x)∣.

As a consequence, we can bound

∣CH(p, x)
CH(q, x)

∣ ≤ ∣ p(x)
q(x)

∣ ⋅ 1 + u + γ2n cond(p, x)
1 − u − γ2n cond(q, x)

,

≤ ∣ f (x)∣ ⋅ [1 + u + γ2n cond(p, x)] ⋅ [1 + u + γ2n cond(p, x) +O(u3)],
≤ ∣ f (x)∣ ⋅ [(1 + u)2 + γ2

2n cond( f , x) +O(u3)]. (5.12)

Moreover,

∣CH(p, x)
CH(q, x)

− f (x)∣ = ∣CH(p, x)[q(x) −CH(q, x)] −CH(q, x)[p(x) −CH(p, x)]
q(x)CH(q, x)

∣ ,

≤ ∣CH(p, x)
CH(q, x)

∣ ⋅ ∣q(x) −CH(q, x)
q(x)

∣ + ∣ p(x)
q(x)

∣ ⋅ ∣ p(x) −CH(p, x)
p(x)

∣ ,

≤ ∣CH(p, x)
CH(q, x)

∣ (u + γ2
2n cond(q, x)) + ∣ f (x)∣(u + γ2

2n cond(p, x)).
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Using Equation (5.12), we deduce that

∣CH(p, x)
CH(q, x)

− f (x)∣ ≤ ∣ f (x)∣ ⋅ [(1 + u)2 + γ2
2n cond( f , x) +O(u3)] ⋅ (u + γ2

2n cond(q, x))+

∣ f (x)∣(u + γ2
2n cond(p, x)).

which can be simpliûed into

∣CH(p, x)
CH(q, x)

− f (x)∣ ≤ ∣ f (x)∣ ⋅ [2u(1 + u)2 + γ2
2n+1 cond( f , x) +O(u3)]. (5.13)

Finally combining Equations (5.13) and (5.12) with Equation (5.11), we obtain

∣CompRatEval(p, q, x) − f (x)∣ ≤ u∣ f (x)∣ ⋅ [(1 + u)2 + γ2
2n cond( f , x) +O(u3)]+
∣ f (x)∣ ⋅ [2u(1 + u)2 + γ2

2n+1 cond( f , x) +O(u3)].

that can be rewritten as

∣CompRatEval(p, q, x) − f (x)∣ ≤ ∣ f (x)∣[3u(1 + u)2 + (2γ2
2n+1 +O(u3)) cond( f , x)].

and so concludes the proof.

In other words, the bound for the relative error of the computed result is essentially 2γ2
2n+1 times the condition

number of the rational function evaluation, plus the term 3u for rounding the result to the working precision.
In particular, if cond( f , x) < (2γ2n+1)−1, then the relative accuracy of the result is bounded by a constant of
the order of 3u. his means that the compensated algorithm computes an evaluation accurate to the last few
bits as long as the condition number is smaller than (2γ2n+1)−1 ≈ ((4n + 2)u)−1. Besides that, (5.10) tells us
that the computed result is as accurate as if computed by the classic rational function evaluation algorithm
with twice the working precision, and then rounded to the working precision.

6 Numerical experiments

he numerical experiments have been done on a laptop with an Intel Core i5 processor at 2.9 GHz with 16 Gb
of RAM. We usedMATLAB R2016b.

We test the rational function fn(x) = pn(x)/qn(x) where pn is a random polynomial of degree n and qn is the
expand form of the polynomial (x − 1)n. he argument x is chosen near to the unique real root 1 of qn, and
with many signiûcant bits so that a lot of rounding errors occur during the evaluation of qn(x). We increment
the degree n from 1 until a suõciently large range has been covered by the condition number cond( fn , x).
Here we have

cond( fn , x) = cond(pn , x) +
q̃n(∣x∣)
∣qn(x)∣

= cond(pn , x) + ∣1 + x
1 − x

∣
n

,

for x close to 1 and cond( fn , x) grows exponentially with respect to n. In the experiments reported on Figure 1,
cond( fn , x) varies from 102 to 1035 (for x = �(1.333), that corresponds to the degree range n = 3, . . . , 42).
hese huge condition numbers have somemeaning since here the coeõcients of pn and qn and the value x
are chosen to be exact �oating-point numbers.

We experiment both RatEval and CompRatEval. For each rational function fn, the exact value fn(x) is
approximate with a high accuracy thanks to the SymbolicMath Toolbox ofMATLAB. Figure 1 presents the
relative accuracy ∣y − fn(x)∣/∣ fn(x)∣ of the evaluation y computed by the two algorithms.
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Figure 1: Comparison of the accuracy of RatEval and CompRatEval

We observe that the compensated algorithm exhibits the expected behavior. he full precision solution is
computed as long as the condition number is smaller than u−1 ≈ 1016. hen, for condition numbers between
u−1 and u−2 ≈ 1032, the relative error degrades to no accuracy at all.

We now demonstrate the practical eõciency in terms of running time comparing our algorithm and up-to-date
challenger.

Since Bailey’s double-double are usually considered as themost eõcient portable library to double the IEEE-
754 double precision,we consider it as a reference in the comparisons. Double-double numbers are represented
as an unevaluated sum of a leading double and a trailing double. More precisely, a double-double number a is
the pair (ah , al) of �oating-point numbers with a = ah + al and ∣al ∣ ≤ u∣ah∣.

In the sequel, we present two algorithms to compute product of two double-double or a double times a
double-double. hose algorithms are taken from [1].

Algorithm 6.1. Product of the double-double number (ah , al) by the double number b

function [ch , cl] = prod dd d(ah , al , b)
[sh , sl] = TwoProduct(ah , b)
[th , tl] = FastTwoSum(sh , (al ⊗ b))
[ch , cl] = FastTwoSum(th , (tl ⊕ sl))

Algorithm 6.2. Addition of the double number b to the double-double number (ah , al)

function [ch , cl] = add dd d(ah , al , b)
[th , tl] = TwoSum(ah , b)
[ch , cl] = FastTwoSum(th , (tl ⊕ al))
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he double-double library can be used to implement an Horner scheme in quadruple precision like DDHorner.

Algorithm 6.3. Horner scheme with internal double-double computations

function res = DDHorner(p, x)
sh = an

sl = 0
for i = n − 1 ∶ −1 ∶ 0

[ph , pl] = prod dd d(sh , sl , x)
[sh , sl] = add dd d(ph , pl , ai)

end
res = sh

With DDHorner, we can evaluate a rational function in quadruple precision.

Algorithm 6.4. Rational function evaluation with double-doubleHorner scheme

function res = DDRatEval(p, q, x)
res = DDHorner(p, x)⊘ DDHorner(q, x)

We have implemented the three algorithms RatEval, CompRatEval, and DDRatEval in a C code to measure
their overhead compared to the RatEval algorithm. We have programmed these tests straightforwardly with
no other optimization than the ones performed by the compiler.

For each algorithm, we measured the ratio of its computing time over the computing time of the classic
rational function evaluation algorithm. It turned out that our compensated algorithm CompRatEval is about 3
times slower than the classicHorner scheme. he same slowdown factor is about 10 for algorithm DDRatEval.
From a practical point of view, we can state that our algorithm is about 5 times faster than the algorithm with
double-doubles.

We compared RatEval, CompRatEval and DDRatEval in term ofmeasured computing time. We tested with
random rational functions where the degree of numerator and denominator vary from 100 to 100000.

Table 1: Measured computing times with RatEval normalised to 1.0
n RatEval CompRatEval DDRatEval

100 1.0 2.0 10.0
500 1.0 1.6 7.9

1000 1.0 1.7 8.2
10000 1.0 1.6 8.2

100000 1.0 1.6 8.5

7 Conclusion

We presented a fast algorithm for the evaluation of rational functions in �oating-point arithmetic. We
have proved that the accuracy of the result computed by our compensated algorithm is similar to the one
given by the classic algorithm performed in doubled working precision. he only assumption wemade is
that the �oating-point arithmetic available on the computer is conformed to the IEEE-754 Standard. Its low
requirementmake it highly portable, and our compensated algorithm could be easily integrated into numerical
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libraries. Our algorithm uses only basic �oating-point operations, and only the same working precision as the
data. Finally, our compensated algorithm runs much more faster than existing implementation producing the
same output accuracy. his approach can easily be generalized to rational functions where numerators and
denominators are written in other basis and for bivariate rational functions (see [5, 4, 10, 11] for example).
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