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Abstract

This study presents a family of estimates for effective potentials in nonlinear polycrystals. Not-

ing that these potentials are given as averages, several quadrature formulae are investigated to

express these integrals of nonlinear functions of local fields in terms of the moments of these

fields. Two of these quadrature formulae reduce to known schemes, including a recent propo-

sition (Ponte Castañeda Proc. R. Soc. Lond. A 471) obtained by completely different means.

Other formulae are also reviewed that make use of statistical information on the fields beyond

their first and second moments. These quadrature formulae are applied to the estimation of

effective potentials in polycrystals governed by two potentials, by means of a reduced-order

model proposed by the authors (Nonuniform Transformation Field Analysis). It is shown how

the quadrature formulae improve on the tangent second-order approximation in porous crystals

at high stress triaxiality. It is found that, in order to retrieve a satisfactory accuracy for highly

nonlinear porous crystals under high stress triaxiality, a quadrature formula of higher order is

required.

Keywords: Homogenization, model reduction, numerical integration, field statistics, crystal

plasticity

1. Introduction

A common engineering practice in the analysis of heterogeneous materials, either compos-

ite materials or polycrystals, is to use effective or homogenized material properties instead of

taking into account all details of the geometrical arrangement of the individual phases. This has

motivated the development of theoretical/analytical/computational homogenization techniques

to predict the effective properties of such heterogeneous materials directly from those of the

individual constituents and from their microstructure.

Variational principles play a central role in these approaches for several reasons. First,

it is always easier to handle and to approximate scalar quantities, such as potentials, rather
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than tensorial quantities. Second, when a variational principle is available, rigorous bounds on

the effective properties can be deduced by appropriately choosing the trial fields, delimiting

a zone of potentially attainable properties in the space of effective parameters [22, 13]. These

variational principles are of current use for linear composites where, most of the time, the elastic

moduli derive from a quadratic, convex, strain-energy function.

The situation in nonlinear composites or polycrystals is more complex. The behavior of

most common materials is partly reversible (part of the energy provided to the system is stored)

and partly dissipative (part of the energy is converted into heat). However, the two extreme

cases, purely (hyper)elastic materials and purely creeping materials corresponding to the be-

havior of engineering materials under specific loading conditions, are of great interest. Both

cases are usually governed by a single potential, strain-energy function in the former case and

a viscous dissipation potential in the latter one. Then, the effective behavior of the composite

is again governed by a single effective potential which is the average of the minimum potential

of a representative volume element (RVE) under prescribed overall strain or stress (this is the

average variational "principle" of Whitham [21], which can be found in a different form in

Ponte Castañeda and Suquet [17]). The effective response of the composite is again governed

by a single variational principle. This property has led to improved bounds and estimates for

nonlinear composites in the two simplified situations where either the energy dissipated or the

energy stored in the deformation of the composite is neglected. Bounds for viscoplastic poly-

crystals improving on the Taylor bound were obtained by Dendievel et al [2], who generalized

the Hashin-Shtrikman variational principles to nonlinear media, and by Ponte Castañeda and

coworkers ([1], [8], [16] and references therein), who introduced and used systematically the

notion of a linear comparison polycrystal. In conclusion, the effective potential of a polycrystal,

or an approximation of it, is obtained by computing, or approximating, the average of a nonlin-

ear (and nonquadratic) function of the trial field which is then minimized. This average is an

integral and computing, or approximating this integral is the link between effective potentials

and quadrature formulae (see section 3).

When the composite consists of individual constituents governed by two potentials, the

free-energy and the dissipation potential, accounting for reversible and irreversible processes

respectively, the same need for determining two effective potentials arises. Note that, unlike the

case of linear composites, the existence of potentials at the level of individual constituents is not

guaranteed for all materials. It defines a subclass of materials called generalized standard ma-

terials which covers most, but not all, elasto-viscoplastic or elasto-plastic materials. Restricting

attention to this subclass, it can be shown (Suquet [19], [20], Michel and Suquet [12]) that the

effective constitutive relations of the composite still derive from two effective potentials, the

effective free-energy, obtained as the minimum of the average of the local free energy when all

state variables of the system are fixed, and a dissipation potential which is the average of the

local dissipation potential in an evolution of the state variables. In the situations that we have in

mind the potential that is hard to determine is not the one given by a minimization problem (in

contrast with the single potential case), it is the dissipation potential. Again, for this purpose

one has to compute the average of a nonlinear (and nonquadratic in general) function of a field

which links the determination of effective potentials to quadrature formulae.
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This averaging is performed by an approach based on numerical integration. However,

although the vocabulary used in the present article (numerical integration, Gauss quadrature...)

sounds very similar to that used in other works on reduced-order models ([3], [6], [4] among

others), the present approach is quite different. Here, we work in the space of probability

distributions of fields and the quadrature formulae are approximations in this space. In particular

the integration points (Gauss points) in our approach are not spatial locations within the RVE,

but are combinations of moments of the fields. The above mentioned references deal with

integration in space over a well-defined RVE and their Gauss points (or integration points) are

actual locations within the RVE.

The use of our integration rules at different orders is illustrated in the context of the reduced-

order model Nonuniform Transformation Field Analysis (NTFA) initially proposed in Michel

and Suquet [9, 10] and further developed by several authors to approximate the exact homoge-

nized model, and more specifically the two above-mentioned effective potentials. In full gener-

ality, the nonlinearity of the exact effective potential dissipation impedes a full decoupling be-

tween the microscopic and macroscopic scales. In an earlier work ([12, 11]) the present authors

established an approximation of these evolution equations achieving this decoupling by means

of a linearization technique directly imported from nonlinear homogenization. It was based on

the tangent-second-order (TSO) method which performs a Taylor expansion of the potential in

each phase in the neighborhood of the average of the fields ([12, 11]). The resulting reduced

model (NTFA-TSO) has been shown to be efficient in composites and polycrystals where all

phases undergo incompressible plastic deformations (Michel and Suquet [12, 11]). However,

the TSO linearization is known to be inaccurate for porous materials. The present study pro-

poses a physically sound approximation for porous materials, whose accuracy depends on the

material nonlinearity.

The paper is organized as follows. The role of effective potentials is recalled in section 2

for crystal plasticity laws in the simplest form sufficient for our purpose here (without isotropic

or kinematic hardening). The link with quadrature formulae (or numerical integration rules)

is made in section 3, where several quadrature formulae of different degrees of exactness are

given. These quadrature rules are applied in section 4 to estimate the effective potentials in

nonlinear polycrystals. It is worth noting that one of these approximations has been previously

derived by Ponte Castañeda [16] by completely different means, in the context of his "fully

optimized" variational method for constituents governed by a single potential. The last section

is devoted to porous single crystals and shows how the quadrature formulae of different orders

improve over the tangent approximation, especially at high stress triaxiality.

2. Crystal plasticity and effective potentials

2.1. Crystal (elasto-visco)plasticity

Polycrystals are aggregates of single crystals which differ by their orientation and shape but

which obey the same constitutive relations, up to a rotation. The (visco)plastic strain in a single
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crystal results from slip on different slip systems

ε = εe + εv, εe = M e : σ, εv =
S∑

s=1

γsms, ms = bs⊗ns, (1)

where M e is the fourth-order tensor of elastic compliance of the single crystal, S is the total

number of slip systems, ms is the Schmid tensor of system s with slip plane normal ns and

slip direction bs (orthogonal to ns), the symbol : denotes contraction over two indices, and ⊗
indicates the symmetrized dyadic product (b⊗n)ij = 1/2(binj + bjni). It remains to specify

how the slips γs evolve. γ̇s is usually a function of the resolved shear stress τs on the same slip

system and of other variables, which we will not take into account in the interest of simplicity.

Without loss of generality, this relation can be written as

γ̇s =
∂ψs

∂τ
(τs), τs = σ : ms, (2)

where the potential ψs may depend on the slip system. A typical example of potential corre-

sponding to power-law creep is (the subscript (s) is omitted for simplicity):

ψ(τ) =
τ0γ̇0
n+ 1

( |τ |
τ0

)n+1

, i.e. γ̇ = γ̇0

( |τ |
τ0

)n−1
τ

τ0
. (3)

2.2. One or two potentials

In creep problems, elasticity can be neglected and the total strain-rate reduces to the vis-

coplastic strain-rate. The constitutive relations at the single crystal level are completely speci-

fied by only one potential ψs for each slip system,

ε̇ =
∂ψ

∂σ
(σ), ψ(σ) =

S∑

s=1

ψs(τs), τs = σ : ms. (4)

However, when elastic and viscous deformations are of the same order (for cyclic loadings for

instance), two potentials are required. The first potential is the free-energy w (in the present

case, the elastic energy) and the second potential is the viscous potential ψ (called force poten-

tial). We shall only consider the simplest case where

σ =
∂w

∂ε
(ε, εv), w(ε, εv) =

1

2
(ε− εv) : Le : (ε− εv),

ε̇v =
∂ψ

∂σ
(σ), ψ(σ) =

S∑

s=1

ψs(τs).





(5)

2.3. Polycrystals

A polycrystal is an aggregate of a large number N of single crystals with different orienta-

tions (grains). The size of the grains is small compared with that of the aggregate. Let V denote
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the volume occupied by an RVE of the polycrystal and V (r), r = 1, .., N , denote the domains

occupied by the N grains. The characteristic functions of the domains V (r) are denoted by χ(r)

and spatial averages over V and V (r) are denoted by 〈.〉 and 〈.〉(r) respectively, c(r) = 〈χ(r)〉 is

the volume fraction of phase r (grain r). The compact notation

ε(r) = 〈ε〉(r), σ(r) = 〈σ〉(r) (6)

will also be used to denote the average strain and stress in each grain.

All grains are assumed to be homogeneous, perfectly bonded at grain boundaries. Their slip

systems m
(r)
s and their constitutive potentials w(r) and ψ

(r)
s are deduced from that of the single

crystal by a rotation. The potentials w and ψ depend on the position x inside V ,

w(x, ε, εv) =
N∑

r=1

χ(r)(x) w(r)(ε, εv),

ψ(x,σ) =
N∑

r=1

χ(r)(x)
S∑

s=1

ψ(r)
s (τ (r)s (x)), τ (r)s (x) = σ(x) : m(r)

s .

2.3.1. One potential

When there is only one potential, the overall strain-rate ε̇ under a given overall stress σ is

governed by an effective potential ψ̃,

ε̇ =
∂ψ̃

∂σ
(σ), ψ̃(σ) = Inf

σ∈S(σ)
〈ψ(σ)〉, (7)

where

S(σ) = {σ(x), div(σ) = 0, 〈σ〉 = σ + periodicity conditions1}. (8)

It is apparent from the expression of the local potential ψ and from the variational principle (7)

that, in order to estimate accurately the effective potential ψ̃, one has to evaluate a combination

of elementary integrals of the type

〈ψ(r)
s (τ (r)s )〉(r). (9)

2.3.2. Two potentials

When the individual slips in the grains are governed by two potentials, it is still necessary

to compute the average of the force potential 〈ψ(σ)〉 where σ is now the actual stress field with

no immediate variational property.

This can be further illustrated in the context of the NTFA, a reduced-order model initially

proposed by [9]. It consists of two steps. In a first step, the viscous strain field εv(x) is decom-

posed on a finite basis of modes µ(k)(x), k = 1, ...,M ,

εv(x, t) =
M∑

k=1

ξ(k)(t) µ(k)(x). (10)

1Other boundary conditions can be considered, [20].
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In a second step, evolution equations for the new unknowns of the model, the kinematic vari-

ables ξ or the associated forces a, are derived. In the hybrid version of the NTFA proposed by

[5] these evolution equations read as [12]

a = −∂w̃
∂ξ

(ε, ξ), ȧ =
∂a

∂ε
: ε̇+

∂ψ̃

∂ξ
(ε, ξ(ε,a)), (11)

where

w̃ (ε, ξ) = 〈w(ε, εv)〉 = Inf
ε∈K(ε)

〈w(ε, εv)〉, with εv(x, t) =
M∑

k=1

ξ(k)(t) µ(k)(x), (12)

K(ε) = {ε = ε+
1

2
(∇u∗ +∇u∗T ), u∗ periodic on ∂V }, (13)

and

ψ̃(ε, ξ) = 〈ψ(σ(ε, ξ))〉 =
N∑

r=1

c(r)
S∑

s=1

〈ψ(r)
s (τ (r)s )〉(r), τ (r)s (x) = σ(ε, ξ,x) : m(r)

s (x), (14)

where σ(ε, ξ) is the stress field associated with the solution of the variational problem (13).

This field can be decomposed as

σ(ε, ξ,x) = L(x) : A(x) : ε+
M∑

k=1

ξ(k) ρ(k)(x), (15)

where A is the elastic strain localization tensor and ρ(k) are elastic fields generated by the

modes µ(k). Unfortunately the cost of evaluating each of the individual integrals 〈ψ(r)
s (τ

(r)
s )〉(r)

is very high, since it involves the evaluation of the local field σ(x), followed by the evaluation

of ψ (σ(x)) which is a nonlinear local function, which is then averaged.

This has motivated the authors [12, 11] to use techniques from nonlinear homogenization

to approximate these integrals in terms of quantities which can be pre-computed. In these

previous studies, the authors used the Tangent Second Order (TSO) approximation [15]. Under

this approximation, all integrals can be expressed in terms of first and second moments of the

fields L(x) : A(x) and ρ(k)(x) in each individual grain.

The present study is devoted to a family of other approximations, including approximations

of higher order, with an unexpected connection with another recently proposed variational es-

timate [16]. The following section explores different "integration rules" to evaluate integrals

in the form 〈ψ(r)
s (τ

(r)
s )〉(r) only in terms of the successive moments of the field τ

(r)
s over the

domain V (r).

It follows from (9) and (14) that in crystalline and polycrystalline materials the potentials ψ
which are to be averaged are functions of the resolved shear stress τs on each slip system and are

therefore functions of a scalar field. As will be seen with the help of probability distributions,

the integration rules which are needed are approximations of integrals over a unidimensional
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variable. The extension of these integration rules to tensorial fields (with 6 components for

instance) is not straightforward and would require numerical integration rules in a space of

higher dimension (R6). This will be addressed in a forthcoming study.

3. Approximation of an integral by quadrature

For simplicity the subscript s and the superscript r will be dropped in what follows.

Let pτ (t) be the (unknown) probability density function (PDF) of the field τ(x) in V , such

that ∫ +∞

−∞

pτ (t) dt = 1. (16)

The moments En(τ) of the field τ(x) and its central moments Cn(τ) can be expressed as

En(τ) =

∫ +∞

−∞

tnpτ (t) dt, Cn(τ) =

∫ +∞

−∞

(t− E1(τ))
n pτ (t) dt. (17)

Two of these moments are commonly used in nonlinear homogenization, under slightly different

notations

τ = E1(τ) =

∫ +∞

−∞

tpτ (t) dt = 〈τ〉, C2(τ) =

∫ +∞

−∞

(t− τ)2pτ (t) dt = 〈(τ − τ)2〉. (18)

The averaged potential can be re-written as

〈ψ(τ)〉 =
∫ +∞

−∞

ψ(t)pτ (t) dt. (19)

Approximations of the last integral (19) using moments of τ of different orders are now derived,

based on a procedure inspired from numerical integration (or quadrature), and more specifically

Gauss quadrature, as recalled in appendix Appendix A. Note, however, that problem (19) has

similarities to, but also differences from, that of numerical integration (A.4) described in ap-

pendix Appendix A. In numerical integration, the weight function w is known and the function

f is not prescribed. Here the "weight" function pτ (t) is unknown whereas the potential ψ is

given.

3.1. Quadrature formulae

It is considered here that the field τ(x) is given, as well as its probability density function

pτ (t). All moments, τ , C2, C3 ... considered in this section are the moments of this specific

field. Our goal here is to explore different approximations of the averaged potential in the form:

〈ψ(τ)〉 =
∫ +∞

−∞

ψ(t)pτ (t) dt ≃
n∑

i=0

αiψ(τi), (20)

where the τi are the integration points and αi are the weights. The approximation rule (20)

is of interpolary type because it only makes use of the values of ψ at integration points. The

integration points can be chosen arbitrarily or optimized. The quadrature formula (20) has
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degree of exactness q if it is exact when ψ is any polynomial of degree less or equal to q.
Exactness to degree n (at least) can be achieved for any choice of the τi’s by choosing

αi =

∫ +∞

−∞

li(t)pτ (t) dt, (21)

where li is the i-th characteristic Lagrange polynomial such that li(τj) = δij for i, j = 0, ..., n.

The interpolatory quadrature formula (20)-(21) have degree of exactness n for any choice of the

nodes τi.

It is however possible to gain more accuracy (a higher degree of exactness n+m) by specific

choices of the integration points. The optimization of the integration points is precisely the aim

of Gauss quadrature in numerical integration and the maximum degree of exactness is 2n + 1
corresponding to m = n + 1. A similar procedure is followed here, although the optimality of

the degree of exactness is not explored.

One integration point, exactness to degree 1: n = 0, m = 1. The quadrature formula (20) with

a single integration point reads

〈ψ(τ)〉 =
∫ +∞

−∞

ψ(t)pτ (t) dt ≃ α0ψ(τ0), (22)

and α0 and τ0 have to determined so that (22) is exact for ψ constant and linear. For this, (22)

is written with ψ(t) = 1 and ψ(t) = t− τ , leading to

α0 = 1, τ0 = τ . (23)

The optimal quadrature formula with one point is therefore

〈ψ(τ)〉 =
∫ +∞

−∞

ψ(t)pτ (t) dt ≃ ψ(τ), (24)

Two integration points, exactness to degree 2: n = 1, m = 1. The quadrature formulae with

two points read as

〈ψ(τ)〉 =
∫ +∞

−∞

ψ(t)pτ (t) dt ≃ α0ψ(τ0) + α1ψ(τ1), (25)

with exact equality when ψ is a polynomial of degree less or equal to 2. Defining new unknowns

hi as hi = τi − τ and writing that (25) is exact for ψ(t) = 1, (t − τ), (t − τ)2 we obtain the

following systems of equations

α0 + α1 = 1, α0h0 + α1h1 = 0, α0h
2
0 + α1h

2
1 = C2. (26)

Multiplying the second equation of (26) by h0 + h1 and using the first and third relations, we

obtain that

h0h1 = −C2. (27)
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h0 and h1 have opposite signs. Unfortunately only 3 equations are available to determine the 4

unknows, αi and hi. α0 can be chosen arbitrarily. The other 3 unknowns are determined as

α1 = 1− α0,





h0 = −
√
C2

1− α0

α0

, h1 =

√
C2

α0

1− α0

,

or alternatively

h0 =

√
C2

1− α0

α0

, h1 = −
√
C2

α0

1− α0

.

(28)

Note that, for the hi to be properly defined, α0 has to be chosen strictly between 0 and 1. In

conclusion, with any choice of α0 between 0 and 1, the following two quadrature formulae are

exact to order 2 (i.e. with equality whenever ψ is a polynomial of degree less or equal to 2):

〈ψ(τ)〉 ≃ α0ψ(τ0) + (1− α0)ψ(τ1), τ0 = τ + h0, τ1 = τ + h1, (29)

where

h0 = ∓
√
C2

1− α0

α0

, h1 = ±
√
C2

α0

1− α0

. (30)

The two integration rules (29) (30), which look different, yield in fact the same approximation

for 〈ψ(τ)〉. This can be seen by interchanging α0 and 1− α0 in (28). In the example of section

5, α0 was chosen equal to 1/2.

Two integration points, exactness to third order: n = 1,m = 2. The number of integration

points is still n + 1 = 2 but now the integration formula (20) is required to be exact for poly-

nomials of degree 3, or less. Taking ψ(t) = (t − τ)3, one obtains, in addition to the system

(26),

α0h
3
0 + α1h

3
1 = C3, where C3 = 〈(τ − τ)3〉 =

∫ +∞

−∞

(t− τ)3pτ (t) dt. (31)

This additional equation requires information on the third moment of τ . Then, combining (26)

and (31), after multiplying the 3rd equation in (26) by h0 + h1 and using (31), it is found that

h0 + h1 =
C3

C2

, h0h1 = −C2, (32)

and therefore

〈ψ(τ)〉 ≃ α0ψ(τ0) + α1ψ(τ1), τ0 = τ + h0, τ1 = τ + h1,

α0 =
1

2
± C3

2
√
C2

3 + 4C3
2

, α1 = 1− α0 =
1

2
∓ C3

2
√
C2

3 + 4C3
2

,

h0 = ∓
√
C2

1− α0

α0

=
1

2

(
C3

C2

∓
√
C2

3

C2
2

+ 4C2

)
,

h1 = ±
√
C2

α0

1− α0

=
1

2

(
C3

C2

±
√
C2

3

C2
2

+ 4C2

)
.





(33)
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Once again, there is an indeterminacy in the hi’s, but it can be checked that the resulting inte-

gration rules coincide, so that there is no indeterminacy in the final approximation of 〈ψ(τ)〉.
The resulting quadrature formula (33) is exact at order 3 (for all polynomials of degree less or

equal to 3). One degree of accuracy is gained by the knowledge of the third moment of τ . Note

in addition that the αi’s and the hi’s which were left undetermined in the preceding paragraph

are now completely determined.

Remark: When C3 = 0 (which is in particular the case when the PDF of the field τ(x) is

centered around its mean) then

α0 = α1 = 1/2, h0 = −
√
C2, h1 =

√
C2. (34)

3.2. Higher order approximations

Approximations of higher order can also be derived using the same procedure. Obviously,

increasing the number of integration points will increase the degree of accuracy of the numer-

ical integration formula (20), but will also require additional information about higher-order

moments of the field τ(x). With n+1 integration points τi = τ +hi, and aiming at the best de-

gree of exactness (2n+ 1), the following system of equations is obtained by enforcing equality

in (20) with ψ(t) = 1, t− τ , ...(t− τ)j, ...., (t− τ)2n+1:

n∑

i=0

αih
j
i = Cj(τ), for j = 0, 1, ..., 2n+ 1, (35)

(with the convention that C0 = 1). In principle these 2n + 2 equations should permit determi-

nation of 2n + 2 unknowns αi and hi. However the algebraic equations for the hi’s are of high

degree and it is not clear, in general, how the systems (35) should be solved. This is left for

future work.

3.3. "Square convex" potentials

It is often the case that the potential ψ is a function of the square of its argument. In other

words, ψ can be written as

ψ(τ) = f(τ 2). (36)

If in addition f is a convex function, the potential ψ is said to be "square convex". This is in

particular the case for power-law materials, with n ≥ 1 to ensure convexity of f .

When the "square" condition (36) holds, the different approximations rules (24), (29) and

(33) can be applied to the potential ψ itself, as well as to f . The corresponding approximations

for the averaged potential are different, they make use of different moments of τ and have

different degrees of exactness. For instance, the approximation rule (33) for 〈ψ(τ)〉 makes use

of the first three moments of τ and is exact whenever ψ is a polynomial of degree less or equal

than 3. The corresponding rule for 〈f(τ 2)〉 makes use of the first three moments of τ 2 and is

exact whenever f is a polynomial of degree less or equal than 3, i.e., roughly speaking, when ψ
is an even polynomial of degree less or equal to 6.

The quadrature formulae for 〈f〉 are easily deduced from (20).
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One integration point, exactness to degree 1 in f ,

〈f(τ 2)〉 ≃ f(〈τ 2〉), i.e 〈ψ(τ)〉 ≃ ψ(τ), τ = 〈τ 2〉 1
2 . (37)

Two integration points, exactness to degree 2 in f , α being arbitrary between 0 and 1,

〈ψ(τ)〉 ≃ α0f(θ0) + (1− α0)f(θ1), θi = 〈τ 2〉+ hi, i = 0, 1, (38)

with

h0 = −
√
C2(τ 2)

1− α0

α0

, h1 =

√
C2(τ 2)

α0

1− α0

. (39)

Recall that there is also another solution with a change of sign in front of the square root in

the expressions of the hi’s. It should also be noted that nothing prevents θ0 from being nega-

tive. This occurs when the fluctuations of τ 2 are larger than its average. Then f(x) should be

extended to negative x. This extension will be given for power-law materials in section 5.

Two integration points, exactness to degree 3 in f : the integration rule is again (38)-(39) with

α0 =
1

2
+

C3(τ
2)

2
√
C3(τ 2)2 + 4C2(τ 2)3

. (40)

In (39) and (40), C2(τ
2) and C3(τ

2) are the centered moments of τ 2 of degree 2 and 3 respec-

tively. They can be expressed in terms of the moments of τ as

C2(τ
2) = E4(τ)− E2(τ)

2, C3(τ
2) = E6(τ)− 3E4(τ)E2(τ) + 2E2(τ)

3. (41)

The quadrature formula (38)-(39) (with α0 being arbitrary between 0 and 1) involves the mo-

ments of τ(x) up to order 4 and will be denoted as 〈ψQF4(τ)〉. Similarly the approximation (38)-

(39) with (40) involves the moments of τ(x) up to order 6 and will be denoted as 〈ψQF6(τ)〉.

4. Approximate effective potentials in polycrystals

We come back to the estimation of effective potentials in polycrystals. The approximation

rules of section 3 with different degree of exactness are now reviewed.

4.1. Integration rule for 〈ψ(τ)〉 with one integration point

The simplest integration rule with one integration point to evaluate 〈ψ(τ)〉 is

〈ψ(τ)〉 ≃
N∑

r=1

c(r)
S∑

s=1

ψ(r)
s (τ (r)s ), τ (r)s = 〈τ (r)s 〉(r) = σ(r) : m(r)

s . (42)

This crude approximation will not be pursued here.
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4.2. Integration rule for 〈f(τ 2)〉 with one integration point

Under assumption (36), approximation (24) written for f and not ψ with a single integration

point reads as

〈ψ(r)
s (τ)〉(r) = 〈f (r)

s (τ 2)〉(r) ≃ f (r)
s (〈τ 2〉(r)) = ψ(r)

s (τ
(r)
s ), τ

(r)
s =

(
〈τ (r)s

2〉(r)
) 1

2
. (43)

The average potential for an arbitrary stress field σ is therefore approximated by

〈ψ(τ)〉 ≃
N∑

r=1

c(r)
S∑

s=1

ψ(r)
s (τ

(r)
s ). (44)

When the constitutive relations for each slip system at the single crystal level derive from a

single potential, the approximation (44) yield an approximation for the effective potential ψ̃,

ψ̃(σ) ≃ Inf
σ∈S(σ)

N∑

r=1

c(r)
S∑

s=1

ψ(r)
s (τ

(r)
s ). (45)

The Euler-Lagrange equations associated with the variational problem at the right-hand side

of (45) can be derived following a procedure identical to the one used in [17] and lead to a

linear elasticity problem for a linear comparison composite (LCC). When the ψs are square

convex, the right hand-side of (45) is actually an upper bound for the effective potential and the

corresponding LCC is the optimal LCC, optimal in the sense of the variational theory of [1]. It

should however be noted that the approximation rule (44) (which is an upper bound when the

ψs are square convex) can be applied to any stress field σ.

4.3. Integration rule for 〈ψ(τ)〉 with two integration points: link with the "Fully Optimized"

method of [16]

We consider the integration rule (29) with two integration points and exactness to degree

2. To simplify notations and to make the link with the "fully optimized" variational estimate

of Ponte Castañeda [16], we adopt the following notations: α0, τ0 and τ1 in grain r and on

system s are respectively denoted as α
(r)
s , τ̌

(r)
s and τ̂

(r)
s . The average potential associated with

an arbitrary stress field σ (not necessarily belonging to S(σ)) can be approximated by

〈ψ(σ)〉 ≃ 〈ψFO(σ)〉
def
=

N∑

r=1

c(r)
S∑

s=1

[
α(r)
s ψ(r)

s (τ̌ (r)s ) + (1− α(r)
s )ψ(r)

s (τ̂ (r)s )
]
, (46)

where the α
(r)
s can be chosen arbitrarily between 0 and 1 (they are fixed and do not depend on

σ at this degree of exactness) and τ̌
(r)
s and τ̂

(r)
s are given by (29)-(30) for each slip system.

This approximation was first derived by [16] in the context of materials with a single po-

tential by completely different means. In addition, it was given for the solution of a specific

variational problem, whereas it is given (and used) here for an arbitrary stress field σ.

It is possible to make the link between the approximation rule (46) and the linear comparison

composite of [16]. Indeed, when the approximate potential 〈ψFO(σ)〉 of (46) is substituted into

12



the variational problem (7), the Euler-Lagrange deriving from this approximate potential reads

as

ε̇(x) =
N∑

r=1

c(r)
S∑

s=1

[
α(r)
s

∂ψ
(r)
s

∂τ
(τ̌ (r)s )

∂τ̌
(r)
s

∂σ(x)
+ (1− α(r)

s )
∂ψ

(r)
s

∂τ
(τ̂ (r)s )

∂τ̂
(r)
s

∂σ(x)

]
, (47)

where the derivatives with respect to σ(x) denote Frechet-derivatives with respect to the field

σ. More specifically

τ̌ (r)s = τ (r)s − S(r)
s

√
1− α

(r)
s

α
(r)
s

with S(r)
s =

√
C2(τ

(r)
s ),

∂τ̌
(r)
(k)

∂σ(x)
=

∂τ (r)s

∂σ(x)
− ∂S

(r)
s

∂σ(x)

√
1− α

(r)
s

α
(r)
s

, (48)

with similar relations for τ̂
(r)
s . Then:

τ (r)s =
1

c(r)
〈σ : m(r)

s χ(r)〉, ∂τ (r)s

∂σ(x)
= m(r)

s χ(r)(x),

(S(r)
s )2 = C2(τ

(r)
s ) =

1

c(r)
〈(τ (r)s )2χ(r)〉 − (τ (r)s )2,

∂S
(r)
s

∂σ(x)
=

1

S
(r)
s

(τ (r)s (x)− τ (r)s )m(r)
s χ(r)(x).





(49)

Define:

1

2G
(r)
s

=

√
α
(r)
s (1− α

(r)
s )

S
(r)
s

(
∂ψ

(r)
s

∂τ
(τ̂ (r)s )− ∂ψ

(r)
s

∂τ
(τ̌ (r)s )

)
=

∂ψ
(r)
s

∂τ
(τ̂ (r)s )− ∂ψ

(r)
s

∂τ
(τ̌ (r)s )

τ̂
(r)
s − τ̌

(r)
s

, (50)

and note that with this definition of G
(r)
s one has

∂ψ
(r)
s

∂τ
(τ̂ (r)s ) − 1

2G
(r)
s

τ̂ (r)s =
∂ψ

(r)
s

∂τ
(τ̌ (r)s )− 1

2G
(r)
s

τ̌ (r)s

= α(r)
s

∂ψ
(r)
s

∂τ
(τ̌ (r)s ) + (1− α(r)

s )
∂ψ

(r)
s

∂τ
(τ̂ (r)s )− 1

2G
(r)
s

τ (r)s .





(51)

Then, the constitutive relations contained in the Euler-Lagrange equations associated with the

approximate effective potential read as (in addition to equilibrium of σ and compatibility of ε):

ε̇(x) = M (x) : σ(x) + η(x), M (x) =
N∑

r=1

M (r)χ(r)(x), η(x) =
N∑

r=1

η(r)χ(r)(x),

M (r) =
S∑

s=1

1

2G
(r)
s

m(r)
s ⊗m(r)

s ,

η(r) =

[
α(r)
s

∂ψ
(r)
s

∂τ
(τ̌ (r)s ) + (1− α(r)

s )
∂ψ

(r)
s

∂τ
(τ̂ (r)s )− 1

2G
(r)
s

τ (r)s

]
m(r)

s .




(52)

13



These equations coincide with those derived by Ponte Castañeda [16] for his optimal linear

comparison polycrystal.

4.4. Integration rules for 〈f(τ 2)〉 with two integration points

The two-point integration rules (38)-(39) and (38)-(40) for f(τ 2) (instead of ψ(τ)) can also

be used to generate approximations of the effective potentials for arbitrary stress fields. The

corresponding integration rules make use of the second and fourth moment of τ when the degree

of exactness for f is 2, and of the second, fourth and sixth moment of τ when the degree of

exactness for f is 3. These integration rules applied to crystals with a single potential will

therefore lead to comparison composites which are no longer linear. However they are useful in

the context of the NTFA for crystals with two potentials.

The first integration rule corresponds to (38)-(39) applied to each system and reads as

〈ψ(σ)〉 ≃ 〈ψQF4(σ)〉
def
=

N∑

r=1

c(r)
S∑

s=1

[
α(r)
s f (r)

s (θ̌(r)s ) + (1− α(r)
s )f (r)

s (θ̂(r)s )
]
, (53)

where the α
(r)
s are chosen arbitrarily between 0 and 1 (they are fixed and do not depend on σ

at this degree of exactness) and θ̌
(r)
s and θ̂

(r)
s are given by (38)-(39) for each slip system in each

individual grain. The subscript QF4 in the approximate potential refers to the fact that it makes

use of the moments of the field up to order 4. A similar approximation 〈ψQF6(σ)〉 making use

of moments up to order 6 is obtained by applying the integration rule (38)-(40) to f for each

slip system and each individual grain.

5. Sample example: NTFA for porous single crystals

This section illustrates the above approximation rules for crystals governed by two potentials

in the context of the Nonuniform Transformation Field Analysis (NTFA). In previous works

([12, 11]) the authors proposed an approximation of the effective potential ψ̃ based on the

Tangent Second Order approximation (Ponte Castañeda [15])), based on a Taylor expansion of

the potential in each individual phase around the field average in this phase. This method works

well for incompressible phases and incompressible aggregates, but its predictions deteriorate for

macroscopically compressible polycrystals (or composites) under loadings with a significant

hydrostatic component. For porous materials or crystals subjected to an overall hydrostatic

stress it even fails to predict a nonvanishing overall deformation.

The approximations of section 4 should improve significantly on the TSO for porous mate-

rials. This is why porous single crystals are considered. But in contrast with [16], this is done in

the context of the NTFA, allowing us to illustrate the hierarchy between the different integration

rules of section 4 and making use of the different moments of the stress field.

5.1. Porous single crystals

A volume V of a single crystal is considered. This volume contains 50 spherical, equi-

sized, non-overlapping pores which are randomly distributed throughout V (with periodicity

conditions when the pores intersect the boundary of V ). The total porosity is f = 9%.
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Figure 1: Porous single crystal. (a) Dependence of the asymptotic overall stress on the mesh refinement in the

most discriminating case of hydrostatic loading with the largest nonlinearity exponent, n = 10. (b) Finite element

mesh selected in the full-field simulations.

(a) (b) (c)

Figure 2: Porous single crystal. (a) First mode X = +∞ (n = 10). (b) First mode X = cot(π/10) (n = 10). (c)

First mode X = 0 (n = 10).
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The matrix material is a single crystal with hexagonal symmetry with 12 slip systems: three

basal, three prismatic and six pyramidal (see [12] for details). The c-axis of the hexagonal

crystalline structure is aligned with e3. The elastic stiffness matrix reads as (all moduli in MPa)

L1111 = 13930, L1122 = 7082, L1133 = 5765, L2222 = 13930, L3333 = 15010,
L2323 = 3014, L1313 = 3014, L1212 = 3424.

The viscous slips on the different systems are governed by the power-law relation (3), with the

same exponent n, the same reference slip-rate γ̇0 and the same critical stress τ0 on all systems.

Three different sets of material parameters are considered,

n = 1, γ̇0 = 10−6s−1, τ0 = 0.005 MPa,
n = 3, γ̇0 = 10−6s−1, τ0 = 1.5 MPa,
n = 10, γ̇0 = 10−6s−1, τ0 = 10 MPa.

(54)

5.2. Training paths: elasto-viscoplastic regime

In accordance with the general procedure described in details in Michel and Suquet [10,

12, 11], the modes µ(k) required by the NTFA are generated by the so-called snapshot Proper

Orthogonal Decomposition (POD) exploiting full-field simulations along specific loading paths

called training paths. First a parametric study of the influence of the mesh refinement has

been performed. In all simulations quadratic ten-node tetrahedral elements (with 4 integration

points/element) were used. The meshes were generated using the open source platform SA-

LOME [14]. Figure 1(a) shows the dependence of the asymptotic overall stress on the mesh

refinement in the most discriminating case of hydrostatic loading with the largest nonlinearity

exponent n = 10. Figure 1(b) shows the mesh selected in the subsequent full-field simulations

(second-last most refined mesh with a total of 313 719 nodes). This discretization has been

found to be sufficient to obtain accurate results in the most nonlinear case, n = 10. Further

refinement of the mesh did not lead to significant differences in the overall response (see figure

1(a)).

The macroscopic stress is imposed along a fixed direction in stress space,

σ = σ(t)Σ0. (55)

To avoid over-shooting of the asymptotic stress, the “control parameter” ε : Σ0 is increased

incrementally until the overall stress reaches an asymptot. In other words, the direction of

overall stress is imposed, the magnitude of the overall strain in this direction is the control

parameter, the magnitude of the stress σ(t) and of the components of the overall strain in the

directions perpendicular to Σ
0 are outputs of the computation. The directions of overall stress

Σ
0 correspond to axisymmetric stress states

Σ
0 = Σ0

m (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) +
2

3
Σ0

eq

(
−1

2
e1 ⊗ e1 −

1

2
e2 ⊗ e2 + e3 ⊗ e3

)
,

(56)

characterized by a different, but constant, stress triaxiality ratio X = Σ0
m/Σ

0
eq. The strain-rate

ε̇ : Σ0 is controlled and prescribed to 10−3 s−1.
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Full-field simulations are performed for 3 different values of the power-law exponent, n =
1, 3 and 10. 25 snapshots are stored along each training path and used to generate modes by

means of the POD (see [10] for more details). The threshold used in the POD to select the modes

is 5×10−5. Two training paths were first used with stress triaxiality ratiosX = 0 (axisymmetric

shear) and X = +∞ (hydrostatic tension). The POD algorithm selected two modes along

the path of axisymmetric shear (for all values of n) and two or three modes along the path of

hydrostatic tension (two modes when n = 1, three modes when n = 3 and n = 10). For reasons

which will be given below, an additional training path was added for nonlinear materials (n =
3, 10) along a direction corresponding to a stress triaxiality ratioX = cot(π/10) ≃ 3. The POD

algorithm selected two modes along this path for both values of n. The first modes obtained

for the three training paths (n = 10) with stress-triaxiality ratios X = +∞, X = cot(π/10),
X = 0 respectively are shown in Figure 2 for the purpose of illustration.

Once the modes for each training path are selected, it is first checked that the reduced-

order model reproduces accurately the full field simulations along these paths. This is shown

in figure 3 for hydrostatic loading which is the most discriminant loading case. The reduced-

order models are referenced as follows: NTFA-TSO refers to the prediction of the previous

model of [11] based on the TSO linearization. NTFA-FO refers to the approximation (46) with

α
(r)
s = 1/2. NTFA-QF4 refers to the approximation (53) with all the α

(r)
s = 1/2, whereas

NTFA-QF6 refers to the approximation (53) where the α
(r)
s are computed for each individual

grain and each slip system using (40) (therefore using the moment of order 6 of the resolved

shear stress on each system). The functions f
(r)
s are defined for positive values of their argument

through (36). However, as already mentioned in section 3, it can happen that the θ
(r)
s entering

(53) become negative when the fluctuations of the resolved shear stress are large. The following

extension of f corresponding to the power-law potential (3) was adopted. Let E(n) denote the

integer part of n and Frac(n) = n− E(n), then f is defined as

f(θ) =





γ̇0τ
−n
0

n+ 1
|θ|

Frac(n)
2 θ

E(n)+1
2 whenE(n) is odd,

γ̇0τ
−n
0

n+ 1
|θ|

Frac(n)+1
2 θ

E(n)
2 whenE(n) is even.

(57)

The modes are identical in all NTFA models. The following comments can be made.

1. When n = 1, all four NTFA models (TSO, FO, QF4, QF6) coincide and give the exact

average potential for a given stress field. As can be seen in figure 3(a), their common

prediction is in very good agreement with the full-field simulations, which shows that the

decomposition (10) on a basis of modes is pertinent.

2. Under hydrostatic loading, and for rate-sensitivity exponents different from n = 1, the

TSO linearization predicts a linear elastic response of the porous crystal. As is well-

known, this unrealistic prediction is due to the fact that the tangent operator of the poten-

tial ψ, computed at the average stress in the matrix which is hydrostatic, is infinitely stiff

when n 6= 1.

3. The three reduced-order models (FO, QF4, QF6) predict a nonelastic response for the

porous crystal and therefore improve on the prediction by the TSO. The FO rule (46)
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Figure 3: Porous single crystal with hexagonal symmetry. Hydrostatic loading (X = Σ0

m
/Σ0

eq = +∞). Overall

stress vs overall strain for different values of the rate-sensitivity exponent n (same color code in all plots). (a)

n = 1. (b) n = 3. (c) n = 10.

is however not very accurate even for a moderate nonlinearity exponent n = 3. The

predictions QF4 and QF6 are quite similar for moderate nonlinearity but QF6 is clearly

more accurate when n = 10. The higher the information on the moments, the more

accurate the predictions.

5.3. Validation paths: gauge surfaces

Once the modes are identified and once it has been checked that the reduced-order models

reproduce correctly the overall stress-strain response of the porous crystal along the training

paths, it remains to assess the accuracy of the predictions along paths which were not used to

identify the modes. These other paths are validation paths.

The accuracy of the reduced-order models is assessed by exploring loading conditions dif-

ferent from the training paths. Attention is focused on the purely viscous response of the porous

crystal characterized in stress space by the gauge surface of the porous material. This surface

is defined as (Leblond et al. [7])

{σ, ψ̃(σ) =
γ̇0τ

−n
0

n+ 1
}. (58)

This surface can be found by first exploring radial paths in stress space at different triaxiality

ratios. When the strain along the loading direction Σ
0 is large enough, the overall stress reaches

a plateau σ∞ both in the full-field simulations and in the NTFA models, except for the TSO

at high stress triaxiality, corresponding to the purely viscous response of the crystal (see figure

3). Then the overall stress in the direction Σ
0 and lying on the gauge surface is determined by

solving

Σ = λσ∞, ψ̃(Σ) =
γ̇0τ

−n
0

n+ 1
.
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Figure 4: Gauge surfaces. Comparison between the full-field simulations and the reduced-order models with only

two training paths (same color code in all plots). (a) n = 1 (four modes), (b) n = 3 (five modes), (c) n = 10 (five

modes).

Thanks to the homogeneity of ψ̃ (resulting from that of ψ), it is found that

λ =

(
γ̇0τ

−n
0

(n+ 1)ψ̃(σ∞)

) 1
n+1

.

The average potential ψ̃(σ∞) is computed for all models (full-field and reduced-order models)

as:

ψ̃(σ∞) =
σ∞ : ε̇

n+ 1
. (59)

The gauge surfaces predicted by the different schemes are compared with those obtained by

full-field simulations. The gauge surfaces are plotted here in the two-dimensional space of

axisymmetric loadings (56) and the classical invariants Σm and Σeq are used (even though the

full gauge surface is not isotropic in the six-dimensional space of overall stresses). First the

reduced-order models were implemented with modes determined with only two training paths

corresponding to hydrostatic (X = +∞) and purely deviatoric (X = 0) states. Depending on

the value of n, four or five modes were selected by the POD (four modes when n = 1, five

modes when n = 3 and n = 10). The results are shown in figure 4.

When n = 1, all reduced-order models agree and are in excellent agreement with the full-

field simulations. When n = 3, 10 the predictions of the reduced-order models differ and

the gap between the predictions increases with the stress triaxiality ratio, being maximal for

hydrostatic loading (X = +∞). The gauge surface predicted by the TSO is not closed along

the hydrostatic axis and this is not physically relevant. The predictions of the models based on

integration rules of different order are more realistic, the most accurate one being the one with

the highest degree of exactness, QF6.

However, when n = 10, a gap can still be observed at intermediate stress triaxialities. This

is why a third training path was used corresponding to a stress triaxiality ratio X = cot(π/10).
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Figure 5: Gauge surfaces. Comparison between the full-field simulations and the reduced-order models with three

training paths (same color code in all plots). (a) n = 1 (four modes), (b) n = 3 (seven modes), (c) n = 10 (seven

modes).

Then the POD added two modes for this path which brought the number of modes for n = 3
and n = 10 to seven. The predictions of the reduced-order models with seven modes are shown

in figure 5. The gap with the full-field simulations at all stress- triaxialities is reduced, at least

with the integration rule based on the sixth moment of the resolved shear stress.

5.4. Speed-up

The CPU times for the different methods (Full-field simulations, NTFA-TSO, NTFA-FO

and NTFA-QF of different degrees of exactness) are compared in Table 1 for purely devia-

toric loading (the CPU times for the other loading paths are similar). The different speed-ups,

measured by the CPU ratios shown in Table 1, can be commented as follows.

1. The fastest NTFA models are based on the TSO and the FO approximations with a speed-

up of more than 106. Regarding the TSO, as already commented upon, its predictions

for hydrostatic loading are physically wrong and are inaccurate for all loadings with a

significant amount of hydrostatic stress.

2. Among the three NTFA models based on integration rules, the fastest is clearly the FO

model, which requires only the computation of moments up to order 2 of the resolved

shear stress on all systems. The speed-up is between 106 and 2 × 106 depending on

the number of modes. The speed-up for QF4, which requires the moments up to order 4,

varies between 1.5×104 and 3×104. The speed-up for QF6, which requires the moments

up to order 6, varies between 30 and 100. The price paid to increase the accuracy by

introducing higher order moments, is quite significant. The different moments required

by the different schemes are recalled in appendix Appendix B. The number of operations

required by FO scales as (6 +M)2 whereas it scales as (6 +M)4 for QF4 and (6 +M)6

for QF6 where M denotes the number of modes in the decomposition (10). QF4 should

therefore be (6 + M)2 times slower than FO, which is consistent with the CPU times
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reported in Table 1 (about 100 times slower for five or seven modes). Regarding QF6, it

involves the computation of the αi’s, in addition to the hi’s. Therefore QF6 is more than

(6 +M)2 slower than QF4 (300 times slower rather than 100 times).

3. The number of modes also has a significant impact on the number of operations. Referring

again to the formulae of appendix Appendix B, the number of operations between M1

modes and M2 modes scales as r2, r4, r6, with r = (6 +M2)/(6 +M1). For instance

when M1 = 5 and M2 = 7, then r ≃ 1.18. So the FO, QF4 and QF6 with seven modes

are about 1.4, 2 and 3 times slower, respectively, than the same schemes with five modes.

Full-field NTFA-TSO NTFA-FO NTFA-QF4 NTFA-QF6

4 Modes 4 Modes 4 Modes 4 Modes

n = 1 93 137 s 0.112 s 0.100 s 2.528 s 517.4 s

5 Modes 5 Modes 5 Modes 5 Modes

n = 3 88 976 s 0.084 s 0.048 s 2.784 s 957.530 s

n = 10 92 200 s 0.092 s 0.036 s 2.732 s 936.860 s

7 Modes 7 Modes 7 Modes 7 Modes

n = 3 88 976 s 0.116 s 0.056 s 6.004 s 2 737.9 s

n = 10 92 200 s 0.128 s 0.084 s 5.872 s 2 671.8 s

Table 1: Porous single crystal (HCP). Purely deviatoric stress state. Comparison of CPU times for the different

simulations (Intel Xeon Processor E7 3.0 GHz).

6. Conclusion

The conclusion of this study is twofold.

1. First, quadrature formulae offer a different perspective on the recently proposed "fully

optimized" method of Ponte Castañeda [16] to estimate effective potentials in nonlinear

composites. These quadrature rules are also helpful to generate a family of estimates for

effective potentials generalizing this previous estimate. In particular statistical informa-

tion of high order on the local fields, when it is available, can be incorporated in these

new approximations.

2. Second, it has been shown how formulae at different orders remove two limitations of

the reduced-order model based on the Tangent Second Order approximation (Michel and

Suquet [12]). The TSO approximation was found to be accurate for incompressible poly-

crystals with moderate nonlinearities, but its accuracy deteriorates when the nonlinearity

becomes stronger. Another well known limitation of the TSO approximation is that it fails

for porous crystals subject to highly triaxial stress states (this is because the linearization

is made about the average stress in each crystal). These two limitations are partially

removed in the present study. Not surprisingly, it is found that, in order to retrieve a

satisfactory accuracy for highly nonlinear porous crystals under high stress triaxiality, a
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quadrature formula of higher order is required. Considering higher-order moments of

the fields comes with a computational cost and therefore a compromise must be found

between cost and accuracy.
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Appendix A. Reminder on numerical integration

Consider the weighted integral

I(f) =

∫ +1

−1

f(x)w(x) dx, (A.1)

where w is the weight. I(f) can be approximated by a quadrature formula

In(f) =
n∑

i=0

αif(xi), (A.2)

Formula (A.2) is said to have degree of exactness r if In(f) = I(f) for any f ∈ Pr where Pr is

the space of polynomials of degree less or equal to r.

A natural approximation of I(f) is

In(f) =

∫ +1

−1

Πn(f)(x)w(x) dx =
n∑

i=0

αif(xi), αi =

∫ +1

−1

li(x)w(x) dx, (A.3)

where Πn(f) is the interpolating Lagrange polynomial of f over a set of n + 1 distinct nodes

{xi}, i = 0, 1, .., n, and li ∈ Pn is the i-th characteristic Lagrange polynomial such that li(xj) =
δij for i, j = 0, ..., n. Since Πn(f) = f for any f ∈ Pn, the interpolatory quadrature formula

(A.3) has degree of exactness n for any choice of the nodes xi. It could however be possible

that more accuracy (a higher degree of exactness n+m) is gained by specific choices of nodes.

The aim of Gauss quadrature is precisely to optimize the choice of these nodes [18][theorem

10.1].

For a given m > 0, the quadrature formula

∫ +1

−1

f(x)w(x)dx =
n∑

i=0

αif(xi), (A.4)

has degree of exactness n + m iff it is of interpolatory type and the nodal polynomial ωn+1

associated with the nodes xi is such that

∫ +1

−1

ωn+1(x)P (x)w(x)dx = 0, ∀P ∈ Pm−1, (A.5)

where Pm−1 denotes the set of polynomials of degree ≤ m− 1 and

ωn+1(x) =
n∏

i=0

(x− xi). (A.6)

The maximum degree of exactness that one can get is 2n+ 1 (corresponding to m = n+ 1).
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Appendix B. Moments

According to (15) the resolved shear stress τs on system (s) reads as

τs = ms : σ = ms : L(x) : A(x) : ε+
M∑

k=1

ξ(k)(t)ρ(k)s , ρ(k)s = ms : ρ
(k) (B.1)

which can be written in a more compact form as τs =
6+M∑

k=1

α(k)a(k)s , with

(α(1), α(2), α(3), α(4), α(5), α(6)) = (ε11, ε22, ε33,
√
2ε23,

√
2ε13,

√
2ε12),

α(6+ℓ) = ξ(ℓ), ℓ = 1, ..,M.
(B.2)

Then

τ (r)s =
6+M∑

k=1

α(k)〈a(k)s 〉(r),

C
(r)
2 (τs) = 〈(τs − τ (r)s )(τs − τ (r)s )〉(r)

=
6+M∑

k=1

6+M∑

ℓ=1

α(k)α(ℓ)〈(a(k)s − 〈a(k)s 〉(r))(a(ℓ)s − 〈a(ℓ)s 〉(r))〉(r),

C
(r)
2 (τ 2s ) = 〈(τ 2s − 〈τ 2s 〉(r))(τ 2s − 〈τ 2s 〉(r))〉(r)

=
6+M∑

k=1

6+M∑

ℓ=1

6+M∑

m=1

6+M∑

n=1

α(k)α(ℓ)α(m)α(n)

〈(a(k)s a
(ℓ)
s − 〈a(k)s a

(ℓ)
s 〉(r))(a(m)

s a
(n)
s − 〈a(m)

s a
(n)
s 〉(r))〉(r),

C
(r)
3 (τ 2s ) = 〈(τ 2s − 〈τ 2s 〉(r))(τ 2s − 〈τ 2s 〉(r))(τ 2s − 〈τ 2s 〉(r))〉(r)

=
6+M∑

k=1

6+M∑

ℓ=1

6+M∑

m=1

6+M∑

n=1

6+M∑

p=1

6+M∑

q=1

α(k)α(ℓ)α(m)α(n)α(p)α(q)

〈(a(k)s a
(ℓ)
s − 〈a(k)s a

(ℓ)
s 〉(r))(a(m)

s a
(n)
s − 〈a(m)

s a
(n)
s 〉(r))(a(p)s a

(q)
s − 〈a(p)s a

(q)
s 〉(r))〉(r).





(B.3)

The following elementary moments are therefore computed once and for all and stored:

〈a(k)s 〉(r), 〈(a(k)s − 〈a(k)s 〉(r))(a(ℓ)s − 〈a(ℓ)s 〉(r))〉(r),

〈(a(k)s a
(ℓ)
s − 〈a(k)s a

(ℓ)
s 〉(r))(a(m)

s a
(n)
s − 〈a(m)

s a
(n)
s 〉(r))〉(r),

〈(a(k)s a
(ℓ)
s − 〈a(k)s a

(ℓ)
s 〉(r))(a(m)

s a
(n)
s − 〈a(m)

s a
(n)
s 〉(r))(a(p)s a

(q)
s − 〈a(p)s a

(q)
s 〉(r))〉(r).

25


