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Introduction

Les processus d'entraînement et de mélange dans une couche cisaillée turbulente sont impliqués dans de nombreuses situations industrielles. Dans le cas d'une couche de mélange spatiale plane, induite par deux écoulements en co-courant mais de vitesses différentes, l'écoulement est très sensible à sa condition limite amont. Le contrôle de l'écoulement en agissant sur cette condition est donc prometteur pour améliorer ou réduire le mélange dû à la turbulence (par exemple l'augmentation du mélange dans l'industrie chimique ou la réduction du mélange dans l'industrie alimentaire, de la consommation d'énergie et du bruit dans les transports aériens, routiers et ferroviaires).

De nombreuses études ont montré que des excitations périodiques agissent de manière significative sur le développement de la couche de mélange [START_REF] Oster | On the effect of initial conditions on the two dimensional turbulent mixing layer[END_REF][START_REF] Inoue | Double-frequency forcing on spatially growing mixing layers[END_REF][START_REF] Zhou | The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies[END_REF]. Ces excitations permettent de forcer un lâcher de tourbillons primaires, avec ou sans appariement, modifiant ainsi en profondeur la structure de l'écoulement dans la couche de mélange et son évolution vers aval, au moins dans la région de transition. Le contrôle en boucle fermée d'écoulement, plus robuste et efficace grâce à l'utilisation de mesures dans la boucle de contrôle permettant d'adapter la commande et de vérifier ses performances, a été plus récemment mis oeuvre, notamment dans le cas de la couche de mélange. Dans Kaul [START_REF] Kaul | An Efficient CFD-based PID Control of Free Shear Layer Flow[END_REF] et Kaul [START_REF] Kaul | First Principles Based PID Control of Mixing Layer : Role of Inflow Perturbation Spectrum[END_REF], une loi de commande a été conçue pour modifier l'épaisseur d'une couche de mélange temporelle (cette loi de commande étant appliquée par la suite à une couche de mélange spatiale). Dans Parezanović et al. [START_REF] Parezanović | Mixing layer manipulation experiment[END_REF], des lois de commande obtenues à partir de différentes méthodes (Extremum-seeking adaptive control, POD mode feedback control, Machine learning control) ont permis d'augmenter la turbulence dans la couche de mélange en sélectionnant une excitation fréquentielle optimale déduite en ligne (plutôt que hors ligne comme dans les études précédentes utilisant un contrôle en boucle ouverte).

Dans notre étude, nous mettons en oeuvre un contrôle en boucle fermée de la couche de mélange dans le but de stabiliser cet écoulement autour d'un état désiré stationnaire. Ce travail préliminaire s'inscrit dans une étude plus large dont l'ambition est de considérer un état désiré instationnaire correspondant à une organisation spatio-temporelle particulière de l'écoulement avantageuse en terme d'applications industrielles. La méthodologie suivie pour la mise en oeuvre du contrôle en boucle fermée de cet écoulement consiste à linéariser les équations de Navier-Stokes autour de l'état désiré, à discrétiser spatialement le système linéaire résultant et à déterminer le gain de rétroaction selon une loi de commande optimale. L'actionneur est supposé agir sur la condition limite amont de l'écoulement. L'état de l'écoulement est supposée pouvoir être reconstruit à partir de mesure image. Nous avons eu recours à une méthode classique de la théorie du contrôle : un régulateur linéaire-quadratique (LQR) permettant de concevoir une loi de commande par retour d'état appliquée à une dynamique d'écoulement turbulent par essence non-linéaire [START_REF] Kim | A linear systems approach to flow control[END_REF][START_REF] Brunton | Closed-loop turbulence control : Progress and challenges[END_REF].

Notre contribution principale est de montrer que la couche de mélange peut être stabilisée autour d'un état stationnaire grâce à une loi de commande linéaire basée sur une linéarisation autour d'un état désiré, même en présence de perturbations au niveau de la condition limite amont de l'écoulement. Ces perturbations sont toutefois supposées lentes par rapport au pas de temps des simulations. Le document est structuré comme suit. La section 2 est consacrée à la modélisation de l'écoulement et à la conception de la loi de commande. La section 3 présente le comportement du modèle linéarisé et de la loi de commande appliquée à un solveur Navier-Stokes 3D. L'aptitude de la loi de commande à rejeter les perturbations est également discutée.

Modélisation pour la commande

Équations d'évolution

Pour un fluide incompressible et newtonien, l'écoulement d'un fluide visqueux est décrit par les équations de Navier-Stokes et de continuité suivantes :

   ∂ t + u ∇ u = -∇p + 1 Re ∆u, ∇ u = 0, (1) 
où u est le vecteur vitesse définit par [u v w] et p la pression, ces variables étant adimensionnées en utilisant la différence de vitesse entre les deux écoulements incidents U 0 = U 2 -U 1 , la masse volumique ρ 0 = ρ et l'épaisseur initiale de la couche de mélange δ 0 . La viscosité dynamique du fluide µ apparaît dans ce système comme un paramètre sans dimension : le nombre de Reynolds Re = ρ 0 U 0 δ 0 µ .

Notons U b et P b l'état stationnaire (ou l'écoulement de base) solution du système :

   U b ∇ U b = -∇P b + 1 Re ∆U b , ∇ U b = 0. (2) 
Dans cette étude, la solution de Blasius ce système augmenté de conditions d'écoulement cisaillé libre est approchée par :

U b = U 1 + 1 2 (tanh(2y) + 1) 0 0 , (3) 
ou l'axe y coïncide avec la direction normale à la couche de mélange plane (l'axe x coïncide avec la direction principale de l'écoulement et l'axe z avec la direction de l'envergure, les composantes de vitesses associées à x, y et z sont notées u, v et w). 

           ∂ t u d +U b ∂ x u d + v d ∂ y U b = -∂ x p d + 1 Re ∆u d , ∂ t v d +U b ∂ x v d = -∂ y p d + 1 Re ∆v d , ∂ t w d +U b ∂ x w d = -∂ z p d + 1 Re ∆w d , ∂ x u d + ∂ y v d + ∂ z w d = 0. (4) 
La formulation vorticité-fonction de courant du système (4) permet de s'affranchir du terme de pression p d [START_REF] Schmid | Stability and transition in shear flows[END_REF][START_REF] Mckernan | Control of Plane Poiseuille Flow : A theoretical and Computationnal Investigation[END_REF]. En se limitant au cas d'un écoulement incompressible et bidimensionnel, la fonction de courant s'écrit :

U b = +∂ y Ψ b , (5) 
u d = +∂ y ψ d , (6) 
v d = -∂ x ψ d , (7) 
et la vorticité est seulement définie par sa composante selon z :

Ω b = -∆Ψ b , (8) 
ω d = -∆ψ d . (9) 
La formulation vorticité-fonction de courant du système (4) est donnée par :

∆ ψd = Γψ d , (10) 
ou ( ) est utilisé pour indiquer une dérivation en temps et

Γ = -U b ∂ x ∆ + U b ∂ x + 1
Re ∆ 2 est un opérateur différentiel dans lequel U b (y) est la dérivée seconde de U b (y). Notons qu'une perturbation de type onde plane conduit l'équation (10) à l'équation de Rayleigh ou d'Orr-Sommerfeld [START_REF] Schmid | Stability and transition in shear flows[END_REF].

Conditions aux bords du domaine

La résolution de l'équation [START_REF] Laizet | High-order compact schemes for incompressible flows : A simple and efficient method with quasi-spectral accuracy[END_REF] nécessite de spécifier les conditions aux bords du domaine de l'écoulement. Le domaine est ici un rectangle de dimensions L x et L y . Nous considérons des conditions de Dirichlet à l'entrée du domaine (x = 0), à la sortie (x = L x ) ainsi qu'aux bords supérieur et inférieur (y = ± Ly 2 ) : -Le contrôle au frontière est réalisé à l'entrée du domaine. En x = 0, la valeur de la fonction de courant est donc définie par le signal de commande :

ψ d (x, y, t) | x=0 = ψ d inlet (y, t) ; (11) 
-Les conditions en sortie du domaine sont données via la résolution d'une équation de convection :

[∂ t +( U 1 + 1 2 )∂ x ] ψ d | x=Lx = 0; (12) 
-Aux bords supérieur et inférieur du domaine, nous supposons aucune action ni perturbation de sorte qu'il est possible d'écrire :

ψ d (x, y, t) | y=± Ly 2 = 0. ( 13 
)

Conception d'un loi de commande

Pour explicitement faire apparaître le signal de commande dans l'equation [START_REF] Laizet | High-order compact schemes for incompressible flows : A simple and efficient method with quasi-spectral accuracy[END_REF], nous proposons de convertir cette équation différentielle homogène avec des conditions au bords non-homogènes en une équation non-homogène avec des conditions au bords homogènes en posant :

ψ d = ψ h + ψ c , (14) 
où ψ c (x, y, t) décrit l'action du signal de commande sur l'écoulement [START_REF] Joshi | A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane poiseuille flow[END_REF][START_REF] Joshi | Finite dimensional optimal control of poiseuille flow[END_REF][START_REF] Mckernan | Control of Plane Poiseuille Flow : A theoretical and Computationnal Investigation[END_REF][START_REF] Fomena | Fluid flow control : a vision-based approach[END_REF]] et ψ h (x, y, t) est la contribution résultante intégrant des conditions au bords homogènes :

       ψ h | x=0 = 0, ψ h | y=± Ly 2 = 0, [∂ t +( U 1 + 1 2 )∂ x ] ψ h | x=Lx = 0. (15) 
Ainsi, l'équation homogène [START_REF] Laizet | High-order compact schemes for incompressible flows : A simple and efficient method with quasi-spectral accuracy[END_REF] devient :

∆ ψh = Γψ h -∆ ψc -Γψ c . (16) 
De même que dans Joshi et al. [START_REF] Joshi | A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane poiseuille flow[END_REF] et McKernan [START_REF] Mckernan | Control of Plane Poiseuille Flow : A theoretical and Computationnal Investigation[END_REF], nous supposons que ψ c (x, y, t) peut être écrit comme une fonction séparable de l'espace et du temps :

ψ c (x, y, t) = f (x, y) φ (t) = g (x) h (y) φ (t) , (17) 
où g (x) décrit l'effet pénétrant vers l'aval de l'actionneur :

g (x) = exp -( x 4 ) 2 . ( 18 
)
La fonction g (x) est choisie continue et décroissante selon x mais des résultats de simulations (non présentés dans ce papier) montrent que son expression exacte importe peu sur la convergence de la loi de commande. -h (y) décrit l'action de l'actionneur au bord amont du domaine (à l'entrée). Nous avons modélisé deux types d'actionneur :

1. Le premier correspond au contrôle des flux incidents en co-courant (correspondant au contrôle des ventilateurs dans le cas d'une soufflerie de couche de mélange dédiée) :

u d (y) ∝ ∂ y h (y) = tanh (2y) ; (19) 
2. Le second correspond au contrôle d'un jet pariétal (généré par un actionneur plasma ou un MEMS) :

u d (y) ∝ ∂ y h (y) = 2y exp -4y 2 . (20) 
φ (t) est le signal de commande. Il modifie l'amplitude de f (x, y) dans l'équation [START_REF] Schmid | Stability and transition in shear flows[END_REF]. Ainsi, en substituant (17) dans l'équation [START_REF] Parezanović | Mixing layer manipulation experiment[END_REF], nous obtenons une équation dans laquelle apparaît explicitement le signal de commande :

∆ ψh = Γψ h -∆f φ -f Γ φ , (21) 
où f Γ (x, y) est le résultat de l'opérateur différentiel Γ appliqué à f (x, y).

La résolution de l'équation (21) est réalisée en utilisant un schéma aux différences finies. La fonction de courant ψ h est d'abord discrétisée sur une grille cartésienne :

ψ h = [[ψ 1,1 • • • ψ nx,1 ] • • • [ψ 1,ny • • • ψ nx,ny ]] , (22) 
avec ψ i,j = ψ h (x i , y j ). Un schéma aux différences finies centrées du second ordre est utilisé pour approximer les dérivées spatiales dans l'équation (21) conduisant à : Afin de formuler le problème à résoudre comme un système linéaire invariant et continu en temps, soit une formulation classique en théorie du contrôle, nous introduisons le vecteur d'état ci-dessous :

L ψh = Gψ h -F φ + F Γ φ, (23) 
X = ψ h + Fφ, (24) 
conduisant à :

Ẋ (t) = AX (t) + BU (t) , (25) où : 
-A = L -1 G est la matrice d'état ; -B = L -1 (F Γ -GF) est la matrice de commande ; -U = [φ] est le vecteur de commande. Dans cette étude, la matrice de commande B est une matrice colonne et le vecteur commande se restreint à une composante, i.e. le signal de commande φ.

Conception de la loi de commande

Le vecteur d'état X (équation 24) est en fait la fonction de courant ψ d (équation 14) évaluée sur une grille cartésienne rectangulaire (équation 22). Ainsi, l'état de l'écoulement peut être obtenu aisément et de manière précise en utilisant un capteur image associé à un algorithme d'estimation de mouvement [START_REF] Heitz | Variational fluid flow measurements from image sequences : synopsis and perspectives[END_REF]. Notons que l'utilisation d'un capteur image dans ce contexte de contrôle en boucle fermée d'écoulement de fluide a déjà été utilisée et validée [START_REF] Fomena | Fluid flow control : a vision-based approach[END_REF][START_REF] Gautier | Feed-forward control of a perturbed backward-facing step flow[END_REF].

A partir du système (25), il est aisé d'appliquer les méthodes classiques du contrôle en boucle fermée. Dans notre étude, nous proposons d'utiliser un régulateur linéaire-quadratique (LQR) à horizon infini. La fonctionnelle à minimiser est :

J = ∞ 0 X (t) QX (t) + U (t) RU (t) dt, (26) 
avec Q = Q ≥ 0 une matrice symétrique semi-définie positive et R = R > 0 une matrice symétrique définie positive. La matrice Q peut par exemple être prise comme la matrice identité ou une matrice permettant de considérer l'énergie cinétique ou l'enstrophie du système.

Ainsi, le signal de commande est obtenu par une retour d'état :

U (t) = [φ (t)] = -KX (t) , (27) 
avec K = R -1 B P and P la solution de l'équation de Riccati :

A P + PA -PBR -1 B P + Q = 0. ( 28 
)

Résultats de simulations

Dans cette section, nous vérifions la représentativité du modèle linéarisé proposé puis nous testons la loi de commande obtenue sur un écoulement cisaillé libre non-linéaire. La matrice d'état A et ses valeurs propres sont d'abord calculées. Ces valeurs propres sont situées dans la moitié gauche du plan complexe, ce qui signifie que le système est stable autour de l'écoulement désiré, comme attendu pour un écoulement convectivement instable et amplificateur de bruit.

Caractéristiques du modèle linéarisé

Par ailleur, la représentation spatiale du gain de rétroaction K (figure 1) est très intéressante. Une organisation spatiale est clairement visible et semble correspondre à un train de tourbillons de Kelvin-Helmholtz (alors qu'il n'y a aucun a priori dans la méthode LQR sur la présence de perturbations en fréquence). L'amplitude du gain de rétroaction diminue en aval et de part et d'autre de la couche de mélange, de sorte que la région de grande amplitude est limitée aux environs du début de la couche de cisaillement. Ces résultats concordent avec l'idée d'une commande qui résulte du produit entre le gain de rétroaction et l'état du système (voir l'équation 27) et qui s'oppose à la perturbation.

Validation du modèle linearisé

Pour valider le modèle espace-état linéarisé, nous comparons son comportement par rapport à celui d'un modèle non-linéaire réaliste. Ce modèle est Incompact3d, un solveur des équations de Navier-Stokes incompressible publié sous licence GNU GPL v3 [START_REF] Laizet | High-order compact schemes for incompressible flows : A simple and efficient method with quasi-spectral accuracy[END_REF][START_REF] Laizet | A numerical strategy to combine highorder schemes, complex geometry and parallel computing for high resolution DNS of fractal generated turbulence[END_REF][START_REF] Laizet | Incompact3d : A powerful tool to tackle turbulence problems with up to o(10 5 ) computational cores[END_REF]. Le domaine de calcul 3D a une taille de L x × L y × L z = 256 × 256 × 4. Ce domaine est discrétisé sur un maillage cartésien (étiré en y) de nx × ny × nz = 513 × 257 × 8 noeuds. Le nombre de noeuds selon l'envergure z est minimal, ce qui a pour conséquence une réduction du temps de calcul et un écoulement quasi-2D (l'aspect 3D étant superflu puisque nous souhaitons mettre en avant le contrôle linéaire d'un écoulement non-linéaire). La même valeur de 300 est utilisée pour le nombre de Reynolds. Le signal de commande et la perturbation fixent la condition de Dirichlet à l'entré du domaine. La fonction de courant (variable d'état du système linéaire à mesurer) est calculée par intégration du champ de vitesse.

Pour comparer le comportement des deux modèles, nous considerons un forçage par un signal d'entrée ω (t). La réponse du modèle linéarisé est donnée par la résolution de :

Ẋ (t) = AX (t) + B ω (t) . (29) 
Le signal de perturbation ω (t) est formulée comme une excitation sinusoïdale en temps : où f St = 0.1 est approximativement la fréquence de Strouhal (la perturbation périodique la plus rapidement amplifiée [START_REF] Michalke | On spatially growing disturbances in an inviscid shear layer[END_REF]) et a = 0.01 est l'amplitude.

ω (t) = a sin (2πf St t) , (30) -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 - 
La figure 2 présente des champs instantanés de la fonction de courant ψ d à partir de simulations avec le modèle linéaire (Matlab 2012) et le modèle non-linéaire (Incompact3d) et forcées par deux types de perturbations périodique ω (t). Le train de tourbillons de Kelvin-Helmholtz est retrouvé dans toutes les simulations, ce qui valide la représentativité du modèle linéarisé pour des perturbations restant suffisamment petites.

Contrôle en boucle-fermée

La stabilité de l'écoulement considéré signifie que, sans perturbation prolongée, le système converge vers la solution stable U b . Dans cette section, nous examinons ce qui se produit en cas d'une perturbation périodique agissant au niveau de la condition d'entrée afin d'éprouver la loi de commande obtenue.

Ainsi, nous considerons le signal de commande perturbé par la perturbation ω (t) en modifiant système (25) comme suit :

Ẋ (t) = AX (t) + B [φ (t) + ω (t)] . (31) 
La loi de commande par retour d'état devient alors : où ω est un estimé de la perturbation ω. Cet estimé est obtenu en résolvant en ligne un système issu du système précédent (31) :

φ (t) = -KX (t) -ω (t) , (32) -2 -1 0 1 2 -2 - 
˙ X (t) = AX (t) + B [φ (t) + ω (t)] . (33) 
pour minimiser au cours du temps X = X -X par l'algorithme de descente de gradient à pas constant ci-dessous : 

ω (t + dt) = ω (t) + 2α B X B B . ( 34 

Conclusion

Dans ce travail, nous avons montré l'aptitude d'un contrôle en boucle fermée par retour d'état pour réguler le développement d'une couche de mélange spatiale autour d'un état stationnaire et de rejeter des perturbations relativement lentes survenant au niveau de la commande. Ce résultat a été obtenu en utilisant une loi de commande linéaire conçue à partir d'un modèle d'état linéarisé des équations de Navier-Stokes et validée en utilisant cette loi de commande dans une solveur des équations de Navier-Stokes. Bien que la méthode LQR soit conçue pour stabiliser un système linéaire, nous avons montré qu'elle était également capable de rejeter des perturbations agissant au même niveau que le signal de commande. Les perspectives de ce travail concernent le cas d'une perturbation et d'une commande agissant différemment et le cas d'un état désiré instationnaire comme préalable à la réalisation effective du contrôle en boucle fermée de la couche de mélange dans notre soufflerie dédiée [START_REF] Sodjavi | Experimental study of thermal mixing layer using variable temperature hot-wire anemometry[END_REF]. 

  Supposons de petites fluctuations u d = [u d v d w d ] et p d autour de la solution de base, de sorte que u = U b + u d et p = P b + p d . Le système (1) peut alors être linearisé et réduit, donnant :

  où ψ h , F et F Γ sont des vecteurs de dimension (nx × ny) avec F := f et F Γ := Γf , et L et G sont des matrices de plein rang de dimension (nx × ny) avec L := ∆ et G := Γ (soit les opérateurs discrets de ∆ and Γ respectivement).

F 1 -

 1 Le modéle espace-état est implémenté dans Matlab 2012. Le domaine de calcul, 2D et d'étendue L x × L y = 32 × 4, est discretisé sur une grille cartesienne de nx × ny = 65 × 17 noeuds avec x = [0, 32] et y = [-2, 2]. Le nombre de Reynolds est fixé à Re = 300. Parmi les différents choix de Q et R, nous avons opté pour Q = q 2 I and R = r 2 I, donnant des résultats tout à fait satisfaisant avec q = 10 et r = 1. Distribution spatiale du gain de rétroaction K.
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 12 Modèle non-linéaire avec une perturbation des co-courants Modèle linéaire avec une perturbation des co-courants Modèle non-linéaire avec une perturbation pariétale Modèle linéaire avec une perturbation pariétale Champs instantanés de la fonction de courant ψ d Champs instantanés ψ d : Comparaison entre les modèles linéaire et non-linéaire pour deux types de perturbations périodiques.

F 3 -

 3 la vorticité ω z du modèle non-linéaire Champs instantanés de la vorticité ω z : Comparaison avec et sans contrôle dans le cas d'un contrôle pariétal.

2F 4 -

 4 Avec contrôle des co-courantsSans contrôle des co-courantsChamps instantanés de la vorticité ω z du modèle non-linéaire Champs instantanés de la vorticité ω z : Comparaison avec et sans contrôle dans le cas d'un contrôle des co-courants.
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 56 Évolution de la norme du vecteur d'état avec et sans contrôle. Évolution de l'amplitude du signal de commande, du signal de perturbation et de son estimé.
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  La loi de commande et l'estimateur de perturbation sont implémentés dans Incompact3d. Un première séquence est simulée pour déterminer l'état de base de l'écoulement. Cette séquence est ensuite poursuivie en activant la perturbation pour obtenir in fine une écoulement avec une pertubation complètement développée. Cette seconde séquence est à son tour poursuivie avec la commande activée ou non.Les figures 3 et 4 montrent les champs instantanés de la vorticité ω z longtemps après le début de la troisième séquence dans laquelle le signal de commande a été activée ou non. Ces figures montrent clairement l'efficacité du contrôle en boucle fermée. L'apparition des tourbillons de Kelvin-Helmholtz causés par les perturbations amont est repoussée plus loin en aval de sorte que l'état désiré est maintenu dans la région de mesure et même au delà.

En outre, la figure 5 montre que la norme du vecteur d'état est réduite de plusieurs ordres de grandeur lorsque le contrôle est activé. Cette performance est atteinte en raison d'une commande qui s'oppose à la perturbation et grâce à un estimateur de la perturbation performant, comme le montre la figure

6

.
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