Stef Graillat
email: stef.graillat@upmc.fr

An accurate algorithm for evaluating rational functions

Keywords: oating-point, error-free transformation, rational function, Horner scheme, accuracy, rounding errors AMS Subject Classi cations: -, G, -

An accurate algorithm for evaluating rational functions

Introduction

Evaluating a polynomial or a rational function is ubiquitous in computational sciences and their applications. For example, in signal processing, transfer functions are very o en rational functions. Moreover, real functions are o en approximated by polynomials or rational functions.

In this paper, we present fast and accurate algorithms to compute the evaluation of a rational function. Our aim is to increase the accuracy at a xed precision. We show that the results have the same error estimates as if computed in twice the working precision and then rounded to working precision. is paper was motivated by papers [, ,], where similar approaches are used to compute summation, dot product, and polynomial evaluation.

is outline of this article is as follows. In Section , we quickly recall some information on oating-point arithmetic and we give some de nitions and notations used in the sequel. In Section , we recall the compensated Horner scheme [,]. is algorithm makes it possible to evaluate a polynomial whose accuracy of the computed result is similar to the one given by the classical algorithm computed in twice the working precision and then rounded to the current working precision. Section is devoted to the study of the accuracy of the classic algorithm to evaluate a rational function with Horner scheme. We also de ne and compute a closed formula for the condition number of rational function evaluation. A compensated algorithm for evaluating rational functions is presented in Section . is algorithm evaluates a fractional function and gives an accuracy of the computed result that is similar to the one given by the classical algorithm computed in twice the working precision and then rounded to the current working precision. Finally, numerical experiments showing the accuracy and the performance of our new compensated algorithm to evaluate fractional functions are presented in Section .

Floating-point arithmetic

roughout the paper, we assume to work with a oating-point arithmetic adhering to IEEE oating-point standard []. We assume that no over ow nor under ow occur. e set of oating-point numbers is denoted by F, the relative rounding error by u. For IEEE double precision, we have u = -and for single precision u = -.

We denote by (⋅) the result of a oating-point computation, where all operations inside parentheses are done in oating-point working precision. Floating-point operations in IEEE satisfy []

(a ○ b) = (a ○ b)(+ ε) = (a ○ b) (+ ε) for ○ = {+, -, ⋅, } and ε ν ≤ u. is implies that a ○ b -(a ○ b) ≤ u a ○ b and a ○ b -(a ○ b) ≤ u (a ○ b) for ○ = {+, -, ⋅, }. (.)
We use standard notation for error estimations. e quantities γ n are de ned as usual [] by

γ n ∶= nu -nu for n ∈ N,
where we implicitly assume that nu ≤ .

Following [], we also use the following classic properties in error analysis (we always assume that nu <): γ k < γ k+ and (+ u)γ k ≤ γ k+ .

One can notice that a ○ b ∈ R and a ⊚ b ∶= (a ○ b) ∈ F but in general we do not have a ○ b ∈ F. It is known that for the basic operations +, -, ×, the rounding error of a oating-point operation is still a oating-point number (see for example []):

x = a ⊕ b ⇒ a + b = x + y with y ∈ F, x = a ⊖ b ⇒ a -b = x + y with y ∈ F, x = a ⊗ b ⇒ a × b = x + y with y ∈ F. (.)
ese are error-free transformations of the pair (a, b) into the pair (x, y).

Fortunately, the quantities x and y in (.) can be computed exactly in oating-point arithmetic. For the algorithms, we use Matlab-like notations. For addition, we can use the following algorithm by Knuth [, m B. p.].

Algorithm . (Knuth []). Error-free transformation of the sum of two oating-point numbers

function [x, y] = TwoSum(a, b) x = a ⊕ b z = x ⊖ a y = (a ⊖ (x ⊖ z)) ⊕ (b ⊖ z)
Another algorithm to compute an error-free transformation is the following algorithm from Dekker []. e drawback of this algorithm is that we have x + y = a + b provided that a ≥ b .

Algorithm . (Dekker []). Error-free transformation of the sum of two oating-point numbers.

function

[x, y] = FastTwoSum(a, b) x = a ⊕ b y = (a ⊖ x) ⊕ b
For the error-free transformation of a product, we rst need to split the input argument into two parts. Let p be given by u = -p and de ne s = ⌈p ⌉. For example, if the working precision is IEEE double precision, then p = and s = . e following algorithm by Dekker [] splits a oating-point number a ∈ F into two parts x and y such that a = x + y and x and y nonoverlapping with y ≤ x .

Algorithm . (Dekker []). Error-free split of a oating-point number into two parts

function [x, y] = Split(a) factor = s + c = factor ⊗ a x = c ⊖ (c ⊖ a) y = a ⊖ x
With this function, an algorithm from Veltkamp (see []) makes it possible to compute an error-free transformation for the product of two oating-point numbers. is algorithm returns two oating point numbers x and y such that a × b = x + y with x = a ⊗ b.

Algorithm . (Veltkamp [])

. Error-free transformation of the product of two oating-point numbers

function [x, y] = TwoProduct(a, b) x = a ⊗ b [a , a] = Split(a) [b , b] = Split(b) y = a ⊗ b ⊖ (((x ⊖ a ⊗ b) ⊖ a ⊗ b) ⊖ a ⊗ b)
e TwoProduct algorithm can be re-written in a very simple way if a Fused-Multiply-and-Add (FMA) operator is available on the targeted architecture [,]. is means that for a, b, c ∈ F, the result of FMA(a, b, c) is the nearest oating-point number of a ⋅ b + c ∈ R. e FMA satis es

FMA(a, b, c) = (a ⋅ b + c)(+ ε) = (a ⋅ b + c) (+ ε) with ε ν ≤ u.
Algorithm . (Ogita, Rump and Oishi []). Error-free transformation of the product of two oating-point numbers using an FMA.

function [x, y] = TwoProductFMA(a, b) x = a ⊗ b y = FMA(a, b, -x)

Compensated Horner scheme

We recall herea er the compensated algorithm for Horner scheme. One can nd a more detailed description of the algorithm in [,]. We rst recall the classic algorithm for Horner scheme and give an error bound. We then present the compensated Horner scheme together with an error bound.

e classical method for evaluating a polynomial

p(x) = n i= a i x i
is the Horner scheme which consists in the following algorithm.

Algorithm . . Polynomial evaluation with Horner's scheme

function res = Horner(p, x) s n = a n for i = n -∶ -∶ s i = s i+ ⊗ x ⊕ a i end res = s A forward error bound for the result of Algorithm . is (see [, p.]): p(x) -res ≤ γ n n i= a i x i = γ n p(x) (.)
where p(x) = ∑ n i= a i x i . It is very interesting to express and interpret this result in terms of the condition number of the polynomial evaluation de ned by cond(p, x) ∶= lim

ε→ sup p(x) -p(x) ε p(x) ∶ a i -âi ≤ ε a i , i = , . . . , n . It is well-known that cond(p, x) = ∑ n i= a i x i p(x) = p(x) p(x) . (.) us we have p(x) -res p(x) ≤ γ n cond(p, x). (.)
We can modify the Horner scheme to compute the rounding error at each elementary operation that are a sum and a product. is is done in Algorithm . .

Algorithm . (Graillat, Langlois, Louvet [,]). Polynomial evaluation with a compensated Horner's scheme

function res = CompHorner(p, x) s n = a n r n = for i = n -∶ -∶ [p i , π i] = TwoProduct(s i+ , x) [s i , σ i] = TwoSum(p i , a i) r i = r i+ ⊗ x ⊕ (π i ⊕ σ i) end res = s ⊕ r
If we denote by p π and p σ the two following polynomials

p π = n- i= π i x i , p σ = n- i= σ i x i ,
then one can show, thanks to error-free transformations that p(x) = s + p π (x) + p σ (x).

If one looks at the previous algorithm closely, it is then clear that s = Horner(p, x). As a consequence, we can derive a new error-free transformation for polynomial evaluation p(x) = Horner(p, x) + p π (x) + p σ (x).

e compensated Horner scheme rst computes p π (x) + p σ (x) which corresponds to the rounding errors and then adds the obtained value to the result of the classic Horner scheme Horner(p, x).

We will show that the results computed by Algorithm . admits signi cantly better error-bounds than those computed with the classical Horner scheme. We argue that Algorithm . provides results as if they were computed using twice the working precision. is is summed up in the following theorem.

eorem . (Graillat, Langlois, Louvet[,]). Consider a polynomial p of degree n with oating-point coecients, and a oating-point value x. e forward error in the compensated Horner algorithm is such that

CompHorner(p, x) -p(x) ≤ u p(x) + γ n p(x).
(.)

It is interesting to interpret the previous theorem in terms of the condition number of the polynomial evaluation of p at x. Combining the error bound (.) with the condition number (.) for polynomial evaluation gives

CompHorner(p, x) -p(x) p(x) ≤ u + γ n cond(p, x). (.)
In other words, the bound for the relative error of the computed result is essentially γ n times the condition number of the polynomial evaluation, plus the unavoidable term u for rounding the result to the working precision. In particular, if cond(p, x) < γ - n , then the relative accuracy of the result is bounded by a constant of the order of u. is means that the compensated Horner algorithm computes an evaluation accurate to the last few bits as long as the condition number is smaller than γ - n ≈ (nu) -. Besides that, (.) tells us that the computed result is as accurate as if computed by the classic Horner algorithm with twice the working precision, and then rounded to the working precision.

Classic evaluation of rational functions

In this Section, we present a classic algorithm to evaluate a rational function. It is based on the evaluation of the numerator and denominator (which are polynomials) with the Horner scheme. We then give a de nition of the condition number of the rational functions evaluation and give an explicit formula to compute it. We then study the numerical stability of the algorithm in terms of the condition number.

Let p, q two polynomials of degree n (it is not complicated to deal with polynomials with di erent degrees but for simplicity, we assume they both have the same degree). ey are denoted by

p(x) = n i= a i x i and q(x) = n i= b i x i .
e rational fraction f (x) is f (x) = p(x) q(x). A classic way to compute f (x) is via the evaluation of p(x) and q(x) with Horner scheme as explained in Algorithm .

Algorithm . . Rational function evaluation with Horner scheme function res = RatEval(p, q, x) res = Horner(p, x) ⊘ Horner(q, x)

e condition number of the evaluation of a rational function measures the sensitivity of the evaluation with respect to perturbations on the coe cients of the rational function. It can be de ned as follows.

De nition . . Let f (x) = p(x) q(x) be a rational function. e condition number of the evaluation of f in x is de ned by

cond(f , x) ∶= lim ε→ sup (p q)(x) -(p q)(x) ε(p q)(x) ∶ âi -a i ≤ ε a i , bj -b j ≤ ε b j for i = , . . . , n, j = , . . . , m .
where âi and bi are respectively the coe cients of p and q.

It is possible to obtain an explicit expression for this condition number.

eorem . . Let f (x) = p(x) q(x) be a rational function. e condition number of the evaluation of f at x satis es cond(f , x) = cond(p, x) + cond(q, x).

Proof. It is easy to show that

(p q)(x) -(p q)(x) ε(p q)(x) = p(x)(q(x) -q(x)) -q(x)(p(x) -p(x)) εp(x)q(x) , = ε p(x) p(x) ⋅ q(x) -q(x) q(x) - p(x) -p(x) p(x) .
As a consequence, we have

(p q)(x) -(p q)(x) ε(p q)(x) ≤ ε p(x) p(x) ⋅ q(x) -q(x) q(x) + p(x) -p(x) p(x)
.

By de nition of p and p, we have p(x) -p(x) ≤ ε p(x) and q(x) -q(x) ≤ εq(x).

It follows that

(p q)(x) -(p q)(x) ε(p q)(x) ≤ p(x)q(x) p(x)q(x) ⋅ cond(q, x) + cond(p, x).
By taking the supremum and the limit for ε → , we obtain cond(f , x) ≤ cond(p, x) + cond(q, x).

To show that we, indeed, have equality, let us de ne p(x) = p(x) + ε ∑ n i= sign(a i x i)a i x i and q(x) = q(x)ε ∑ n i= sign(b i x i)b i x i . In that case, we have

(p q)(x) -(p q)(x) ε(p q)(x) = p(x)q(x) p(x)q(x) ⋅ q(x) q(x) + p(x) p(x) .
Taking the supremum and the limit for ε → proves that it is possible to construct a sequence of polynomials such the limit in the de nition of the condition number converges to cond(p, x) + cond(q, x).

It is now possible to evaluate the numerical stability of the classic algorithm. It is shown in eorem . that this algorithm is backward-stable.

eorem . . Let f (x) = p(x) q(x) be a rational function with oating-point coe cients, and x be a oatingpoint value. en if no under ow occurs, and res = RatEval(p, q, x),

res -f (x) f (x) ≤ u + [γ n + O(u)] cond(f , x).
Proof. We have

(p(x) q(x)) - p(x) q(x) = (+ ε) (p(x)) (q(x)) - p(x) q(x)
with ε ≤ u. As a consequence,

(p(x) q(x)) - p(x) q(x) ≤ u (p(x)) (q(x)) + (p(x)) (q(x)) - p(x) q(x) . (.
)
anks to Equation (.), we know that (p(x)) ≤ p(x) + γ n p(x) and q(x)γ n q(x) ≤ (q(x)).

We can then deduce that

(p(x)) (q(x)) ≤ p(x) + γ n p(x) q(x) -γ n q(x) = f (x) + γ n cond(p, x) -γ n cond(q, x) , ≤ f (x) (+ γ n cond(f , x) + O(u)). (.)
Moreover, using Equation (.), we have

(p(x)) (q(x)) - p(x) q(x) = q(x) (p(x)) -p(x) (q(x)) q(x) (q(x)) , = [q(x) -(q(x))] (p(x)) -[p(x) -(q(x))] (q(x)) q(x) (q(x)) , ≤ (p(x)) (q(x)) ⋅ q(x) -(q(x)) q(x) + p(x) q(x) ⋅ p(x) -(p(x)) p(x) , ≤ (p(x)) (q(x)) γ n cond(q, x) + p(x) q(x) γ n cond(p, x) .
Now, using Equations (.) and (.), we can deduce that

(f (x)) -f (x) ≤ u f (x) (+ γ n cond(f , x) + O(u))+ f (x) (+ γ n cond(f , x) + O(u))γ n cond(q, x) + f (x) γ n cond(p, x),
that can be simpli ed into

(f (x)) -f (x) ≤ f (x) ⋅ [u + (γ n + O(u)) cond(f , x)],
which concludes the proof.

A compensated algorithm for evaluating rational functions

In this Section, we present a compensated version of the classic algorithm for evaluating rational functions. e idea is to replace the Horner scheme used to evaluate the numerator and denominator by the compensated Horner scheme followed by a oating-point division. is is Algorithm . . Algorithm . . Rational function evaluation with compensated Horner scheme function res = CompRatEval(p, q, x) res = CompHorner(p, x) ⊘ CompHorner(q, x)

e following eorem shows that the error bound on the accuracy of the computed result given by the compensated algorithm is improved compared to the one for the classic algorithm. eorem . . Let f (x) = p(x) q(x) be a rational function with oating-point coe cients, and x be a oatingpoint value. en if no under ow occurs, and res = CompFracEval(p, q, x),

res -f (x) f (x) ≤ u + O(u) + [γ n+ + O(u)] cond(f , x). (.)
Proof. For better readability, we will denote CH(p, x) the computed result of CompHorner(p, x). By de nition we have

CompRatEval(p, q, x) -f (x) = (CH(p, x) CH(q, x)) -f (x) = (+ ε) CH(p, x) CH(q, x) -f (x)
with ε ≤ u. As a consequence,

CompRatEval(p, q, x) -f (x) ≤ u CH(p, x) CH(q, x) + CH(p, x) CH(q, x) -f (x) . (.)
Moreover, using Equation (.), we have CH(p, x) ≤ p(x) (+ u) + γ n p(x) and (u) q(x)γ n q(x) ≤ CH(q, x) .

As a consequence, we can bound

CH(p, x) CH(q, x) ≤ p(x) q(x) ⋅ + u + γ n cond(p, x) -u -γ n cond(q, x) , ≤ f (x) ⋅ [+ u + γ n cond(p, x)] ⋅ [+ u + γ n cond(p, x) + O(u)], ≤ f (x) ⋅ [(+ u) + γ n cond(f , x) + O(u)]. (.) Moreover, CH(p, x) CH(q, x) -f (x) = CH(p, x)[q(x) -CH(q, x)] -CH(q, x)[p(x) -CH(p, x)] q(x) CH(q, x) , ≤ CH(p, x) CH(q, x) ⋅ q(x) -CH(q, x) q(x) + p(x) q(x) ⋅ p(x) -CH(p, x) p(x) , ≤ CH(p, x) CH(q, x) (u + γ n cond(q, x)) + f (x) (u + γ n cond(p, x)).
Using Equation (.), we deduce that

CH(p, x) CH(q, x) -f (x) ≤ f (x) ⋅ [(+ u) + γ n cond(f , x) + O(u)] ⋅ (u + γ n cond(q, x))+ f (x) (u + γ n cond(p, x)).
which can be simpli ed into

CH(p, x) CH(q, x) -f (x) ≤ f (x) ⋅ [u(+ u) + γ n+ cond(f , x) + O(u)]. (.)
Finally combining Equations (.) and (.) with Equation (.), we obtain

CompRatEval(p, q, x) -f (x) ≤ u f (x) ⋅ [(+ u) + γ n cond(f , x) + O(u)]+ f (x) ⋅ [u(+ u) + γ n+ cond(f , x) + O(u)].
that can be rewritten as

CompRatEval(p, q, x) -f (x) ≤ f (x) [u(+ u) + (γ n+ + O(u)) cond(f , x)].
and so concludes the proof.

In other words, the bound for the relative error of the computed result is essentially γ n+ times the condition number of the rational function evaluation, plus the term u for rounding the result to the working precision.

In particular, if cond(f , x) < (γ n+) -, then the relative accuracy of the result is bounded by a constant of the order of u. is means that the compensated algorithm computes an evaluation accurate to the last few bits as long as the condition number is smaller than (γ n+) -≈ ((n +)u) -. Besides that, (.) tells us that the computed result is as accurate as if computed by the classic rational function evaluation algorithm with twice the working precision, and then rounded to the working precision.

Numerical experiments

e numerical experiments have been done on a laptop with an Intel Core i processor at . GHz with Gb of RAM. We used MATLAB R b.

We test the rational function f n (x) = p n (x) q n (x) where p n is a random polynomial of degree n and q n is the expand form of the polynomial (x -) n . e argument x is chosen near to the unique real root of q n , and with many signi cant bits so that a lot of rounding errors occur during the evaluation of q n (x). We increment the degree n from until a su ciently large range has been covered by the condition number cond(f n , x).

Here we have

cond(f n , x) = cond(p n , x) + qn (x) q n (x) = cond(p n , x) + + x -x n ,
for x close to and cond(f n , x) grows exponentially with respect to n. In the experiments reported on Figure , cond(f n , x) varies from to (for x = (.), that corresponds to the degree range n = , . . . ,). ese huge condition numbers have some meaning since here the coe cients of p n and q n and the value x are chosen to be exact oating-point numbers.

We experiment both RatEval and CompRatEval. For each rational function f n , the exact value f n (x) is approximate with a high accuracy thanks to the Symbolic Math Toolbox of MATLAB. We observe that the compensated algorithm exhibits the expected behavior. e full precision solution is computed as long as the condition number is smaller than u -≈ . en, for condition numbers between u -and u -≈ , the relative error degrades to no accuracy at all.

We now demonstrate the practical e ciency in terms of running time comparing our algorithm and up-to-date challenger.

Since Bailey's double-double are usually considered as the most e cient portable library to double the IEEEdouble precision, we consider it as a reference in the comparisons. Double-double numbers are represented as an unevaluated sum of a leading double and a trailing double. More precisely, a double-double number a is the pair (a h , a l) of oating-point numbers with a = a h + a l and a l ≤ u a h .

In the sequel, we present two algorithms to compute product of two double-double or a double times a double-double. ose algorithms are taken from [].

Algorithm . . Product of the double-double number (a h , a l) by the double number b

function [c h , c l] = prod dd d(a h , a l , b) [s h , s l] = TwoProduct(a h , b) [t h , t l] = FastTwoSum(s h , (a l ⊗ b)) [c h , c l] = FastTwoSum(t h , (t l ⊕ s l))
Algorithm . . Addition of the double number b to the double-double number (a h , a l)

function [c h , c l] = add dd d(a h , a l , b) [t h , t l] = TwoSum(a h , b) [c h , c l] = FastTwoSum(t h , (t l ⊕ a l))
e double-double library can be used to implement an Horner scheme in quadruple precision like DDHorner.

Algorithm . . Horner scheme with internal double-double computations

function res = DDHorner(p, x) s h = a n s l = for i = n -∶ -∶ [p h , p l] = prod dd d(s h , s l , x) [s h , s l] = add dd d(p h , p l , a i) end res = s h
With DDHorner, we can evaluate a rational function in quadruple precision.

Algorithm . . Rational function evaluation with double-double Horner scheme function res = DDRatEval(p, q, x) res = DDHorner(p, x) ⊘ DDHorner(q, x)

We have implemented the three algorithms RatEval, CompRatEval, and DDRatEval in a C code to measure their overhead compared to the RatEval algorithm. We have programmed these tests straightforwardly with no other optimization than the ones performed by the compiler.

For each algorithm, we measured the ratio of its computing time over the computing time of the classic rational function evaluation algorithm. It turned out that our compensated algorithm CompRatEval is about times slower than the classic Horner scheme. e same slowdown factor is about for algorithm DDRatEval.

From a practical point of view, we can state that our algorithm is about times faster than the algorithm with double-doubles.

We compared RatEval, CompRatEval and DDRatEval in term of measured computing time. We tested with random rational functions where the degree of numerator and denominator vary from to .

Conclusion

We presented a fast algorithm for the evaluation of rational functions in oating-point arithmetic. We have proved that the accuracy of the result computed by our compensated algorithm is similar to the one given by the classic algorithm performed in doubled working precision. e only assumption we made is that the oating-point arithmetic available on the computer is conformed to the IEEE-Standard. Its low requirement make it highly portable, and our compensated algorithm could be easily integrated into numerical libraries. Our algorithm uses only basic oating-point operations, and only the same working precision as the data. Finally, our compensated algorithm runs much more faster than existing implementation producing the same output accuracy. is approach can easily be generalized to rational functions where numerators and denominators are written in other basis and for bivariate rational functions (see [, , ,] for example).

 Figure presents the relative accuracy yf n (x) f n (x) of the evaluation y computed by the two algorithms.

Figure :

 : Figure : Comparison of the accuracy of RatEval and CompRatEval

Table :

 : Measured computing times with RatEval normalised to .

	n RatEval CompRatEval DDRatEval
	.	.	.
	.	.	.
	.	.	.
	.	.	.
	.	.	.

Acknowledgement

is work was partly supported by the project FastRelax ANR--CE --.