
HAL Id: hal-01578466
https://hal.science/hal-01578466

Submitted on 6 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Reference Point Method, a ”hyperreduction”
technique: Application to PGD-based nonlinear model

reduction
Matteo Capaldo, Pierre-Alain Guidault, David Néron, Pierre Ladevèze

To cite this version:
Matteo Capaldo, Pierre-Alain Guidault, David Néron, Pierre Ladevèze. The Reference Point Method,
a ”hyperreduction” technique: Application to PGD-based nonlinear model reduction. Computer
Methods in Applied Mechanics and Engineering, 2017, 322, pp.483-514. �10.1016/j.cma.2017.04.033�.
�hal-01578466�

https://hal.science/hal-01578466
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Reference Point Method, a “hyperreduction” technique:

application to PGD-based nonlinear model reduction

M. Capaldoa, P.-A. Guidaultb,∗, D. Néronb, P. Ladevèzeb

aEDF R&D, THEMIS/R22, 91120 Palaiseau, France
bLMT, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France

Abstract

A new approximation technique, called Reference Point Method (RPM), is proposed in order to reduce
the computational complexity of algebraic operations for constructing reduced-order models in the case of
time dependent and/or parametrized nonlinear partial differential equations. Even though model reduction
techniques enables one to decrease the dimension of the initial problem in the sense that far fewer degrees
of freedom are needed to represent the solution, the complexity of evaluating the nonlinear terms and
assembling the low dimensional operator associated with the reduced-order model still scales with the size
of the original high-dimensional model. This point can be critical, especially when the reduced-order basis
changes throughout the solution strategy as it is the case for model reduction techniques based on Proper
Generalized Decomposition (PGD). Based on the concept of spatial, parameter/time reference points and
influence patches, the RPM defines a compressed version of the data from which an approximate low-rank
separated representation by patch of the operators can be constructed by explicit formulas at low-cost
without resorting to SVD-based techniques. An application of the RPM to PGD-based model reduction for
a nonlinear parametrized elliptic PDE previously studied by other authors with reduced-basis method and
EIM is proposed. It is shown that computational complexity to construct the reduced-order model can be
divided in practice by one order of magnitude compared with the classical PGD approach.

Keywords: RPM, nonlinear model reduction, PGD, reduced basis, LATIN method, hyperreduction

1. Introduction

Numerical simulation has been playing an increasingly important role in science and engineering due
to the need to describe realistic scenarios and derive tools to facilitate the virtual design of new structures
while reducing the use of real prototypes. Most of the time, engineers are interested into specific quantities
called outputs (e.g. forces, critical stresses, pressure drops...) in some particular zones, rather than into5

the description of the model at each point of the considered domain. These outputs are functions of the
system parameters, called inputs (e.g. geometry parameter, material properties, boundary conditions and
loadings...), that define a particular configuration of the model. The evaluation of these outputs needs the
solution of the underlying PDE that requires a computational cost which, in some engineering fields, can
be very high, especially when the simulations concern nonlinear analyses of complex high-fidelity models.10

Moreover, engineering design and optimization may require thousands of these evaluations, sometimes in
real-time. A challenging issue would be to provide engineers with a kind of Virtual Chart constructed during
an offline stage that can be CPU intensive. Once constructed, it can be used online to solve real-time or
many queries simulations. Despite of the continuing progress in computer speeds and hardware capabilities,
the construction of those charts would be hardly tractable with classical numerical approaches.15

∗Corresponding author
Email address: pierre-alain.guidault@ens-paris-saclay.fr (P.-A. Guidault)

Model reduction techniques aim at circumventing this obstacle by seeking the solution of a given prob-
lem in a reduced-order basis (ROB), whose dimension is much smaller than the size of the original high-
dimensional model. These techniques take advantage of the redundancy of information that usually exists
when describing the solution. In applied mathematics, the first proposed model reduction technique was the
Proper Orthogonal Decomposition (see [1, 2, 3, 4, 5] or the review [6] for more examples). Techniques based20

on POD involve a learning phase which consists in solving the problem at some particular time instants
and/or parameter values arbitrarily chosen, either from the full-order model in space or, sometimes, from a
simplified model. These solutions, called snapshots, can be CPU-expensive. A ROB is subsequently formed
by considering only the most relevant POD modes of these snapshots. The reduced-order model (ROM)
is then classically generated by Galerkin projection onto the ROB and solved for the entire time and/or25

parameter domain, but other approaches such as Petrov-Galerkin or minimization techniques can also be
used. The strong point of these techniques is the fact that, the number of the most relevant POD modes is
often much lower than the size of the full-order model in space, however it is case sensitive [7]. For instance,
in dynamics computations, changes in boundary conditions can drastically affect the POD accuracy and a
high number of snapshots may be required [7, 8]. Since the 80’s, the Reduced-Basis (RB) approach has been30

developed and consists in a greedy algorithm to select the most relevant calculations to be performed on the
parametric space in order to enrich the ROB [9, 10, 11, 12, 13, 14, 15, 16, 17]. In this technique, snapshots
are selected by a greedy algorithm such that the new (n + 1)th snapshot minimizes the residue, associated
with a chosen norm, of the solution achieved by solving the original problem projected onto the n-order
reduced basis. In that way, this strategy ensures the quality of the reduced-order basis for the construction35

of the ROM and palliates the case-sensitivity of POD.
Another appealing family of model reductions which has received a growing interest during the last

decade is based on the Proper Generalized Decomposition (PGD). This technique does not need to solve
the full-order model since it does not require snapshots to build up the ROB. Basically, PGD consists in
seeking the solution of a problem in a relevant ROB which is generated automatically and on-the-fly by40

a greedy or power iterations algorithm. The interested reader is referred to [18] for a review on PGD-
based techniques and to the book [19] for a handbook on separated representations and model reduction
techniques. A valuable survey on the use of separated representations for solving parametric models can
also be found in [20]. In the field of computational mechanics, PGD was used in [21] under the name of
radial loading approximation as one of the fundamental ingredients of the LATIN (Large Time Increment)45

method [22], a non-incremental solution strategy for nonlinear evolution problems. By an alternating-
direction scheme, the strategy generates approximations of the solution on the entire time-space domain by
successive corrections and, consequently, is likely appropriate for time-space separated representation. In
this context, PGD enabled to circumvent efficiently storage issue of iterates defined on the whole time-space
domain while saving drastically the computational time. One of the significant improvements of the strategy50

concerns the introduction of a Preliminary step, which consists in first updating the time functions at each
LATIN iteration by using the ROB generated at the previous iteration in order to compute a new iterate
[23, 24, 25, 26, 27, 28]. Called Update step in [29, 30] with Newton-like solution strategies, this step has
proved efficiency to reduce the number of PGD functions generated while keeping the most relevant ones
to produce the best approximate separated representation of the solution. However, this step can be time55

consuming in practice and may represent between fifty and seventy percent of the total CPU time [31].
More generally, model reduction techniques are particularly efficient when the ROM needs to be con-

structed only once or when this step can be performed offline, prior to the online resolution of this model
which can then be very fast. This is the case of parametrized time-invariant systems [32], linear stationary
and quasi-stationary systems whose operators are affine functions of the input parameters [16]. On the60

contrary, when the projection is applied to linear dynamics or stationary systems with non-affine param-
eter dependence, or general nonlinear problems, the resulting ROM is costly to assemble, decreasing the
efficiency of reduced-order modeling. Indeed, for any model reduction technique based on the projection
of the problem on a given reduced-order basis, the computational complexity of evaluating the nonlinear
terms (Jacobian or residue of the solution strategy) and assembling the ROM’s low dimensional operator65

scales with the size of the original high-dimensional model. This point can be critical especially when the
reduced-order basis changes throughout the solution strategy as it is the case for model reduction tech-

2

niques based on Proper Generalized Decomposition (PGD). This makes the bottleneck of model reduction
strategies applied to nonlinear problems.

Several techniques have been introduced in the literature in order to tackle this issue, especially for70

model reduction techniques based on a learning stage (POD-Galerkin or reduced basis method for instance).
Among them, the Empirical Interpolation Method (EIM) is probably one of the most popular. It has
been developed in particular for linear elliptic problems with non-affine parameter dependence [33] as well
as for nonlinear elliptic and parabolic problems [15]. Several variants can be found in the literature. To
name a few, one can cite the Best Interpolation Point Method (BPIM) [34] or the Discrete EIM (DEIM)75

[35]. Another family of techniques that tackles nonlinear reduced-order modeling is the one that belongs to
the Gappy-POD application, as the A priori Hyper-Reduction (APHR) [36], the Missing Point Estimation
(MPE) [37], the Gauss Newton with approximated tensors (GNAT) [38]. More recently, [39] has introduced
the Energy-Conserving Sampling and Weighting (ECSW), allowing not only to focus on the accuracy of the
approximated function, but also to preserve the energetic aspect of the solution.80

Concerning PGD-based model reduction, techniques to overcome the aforementioned bottleneck seems to
be by far less numerous. As previously said, the possibility to enrich the reduced-order basis throughout the
computation is definitely an advantage to tackle nonlinear problems efficiently. However the fact that ROB
changes quite often makes the previous techniques such as EIM less suitable in the context of PGD, a priori.
Indeed, for a fixed number of best/magic interpolation points the error in the coefficient functions used to85

interpolate the nonlinear terms ultimately dominates when the size of the ROB increases [15]. Adding more
magic points may be necessary as long as the ROB evolves. Such an adaptative strategy can obviously be
derived but it may be not very efficient in this context, at least in the LATIN framework.

In the present article, a more pragmatic approach is proposed. Based on the concept of spatial, time
and parameter reference points associated to influence patches, the Reference Point Method (RPM) defines90

a compressed version of the data from which an approximate low-rank separated representation by patch of
operators can be constructed by explicit formulas at low-cost. In this work, RPM is applied to PGD-based
nonlinear model reduction with the LATIN solution strategy. More precisely, it is used at each LATIN
iteration to solve the Preliminary step, which consists in an update of the reduced model from the current
ROB. As previously said, this step is time consuming and may represent up to seventy percents of the total95

CPU time. In practice, the RPM enables to decrease the cost of this stage of one order of magnitude to make
it represent less than ten percents of the total computational time, which is very promising. It is important
to note that contrary to an interpolation technique, it is rather an approximation technique of the integrals
involved in the ROM construction similarly to quadrature techniques in classical finite element methods.
The key point is that, even though the integral computations are not enough accurate, the PGD-model100

reduction technique can anyway improve it by adding new correction functions to the ROB at the next
LATIN iterations, which ensures the convergence of the whole process.

The article is structured as follows. A reference problem previously investigated by other authors by
reduced-basis techniques with EIM [15] or POD with DEIM [35] is first presented in Section 2. The studied
nonlinear parametrized elliptic PDE is solved by the LATIN-PGD method and the aforementioned bottle-105

neck of nonlinear model reduction is illustrated. The Reference Point Method is presented in Section 3 and
its basic features (reference points, patches, generalized components) are introduced. It is shown that the
space of generalized components provides a framework that presents interesting properties dealing with the
elementary algebraic operations [40], which simplifies the evaluation of integrands. The way to reconstruct
by explicit formulas an approximate low-rank separated representation by patch of operators is also de-110

tailed. Keeping a separated representation of the quantities and operators without resorting to SVD-based
techniques is indeed a great advantage regarding integral computation by separation of variables. A com-
parison between the RPM applied to PGD-based nonlinear model reduction and EIM with reduced-order
basis technique is proposed in Section 4 in order to appreciate and illustrate the performances of the RPM.

2. PGD-based model reduction of a nonlinear parametrized elliptic PDE115

The reference problem that motivates the study is first presented in Section 2.1. It was previously
investigated through EIM with reduced-basis technique in [15] and DEIM with POD in [35]. In these works,

3

a Newton-based nonlinear solution strategy was used. Here, an alternating-direction scheme, the LATIN
method, is used as detailed in Appendix A. The LATIN iterative scheme generates approximations of
the solution on the entire space-parameter domain by successive corrections and, consequently, is likely120

appropriate for space-parameter separated representation. A PGD-based model reduction is introduced
within the LATIN method as detailed in Section 2.2. The issue of computational complexity of nonlinear
model reduction is discussed in Section 2.3.

2.1. Reference problem formulation

Let us consider as a reference problem, the nonlinear parametrized elliptic PDE first studied in [15, 35]125

defined on a spatial domain Ω ⊂ R
2 and a parameter domain D ⊂ R

2 and stated as follows:

Problem 1 (Strong form). Find u(x,µ) with x = (x1, x2) ∈ Ω =]0, 1[2 and µ = (µ1, µ2) ∈ D =
[0.01, 10]2 and homogeneous Dirichlet boundary condition on ∂Ω×D, such that:

{
−∇2u + g(u;µ) = f(x) on Ω×D

u = 0 on ∂Ω×D

with:
g(u;µ) =

µ1

µ2
(eµ2u − 1) and f(x) = 100 sin(2πx1) sin(2πx2)

This problem can be interpreted as a stationary diffusion problem with a parametrized nonlinear interior
heat source term.

A space weak formulation of Problem 1 can be proposed. In this case, the solution u is identified
with a function defined on D with values in Hilbert space V = H1

0 (Ω) = {u ∈ H1(Ω); u = 0 on ∂Ω}, i.e.130

u(µ) : x 7→ u(µ)(x) ≈ u(x,µ), and Problem 1 can be stated as follows:

Problem 2 (Space weak form). Given µ ∈ D, find u : D → V such that:

∀ v ∈ V, a(u, v) +

∫

Ω

g(u;µ) v dx = l(v)

where a(·, ·) is a bilinear form on V and l(·) is a linear form on V defined by:

a(u, v) =

∫

Ω

∇u · ∇v dx and l(v) =

∫

Ω

f(x) v dx

Term g(u;µ) is a nonaffine nonlinear function of the parameter µ, spatial coordinate x, and field variable
u(x,µ). Bilinear term a(u, v) and linear term l(v) are V-continuous bounded functionals and are parameter-
independent. It is shown in [15] that Problem 2 is well-posed and that it admits a unique solution u ∈ V.

135

A space-parameter weak formulation of Problem 1 can also be proposed. The following function space
is introduced:

S = L2(D,V) = { u : D → V ,

∫

D

‖u‖2V dµ < ∞ }

where ‖ · ‖V is a norm on V. A space-parameter weak formulation of Problem 2 can be defined by the
following problem:

Problem 3 (Space-parameter weak form). Find u ∈ S such that:

∀ v ∈ S, A(u, v) +G(u, v) = L(v)

where A and L are bilinear and linear forms defined by:

A(u, v) =

∫

D

a(u(µ), v(µ)) dµ and L(v) =

∫

D

l(v(µ)) dµ

The nonlinear form G is defined by:

G(u, v) =

∫

D×Ω

g(u;µ) v dx dµ

4

Problem 2 can be easily solved by introducing a finite element approximation space Vh ∈ V of u and
by using a Newton-based nonlinear solution strategy. In the following, the reference solution refers to the
solution obtained by a finite element mesh of 50 × 50 bilinear quadrilateral elements leading to a finite140

element approximation space of dimension N = 2601. The approximate solution uh of u for two sets of
parameters, µ = (0.01, 0.01) and µ = (10, 10), is given in Figure 1. It can be seen that the parameter µ1

controls the strength of the sink term whereas µ2 changes the strength of the nonlinearity, the exponential
function µ1 e

µ2u increasing more the peak magnitude of the negative part of u than the magnitude of the
positive one.

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

µx

(a) µ = (0.01, 0.01)

0

0.5

1

0

0.5

1
−1.5

−1

−0.5

0

0.5

µx

(b) µ = (10, 10)

Figure 1: Solution of Problem 2 for different parameter values and a finite element mesh of 50 × 50 bilinear quadrilateral
elements (N = 2601)

145

2.2. The LATIN-PGD method

In order to solve Problem 3, the LATIN method is used as a nonlinear solution strategy (see Ap-
pendix A for further details). By an alternating-direction scheme, the strategy generates approximations
of the solution on the entire space-parameter domain by successive corrections. In this case, it shares similar
features with alternating-direction nonlinear solution strategy and augmented Lagrangian methods [41].150

The LATIN iterative scheme generates approximations of the solution on the entire space-parameter
domain by successive corrections and, consequently, is likely appropriate for space-parameter separated
representation. By denoting P = L2(D;R2) := L2(D) and by identifying the space S = L2(D,V) with the
tensor product space V ⊗ P, the correction δu(n+1) of the global stage (see Problem 6 in Appendix A)
is sought in V ⊗ P. The following approximation of order k of the iterate u(n+1) is proposed:

u(n+1)(x,µ) ≈ u
(n+1)
k (x,µ) = u(0)(x,µ) +

k∑

i=1

Φi(x) λi(µ) (1)

where u(0) ∈ Ad is an initial approximation of the solution that verifies the boundary conditions and
which can be possibly given under separated representation provided that it is admissible. Each PGD
pair (λi,Φi) ∈ P × V is unknown and determined throughout the computation by a greedy algorithm.
The construction of a new space function Φi is by far the most expensive step of this process. Thus, at155

a given iteration n + 1 of the nonlinear solver, it is advantageous to first reuse the reduced-order basis
Wk = {Φi}16i6k generated up to iteration n by updating the parameter functions {λi}16i6k [27]. One
proceeds with the global stage at the iteration n+ 1 of the nonlinear solver as follows:

1. Preliminary step: reuse of the current reduced-order basis [23, 24, 25, 26, 27, 30]. This step consists in
building an approximation of the solution, denoted by s̆(n+1) = (ŭ(n+1), w̆(n+1)), thanks to the ROB

5

generated at the previous iteration n of the nonlinear iterative scheme. This is similar to what is done
during the online stage of classical reduced-order basis techniques. The main difference comes from the
fact that here the ROB evolves throughout the iterations which makes pre-computations of operators
inefficient. Due to the bilinearity and linearity of forms involved in (A.7) associated to global stage
(see Problem 5 in Appendix A), one seeks an approximation of order k of the correction δu(n+1)

such that: 





ŭ(n+1) = u(n) + δu(n+1)

δu(n+1)(x,µ) ≈ δu
(n+1)
k (x,µ) ≈

k∑

i=1

Φi(x) δλi(µ)

(2)

Assuming that an approximation of order k of u(n) is available from the previous iteration n of the
nonlinear iterative scheme, an approximation of ŭ(n+1) can be deduced as follows :

ŭ(n+1) ≈ u(n) + δu
(n+1)
k = u(0)(x,µ) +

k∑

i=1

Φi(x) (λi(µ) + δλi(µ)) (3)

Here, the only unknowns are the functions {δλi}16i6k depending on the parameters. Given a ROB
of space functions Wk = {Φi}16i6k, one seeks the best linear combination of this ROB which solves160

Problem 6 defined in Appendix A. By choosing for test function v = Φj(x) λ
∗(µ) with 1 6 j 6 k,

the Preliminary step problem reads:

Problem 4 (Preliminary/update step). Find parameter corrections {δλi}16i6k such that:

1 6 j 6 k, ∀λ∗ ∈ P,

k∑

i=1

∫

D

λ∗

(

a(Φi,Φj) +

∫

Ω

Φi H
−(u(n);µ) Φj dx

)

δλi dµ = −

∫

D

λ∗ R(u(n),Φj ;µ) dµ (4)

It is worth noting at the fact that terms a(Φi,Φj) are parameter-independent and can be computed
once for all parameter values provided that the ROB does not change. However, nonlinear terms
Φi H−(u(n);µ) Φj and residue R(u(n),Φj λ∗;µ) depend on g(u(n);µ) and have to be evaluated for165

each new parameter value and iterate u(n) anyway. As shown in Section 2.3, this results in a
computational cost that scales with the size of the original high-dimensional model.

2. Preliminary step performance indicator : The preliminary step produces a first approximation ŭ(n+1) ≈

u(n) + δu
(n+1)
k of Problem 6 (see Appendix A) at the iteration n + 1 by seeking the solution in

the span of the already existing ROB, generated at the previous iteration n (see (2)). In order to
appreciate the improvement of the solution between two consecutive LATIN iterations thanks to the
preliminary step, the following performance indicator [42], based on LATIN error indicator δL (see
(A.9)), is proposed:

η0 =
e1 − e2

e1
> 0 with e1 =

‖u(n) − û(n−1/2)‖
1
2 ‖u

(n) + û(n−1/2)‖
and e2 =

‖ŭ(n+1) − û(n+1/2)‖
1
2 ‖ŭ

(n+1) + û(n+1/2)‖
(5)

Due to the particular choice made for search direction H+ (see (A.2)), one has:







e1 =
‖u(n) − u(n−1)‖

1
2 ‖u

(n) + u(n−1)‖
=

‖δu(n)‖
1
2 ‖u

(n) + u(n−1)‖
= δ

(n)
L

e2 =
‖ŭ(n+1) − u(n)‖

1
2 ‖ŭ

(n+1) + u(n)‖
=

‖δu
(n+1)
k ‖

1
2 ‖ŭ

(n+1) + u(n)‖

(6)

6

If the value of η0 is higher than a given threshold, the correction δu
(n+1)
k is significant and the global

stage at the iteration n + 1 is considered to be solved. One can proceed to a new LATIN iteration,
that is to say to a new local stage. Otherwise, one proceeds to the generation of a new PGD pair as170

described hereafter.

3. Generation of a new PGD pair : The prediction ŭ(n+1) ≈ u(n)+δu
(n+1)
k previously computed during the

preliminary step is considered to be known but it is not good enough and the performance indicator (5)
is lower than a given threshold. Then a new PGD pair is sought to enrich the previous approximation
by solving Problem 6 (see Appendix A) by a progressive Galerkin PGD procedure. The new PGD
pair is generated to approximate the correction δu(n+1) = u(n+1) − u(n) of the LATIN iteration n+ 1

(see (2)). Let assume that a decomposition δu
(n+1)
k (denoted by δuk in the following to alleviate the

notations) of order k is known. Thus, a new approximation of u(n+1) can be defined as:

u(n+1) ≈ u
(n+1)
k+1 = u(n) + δu

(n+1)
k +Φλ = u(n) + δu

(n+1)
k+1 (7)

The progressive definition of a new couple (Φ, λ) ∈ V⊗P is defined as the one that verifies the following
Galerkin orthogonality condition :

∀λ∗ ∈ V, ∀λ∗ ∈ P,
∫

D

a(δuk +Φλ,Φλ∗ +Φ∗λ) dµ+

∫

D×Ω

H−(u(n);µ)(δuk +Φλ)(Φλ∗ +Φ∗λ) dx dµ = . . .

. . .−

∫

D

R(u(n),Φλ∗ +Φ∗λ;µ) dµ (8)

That is to say:

∀Φ∗ ∈ V, ∀λ∗ ∈ P,
∫

D

a(Φλ,Φλ∗ +Φ∗λ) dµ+

∫

D×Ω

H−(u(n);µ) Φλ (Φλ∗ +Φ∗λ) dx dµ = . . .

. . .−

∫

D

R̆(u(n), δuk,Φλ
∗ +Φ∗λ;µ) dµ (9)

where :






R̆(u(n), δuk, v;µ) = R(u(n), v;µ) + a(δuk, v) +

∫

Ω

H−(u(n);µ) δuk v dx

R(u(n), v;µ) = a(u(n), v) −

∫

Ω

f(x) v dx +

∫

Ω

g(u(n);µ) v dx

The two following mappings are introduced:

Definition 1 (Space function mapping). Sk+1 : P → V is the application that maps a parameter
function λ ∈ P into a space function Φ = Sk+1(λ) ∈ V is defined as follows:

∀Φ∗ ∈ V,

a(Φ,Φ∗)

(∫

D

λ2 dµ

)

+

∫

D×Ω

λΦ H−(u(n);µ) Φ∗λ dx dµ = −

∫

D

R̆(u(n), δuk,Φ
∗λ;µ) dµ (10)

Definition 2 (Parameter function mapping). Pk+1 : V → P is the application that maps a space
function Φ ∈ V into a parameter function λ = Pk+1(Φ) ∈ P is defined as follows:

∀λ∗ ∈ P,

a(Φ,Φ)

(∫

D

λλ∗ dµ

)

+

∫

D×Ω

λΦ H−(u(n);µ) Φλ∗ dx dµ = −

∫

D

R̆(u(n), δuk,Φλ
∗;µ) dµ (11)

7

Definition 3 (Progressive Galerkin PGD). A couple (Φ, λ) ∈ V ⊗ P verifies (8) if and only if
Φ = Sk+1(λ) and λ = Pk+1(Φ), i.e. Φ = Sk+1(λ) and λ (resp. λ = Pk+1(Φ) and Φ) is a fixed point of
mapping Gk+1 = Pk+1 ◦ Sk+1 with λ = Gk+1(λ) (resp. G′

k+1 = Sk+1 ◦ Pk+1 with Φ = G′
k+1(Φ)).175

Algorithm 1 Progressive PGD to generate the (k + 1)th new PGD pair (Power iterations algorithm)

1: λ← λ(0) ⊲ Initialize parameter function, e.g. λ(0) = aµ1 + bµ2 with (a, b) ∈ R
2

2: for l = 1 to lmax do
3: Compute Φ = Sk+1(λ) ⊲ Solve problem of Definition 1
4: Normalize Φ
5: Compute λ = Pk+1(Φ) ⊲ Solve problem of Definition 2
6: Check stagnation of λ ⊲ Use for instance the L2(D) norm
7: end for
8: Φk+1 ← Φ and λk+1 ← λ

A power iterations algorithm that iteratively generates parameter function λ and space function Φ is
used as shown in Algorithm 1. The interested reader could refer to [29, 22, 43] for further details.
Once this new pair of parameter and space functions is computed, the (k + 1)th space function is
orthogonalized and added to the reduced-basis to form Wk+1. In practice, only one new PGD pair is
added per LATIN iteration to approximate correction δu(n+1) but nothing prevents one to generate180

more than one.

The final algorithm of the LATIN-PGD nonlinear solution strategy is finally given in Algorithm 2 of
Appendix B.

Remark 1. In the case of high-dimensional parametric models, different update strategies can be proposed
[30]. More precisely, for a large number r of parameters (µ1, ...,µr), a separated variables representation of185

the solution under the form u(x,µ1, . . . ,µr) ≈
∑k

i=1 Φi(x)λ
1
i (µ1)...λ

r
i (µr) can be proposed similarly to (1)

(see for instance [20]). Among others, a possible strategy consists in successive updates of the k functions
{λl

i}16i6k along each selected dimension l according to a particular sequence [30]. In this case, the update
of the k functions {λl

i}16i6k for a given dimension l with λl
i ∈ Pl can be stated as Problem 4 whose

dimension is k×dim(Pl). Obviously, the updating step along a particular dimension l is affordable provided190

that dim(Pl) is reasonably small.

2.3. Bottleneck of nonlinear model reduction – A brief complexity analysis

In order to illustrate the bottleneck of nonlinear model reduction and to explain why the construction of
the reduced-order model involved during the preliminary step is CPU intensive, let come back to Problem 4
solved at the preliminary step. By introducing a finite element approximation space Vh ∈ V, with:

Vh =

{

v(x) =

N∑

i=1

viϕi(x); ϕi ∈ V, v
i ∈ R

}

(12)

a space function Φi(x) can be approximated as follows : Φi(x) ≈
∑N

j=1 Φ
j
iϕj(x) = Φj

iϕj in indicial notation
where repeated indices are summed over their range. Thus (4) can be discretized as follows:

1 6 j 6 k, ∀λ∗ ∈ P,

k∑

i=1

∫

D

λ∗(µ)
(

Φl
i Alm Φm

j +Φr
i Grs(u

(n);µ) Φs
j

)

δλi(µ) dµ = −

∫

D

λ∗(µ) Rt(µ) Φ
t
j dµ (13)

8

or:

1 6 j 6 k, ∀λ∗ ∈ P,

k∑

i=1

(
Φl

i Alm Φm
j

)
(∫

D

λ∗(µ) δλi(µ) dµ

)

︸ ︷︷ ︸

First term

+Φr
i

(∫

D

λ∗(µ) Grs(u
(n);µ) δλi(µ) dµ

)

Φs
j

︸ ︷︷ ︸

Second term

= . . .

. . .− Φt
j

∫

D

λ∗(µ) Rt(µ) dµ (14)

where A and G are N ×N matrices whose entries are defined by :

Aij = a(ϕi, ϕj) and Gij =

∫

Ω

ϕi H
−
(

u(n);µ
)

ϕj dx

Elements of the N -length vector R are given by: Ri = −R(u
(n), ϕi;µ).

If a finite element approximation space Ph ∈ P is now introduced, with:

Ph =

{

λ(µ) =

p
∑

i=1

λiξi(µ); ξi ∈ P, λ
i ∈ R

}

(15)

a parameter function λi(µ) can be approximated as follows : λi(µ) ≈
∑p

j=1 λ
j
i ξj(µ) = λj

i ξj . By denoted

by [Φi] ∈ R
N (resp. [λi] ∈ R

p) the nodal vector associated with the discretization of space function Φi

(resp. parameter function λi) and by W k = [[Φ1][Φ2] . . . [Φk]] the N × k matrice of the discretized k−order
reduced basis, the sum over i of first terms in (14) gives:









W T

k
︸︷︷︸

k×N

A
︸︷︷︸

N×N

W k
︸︷︷︸

N×k




⊗ M

︸︷︷︸

p×p













[δλ1]
[δλ2]
...

[δλk]








︸ ︷︷ ︸

pk×1

(16)

where ⊗ denotes the tensor product of matrices (Kronecker product) and M is a p×p matrice whose entries195

are defined by M ij =
∫

D
ξi ξj dµ.

Projection of discretized operator A onto the discretized reduced-order basis W k involves two matrice-
matrice products resulting into a computational complexity that scales with O(Nk) (resp. O(N2 k)) if
A is sparse (resp. full) to compute AW k and O(Nk2) for left multiplication by W T

k . Complexity for200

evaluating tensor product is O(pk2) if M is sparse. Thus, computational complexity for computing the

kp×kp matrice
(

W T
kAW k

)

⊗M is O(Nk+Nk2+pk2) (resp. O(N2k+Nk2+p2k2)) if A is sparse (resp.

full). Since discretized operator A is parameter-independent, separation of variables is possible to compute
the integrals over the space-parameter domain (Kronecker product). Consequently, provided that the ROB
does not evolve, the k× k matrice W T

kAW k can be pre-computed and factorized, if needed, offline. This is205

the reason why model reduction techniques are particularly efficient and appealing for parametrized time-
invariant systems [4] or linear stationary and quasi-stationary systems whose operators are affine functions
of the input parameters [16].

On the contrary, the parameter-dependency of the discretized operator G in the second term of (14)
prevents the separation of integrals. Separation of the operator as a tensor product is not straightforward.210

Moreover, it has to be evaluated for each new iterate u(n)(x,µ) at a computational complexity of O(pNk2)
(resp. O(pN2k)) if the discretized operator is sparse (resp. full) [15, 35]. One can also show that complexity

9

for evaluating nonlinear residue (right-hand side member of (14)) is O(pNk). In short, the expected de-
crease in computational cost by using reduced-basis approximation is consequently quite modest whatever
the dimension reduction k ≪ N is.215

This bottleneck is clearly not specific to PGD-based model reduction but more generally to reduced-
basis approximation in nonlinear model reduction. This problem arises due to the fact that: (i) Galerkin
projection onto the ROB has to be performed as soon as the reduced-order basis evolves, (ii) non-linear
terms (Jacobian and residue) have to be evaluated at each iteration of the solution strategy for each new220

iterate which prevents pre-computations of operators. Many works have already been done to tackle this
issue as discussed in the introduction.

3. The Reference Point Method

The goal of the Reference Point Method described in this section, is to decrease the computational cost of
integrals arising from Galerkin projection. For that two main features are introduced: (i) an approximation225

framework with the introduction of reference points to simplify the evaluation of integrands, (ii) a low-
cost technique to reconstruct by explicit formulas an approximate low-rank separated representation by
patch of operators without resorting to SVD-based techniques, which is a great advantage regarding integral
computation by separation of variables. The motivations of the proposed technique are first presented in
Section 3.1. The basics of the Reference Point Method are given in Section 3.2 before being applied to230

Problem 1 in Section 3.3.1. A brief computational complexity analysis is proposed in Section 3.3.2 to
estimate the expected gain in computational cost.

3.1. Motivations

Among the techniques introduced to tackle the aforementioned bottleneck, the Empirical Interpolation
Method (EIM) [33] is probably one of the most popular. It proposes an inexpensive interpolation procedure
of nonlinear terms based on the offline construction of a suitable additional reduced-basis approximation
space. More precisely, EIM enables to provide an approximation of nonlinear function g as follows:

g(u(n);x,µ) ≈ gM (u(n);x,µ) =
M∑

m=1

ϕM
m (µ) qm(x) (17)

where M (with M ≪ N, p) interpolation “Magic” points {xM
m }16m6M of the space domain and M “Magic”

points of the parameter domain {µM
m }16m6M are computed by a greedy selection process in order to build235

the M interpolation functions {qm(x)}16m6M during an offline stage. For each iterate u(n), coefficient
functions {ϕM

m (µ)}16m6M have to be updated online for the reduced-order model of u(n) evaluated at
interpolation “Magic” points {xM

m }16m6M . Note that, according to [15], approximation function gM is
interpolant at the “Magic” spatial points, i.e. g(u(n);xM

m ,µ) = gM (u(n);xM
m ,µ) for 1 6 m 6 M .

Let consider Problem 4 involved at the preliminary step, which is nothing more than an update of the
reduced model from the current ROB. Thanks to EIM, tangent operator can be approximated as follows:

H−(u(n);x,µ) =
∂g(u;µ)

∂u

∣
∣
∣
∣
u=u(n)

≈ H−
M (u(n);x,µ) =

M∑

m=1

ϕ̄M
m (µ) qm(x) (18)

where ϕ̄M
m is the partial derivative of ϕM

m with respect to argument µ. Approximation of residue R with
EIM is done accordingly but not detailed hereafter. Interested reader can refer to [15] for further details.
Thus, (4) can be approximated with EIM as follows:

1 6 j 6 k, ∀λ∗ ∈ P,

k∑

i=1

∫

D

λ∗

(

a(Φi,Φj) +
M∑

m=1

ϕ̄M
m (µ)

(∫

Ω

Φi qm(x) Φj dx

))

δλi dµ = −

∫

D

λ∗ R(u(n),Φj ;µ) dµ

(19)

10

Provided that theM functions {qm(x)}16m6M and reduced-order basisWk = {Φi}i=16i6k are known, terms240

a(Φi,Φj) and
∫

Ω
Φi qm(x) Φj dx are parameter-independent and thus can be pre-computed. In this case, it

is shown in [15] that the computational complexity at each iteration for the Galerkin projection (resp. the
determination of coefficient functions {ϕM

m (µ)}16m6M) is O(k2M) (resp. O(M2)). Since M,k ≪ N , the
online complexity is consequently independent of N , the dimension of the underlying initial finite element
approximation space.245

EIM could be used to solve the preliminary step, however the fact that the ROB changes quite often
throughout the iterations of the LATIN nonlinear solver makes of this technique less suitable. Indeed, for
a fixed number M of best/magic interpolation points the error in the coefficient functions {ϕM

m (µ)}16m6M

used to interpolate the nonlinear terms ultimately dominates when the size k of the ROB increases [15].250

Adding more magic points may be necessary as long as the ROB evolves. Such an adaptative strategy could
be derived but it may be not very efficient in this context, at least in the LATIN framework. Moreover, the
determination of “Magic” parameter points {µM

m }16m6M may be costly particularly for applications where
nonlinear function g is time-dependent as for parabolic parametrized problem [15] or implicitly dependent
to the field variable u for nonlinear problem as it is the case here.255

The RPM proposes a more pragmatic approach. It is not based on the approximation of the nonlinear
function g (i.e. tangent operator H−). On the contrary, it is rather an approximation technique of the
integrals involved in the Galerkin projection similarly to quadrature techniques in classical finite element
methods. More precisely, it aims to compute, at low-cost, each contribution to the ROM, i.e. each term/entry
αij :

αij =

∫

D×Ω

λ∗(µ) Φi(x)H
−(u(n);x,µ) Φj(x) δλi(µ) dx dµ, 1 6 i, j 6 k (20)

where repeated indices are not summed over their range. It is worth noting at the fact that RPM is
used at each iteration of the LATIN method only to solve the preliminary step. Even though the integral
computations are not enough accurate, the PGD-model reduction technique can improve it by adding new
correction functions to the ROB throughout the LATIN iterations, which ensures the convergence of the260

whole process.

3.2. Basics of the RPM

The RPM aims at constructing an approximate low-rank separated representation by patch of integrand
in (20). In this section, two main features are introduced: (i) an approximation framework with the intro-
duction of reference points (see Section 3.2.1) to simplify the evaluation of integrands (see Section 3.2.2),265

(ii) a low-cost technique to reconstruct by explicit formulas an approximate low-rank separated representa-
tion by patch of integrands (see Section 3.2.3).

Integrand of (20) involves the product of several operands: the nonlinear function H−(u(n);x,µ) pre
and post multiplied by the terms λ∗(µ)Φi(x) and Φj(x)δλi(µ). For the sake of clarity, instead of integrand
of (20), let consider the product of two scalar functions depending on two variables. This simple example
will be much more convenient to figure the approximation procedure:

F (µ, x) = f(µ, x) f ′(µ, x) (21)

where f(µ, x) and f ′(µ, x) are two scalar functions of two variables, µ ∈ D = [0, 1] and x ∈ Ω = [0, 1]. An
example of functions f and f ′ and their product F is given in Figure 2.270

Let assume that f and f ′ are known under separated representation (even though separation property
is not always satisfied for any quantity, like H−):

f(µ, x) =

k∑

i=1

λi(µ)Λi(x) and f ′(µ, x) =

k′

∑

i=1

θi(µ)Θi(x). (22)

11

(a) Scalar function f(µ, x) (b) Scalar function f ′(µ, x) (c) Product F (µ, x) = f(µ, x)f ′(µ, x)

Figure 2: Example of two scalar functions depending on two variables and their product

Note that each evaluation of product F for a given value of x and µ involves 2(k+k′)−1 multiplications and
additions. If a separated representation of product F is needed – to benefit from integral computation by
separation of variables for instance – it would result into aM -term separated representation with M = k×k′.
This M -term representation is likely non-optimal and M may increase swiftly if terms are added to f and
f ′ representations (k and k′ increase). Performing a singular value decomposition of F may be necessary to275

achieve a separated representation of F with a reasonable number of terms. RPM follows a different path
to avoid the artificial increasing of the number PGD modes. As described in the following, RPM enables
one to build an approximate low-rank separated representation by patch of any quantity without resorting
to SVD-based techniques.

3.2.1. Compressed format and generalized components280

The RPM approximation framework is based on the concept of reference points and enables one to define
a reduced representation of the data [40]. The parameter domain is split into mµ sub-intervals Di of size
∆µi. The center µi of sub-interval Di is called parameter reference point. For the space domain, mx points
xj are introduced and the domain Ω is divided into mx sub-domains Ωj of size ∆ωj . The points xj are
called spatial reference points. These reference points are arbitrary and can be chosen independently of285

discretization spaces for unknown quantities.

Di

µi D

Ω

Ω j x j

Figure 3: Parameter and spatial reference points for parameter domain D = [0, 1] and spatial domain Ω = [0, 1]

An influence zone is defined around each reference point of the space-parameter domain defined by the
coordinates of the spatial reference points xj and parameter reference points µi. Part of the domain, Di×Ωj ,
is called reference patch (i, j). Thus, the entire domain D × Ω is divided into mµ ×mx patches.

290

12

A function f defined on the domain D×Ω is represented by its generalized components, f̄ := {(āij , b̄ij)},
defined as follows. For 1 6 i 6 mµ and 1 6 j 6 mx:

f̄ :=

{
āij(µ) = f(µ, xj) if µ ∈ Di | b̄ij(x) = f(µi, x) if x ∈ Ωj

āij(µ) = 0 otherwise | b̄ij(x) = 0 otherwise

}

(23)

The generalized components {āij(µ)}i=1,...,mµ related to spatial reference point xj gives the description of
function f at spatial point xj over the entire parameter domain D. Similarly, the generalized components
{b̄ij(x)}i=1,...,mx

related to parameter value µi gives the description of function f at parameter value µi over
the entire spatial domain Ω. Note that by construction, for 1 6 i 6 mµ and 1 6 j 6 mx:

āij(µi) = b̄ij(xj) (24)

If function f is expressed under separated representation, each pair of functions is described by their gen-
eralized components. Hence, for f(µ, x) =

∑k
i=1 λi(µ)Λi(x), it yields: for 1 6 i 6 mµ and 1 6 j 6 mx:

f̄ :=

{

āij(µ) =
∑k

l=1 λl(µ)Λl(xj) if µ ∈ Di | b̄ij(x) =
∑k

l=1 λl(µi)Λl(x) if x ∈ Ωj

āij(µ) = 0 otherwise | b̄ij(x) = 0 otherwise

}

(25)

In a sense, generalized components provide a kind of compressed format of the quantities. Figure 4 depicts
surfaces defined by functions f and f ′ and their generalized components when mµ = 10 and mx = 10. In
this case, for a two-dimensional function, a generalized component associated with a spatial or parameter
reference point is a quantity defined on a line. For higher dimensions, it corresponds more generally to
hyperplanes, hypersurfaces or submanifolds of the domain accordingly. Some patches for functions f and295

f ′ are depicted in Figure 6. In two dimensions, these patches can be easily represented. In 3D, patches
become volumes. For a scalar function of three variables (f(µ,x) with x = (X,Y)), a patch (i, j) becomes
a parallelepiped, generalized space components b̄ij(x) are snapshots of the two-dimensional spatial solution
for a given value of parameter µi and generalized parameter components āij(µ) are lines (Figure 5).

The algorithm that partitions the domain into patches for an arbitrary number of reference points for300

each coordinate, can easily takes into account the geometry (holes, corners...) of the spatial domain by
moving some spatial reference points where functions are not defined and by slightly adapting the patches
according to the space domain geometry (Figure 7).

Remark 2. For a multivariable function f(µ1, ..., µr, x), ml reference points along a given dimension l can
be introduced. The domain D1 × ...× Dr × Ω is divided into mµ1 × ...×mµr ×mx patches. The definition305

of a reference patch (iµ1 , ..., iµr , j) with 1 6 iµl 6 mµl and 1 6 j 6 mx defined on the part of the domain
Diµ1 × ...×Diµr ×Ωj and the definition of the generalized components similarly to (23) are straightforward.

3.2.2. Algebra in the compressed framework

It is straightforward to show that the RPM framework shows interesting properties regarding elementary
operations on quantities represented under their compressed formats (see Table 1). For instance, Figure 8

Addition f + f ′ = f̄ + f̄ ′

Multiplication f f ′ = f̄ f̄ ′

Derivative ∂f/∂µ = ∂f̄/∂µ

Operator H f = H̄ f̄

Table 1: Elementary operations in the compressed framework

310

illustrates the evaluation of the product F of two functions f and f ′ (see (21)) under their compressed
formats. In order to evaluate the product all over the domain, a reconstruction of the product from the
generalized components F̄ of F has to be proposed as described in the following section.

13

(a) Function f(µ, x)

0

0.5

1

0

0.5

1
−1

0

1

2

µ

X

āij(µ)

b̄ij(x)

(b) Generalized components f̄ of function f(µ, x)

(c) Function f ′(µ, x)

0

0.5

1

0

0.5

1
−1

0

1

2

µ

X

ā′ij(µ)

b̄′ij(x)

(d) Generalized components f̄ ′ of function f ′(µ, x)

Figure 4: Generalized components of functions f and f ′ for mµ = 10 and mx = 10

Ω

D
influence zone

ref. point j

X

Y

µ

ā(i, j)(µ)
xj

(a) Generalized parameter component
āij(µ) related to a spatial point xj

influence zone
parameter ref. point i

X

Y

µi

b̄ij(x)

Ω

D

(b) Generalized spatial component
b̄ij(x) related to parameter value µi

reference patch
(i, j)

X

Y

µ

(c) Patch (i, j)

Figure 5: Generalized components and patch (i, j) for a scalar function of three variables (f(µ,x) with x = (X,Y))

3.2.3. Reconstruction of a low-rank separated representation by patch

In this section, the reconstruction procedure of a rank-one separated representation by patch of F is
shown. Denoted by ¯̄F , this reconstruction is obtained from the compressed format F̄ by generating one

14

X

(a) Some patches for function f(µ, x)

X

(b) Some patches for function f ′(µ, x)

Figure 6: Some of the space-parameter patches Di × Ωj of functions f and f ′ for mµ = 10 and mx = 10

Y

X

x
1

x
2

x
25

Figure 7: Correction of a spatial reference point located in a hole for a two-dimensional spatial domain and adaptation of the
patches

0

0.5

1

0

0.5

1

−1

0

1

2

µ

X

āij(µ)

b̄ij(x)

0

0.5

1

0

0.5

1

−1

0

1

2

µ

X

ā0ij(µ)

b̄0ij(x)

0
0.2

0.4
0.6

0.8
1

0

0.5

1

−0.5

0

0.5

1

1.5

µ

X

Āij(µ)

B̄ij(x)

× =

f̄ f̄ 0

F̄

Figure 8: Compressed format F̄ = f̄ f̄ ′ of product F = f f ′

product of functions per space-parameter patch Di × Ωj : for 1 6 i 6 mµ and 1 6 j 6 mx:

∀(µ, x) ∈ Di × Ωj , F (µ, x) ≈ ¯̄F (µ, x) = aij(µ) bij(x) (26)

15

where products of functions aij(µ)bij(x) defined on each patch Di×Ωj are determined from the generalized
components {(Āij(µ), B̄ij(x))} of F̄ thanks to the minimization of the following functional:

1 6 i 6 mµ,

J({(aij , bij)}16j6mx) =

mx∑

k=1

[
∆ωk‖(Āik(µ)− aik(µ)bik(xk)) λik‖

2
Di

+∆µi‖B̄ik(x)− aik(µi)bik(x)‖
2
Ωk

]
(27)

where ‖·‖Di
and ‖·‖Ωj

are the classical L2(Di) and L2(Ωj) norms. Term λik is an influence coefficient which
gives more importance to the neighboring patches of patch Di×Ωk along space coordinate. This functional
measures the distance between the patch reconstruction and the generalized components. Minimization of
functional (27) (see Appendix C) leads to the following explicit formulas: for 1 6 i 6 mµ and 1 6 j 6 mx:

aij(µ) =

∑mx

k=1 ∆ωk Āik(µ) Āik(µi) λ
2
ik

∑mx

k=1 ∆ωk Āik(µi)2 λ2
ik

and bij(x) = B̄ij(x) (28)

It can be noticed that space dimension and parameter dimension are not equally treated. Indeed, space
domain is favored by holding all the information arising from the spatial generalized component B̄ij(x). As
illustrated on Figure 9, one can also see that: for 1 6 i 6 mµ and 1 6 j 6 mx:

∀x ∈ Ω, ¯̄F (x, µi) = B̄ij(x)

This choice is suitable for structural mechanics where the spatial gradients of quantities are usually stronger315

than their variations in parameter (or time) variable. Influence coefficients λik have an influence on parameter
function aij(µ) by weighting the values Āik(µi) (= B̄ik(xk) due to (24)) at the center of patches along space
coordinate.

If one chooses λik = 1 for 1 6 k 6 mx (uniform value), one obtains: for 1 6 i 6 mµ and 1 6 j 6 mx:

aij(µ) =

∑mx

k=1 ∆ωk Āik(µ) Āik(µi)
∑mx

k=1 ∆ωk Āik(µi)2
=

∑mx

k=1 ∆ωk Āik(µ) B̄ik(xk)
∑mx

k=1 ∆ωk B̄ik(xk)2
and bij(x) = B̄ij(x) (29)

In this case, parameter functions aij(µ) are the same for any subdomain Ωj for a given i. Reconstruction
¯̄F is continuous not only for µ = µi but also for any µ ∈ Di with 1 6 i 6 mµ (see Figure 9(c)). This320

may lead to high discontinuities between sub-intervals Di if variations of product according to parameter
variable are significant.

Another limit choice is to consider influence functions such that λik = 1 only for k = j. This leads to
minimizations by patch independent of each other and:

aij(µ) =
Āij(µ)

Āij(µi)
=

Āij(µ)

B̄ij(xj)
and bij(x) = B̄ij(x) (30)

Parameter function aij(µ) is normalized by the value Āij(µi) = B̄ij(xj) (due to (24)) at the center of patch
Di × Ωj and is consequently independent from one patch to another. Note that in this case, denominator
of aij can be null and can lead to numerical difficulties. This may also happen for (28) and (29) but is325

by far less probable. In this situation, adding an appropriate constant value to generalized components
before reconstruction and subtracting the same value subsequently to the reconstruction can easily palliate
this issue. Reconstruction ¯̄F is discontinuous between sub-cells Ωj for all µ ∈ Di except for µ = µi with
1 6 i 6 mµ (see Figure 9(b)).

An optimization of weight functions λik with compact support along spatial coordinate between the two
extreme situations leading to (29) (uniform weight) and (30) (independent minimizations by patch) has to
be done according to the variations of the function F which is approximated by the RPM (see Figure 9(d)).
For all the numerical examples presented hereafter, one chose for (28):

λ2
ik =







1 if k = j
0.1 for k = j − 1 and k = j + 1
0 otherwise

(31)

16

0.6

1

0.8

1

0.8

1.2

2

1.4

0.6

1.6

1.5

M

1.8

µ

0.4 1

2

0.2 0.5

0 0

(a) Function F1

0.6

1

0.8

1

0.8

1.2

2

1.4

0.6

1.6

1.5

RPM approximation

M

1.8

µ

0.4 1

2

0.2 0.5

0 0

(b) Independent minimizations by patch, λik = δik
(e = 2.08%)

0.6

1

0.8

1

0.8

1.2

2

1.4

0.6

1.6

1.5

RPM approximation

M

1.8

µ

0.4 1

2

0.2 0.5

0 0

(c) Uniform value, λik = 1 (e = 3.18%)

0.6

1

0.8

1

0.8

1.2

2

1.4

0.6

1.6

1.5

RPM approximation

M

1.8

µ

0.4 1

2

0.2 0.5

0 0

(d) Optimized value given by (31) (e = 2.00%)

Figure 9: The function F1(x, µ) = e−|(x−0.5)(µ−1)| + sin(xµ) and its approximation ¯̄F1 for mµ = 3 parameters and mx = 3
spatial reference points and different choices of influence functions λik

This optimized value of λik has been obtained by numerical experiments and is suitable for most of the330

functions that have been tested in the present works. Figure 10 shows different approximations ¯̄F1 of
function F1(x, µ) = e−|(x−0.5)(µ−1)| + sin(xµ) for increasing numbers of reference points and the optimized
value of λik given by (31).

The reconstruction of product F (see Figure 2) thanks to its generalized components depicted in
Figure 4 is shown in Figure 11 for an arbitrary regular grid of mµ = 10 parameter reference points and
mx = 10 spatial reference points. This leads to an error of e = 5% with respect to the exact function F .
Error e is defined as follows:

e =
‖F − ¯̄F‖D×Ω

‖ ¯̄F‖D×Ω

with ‖F‖2D×Ω =

∫

D×Ω

F 2 dx dµ =

mµ∑

i=1

mx∑

j=1

∫

Di×Ωj

F 2 dx dµ (32)

335

Remark 3. Reconstruction ¯̄F of a separated representation by patch for a multivariable function F (µ1, ..., µr, x)
needs further investigations. With notations of Remark 2 and by introducing the L2(Di

µl
) norm, ‖ · ‖Di

µl
,

for each sub-interval Di
µl

of size ∆µl
i associated with dimension l and variable µl, a functional similar

to (27) can easily be defined. A definition that favors space domain (i.e. continuity in space variable x)

17

0.6

1

0.8

1

0.8

1.2

2

1.4

0.6

1.6

1.5

RPM approximation

M

1.8

µ

0.4 1

2

0.2 0.5

0 0

(a) mµ = mx = 2 (e = 4.26%)

0.6

1

0.8

1

0.8

1.2

2

1.4

0.6

1.6

1.5

RPM approximation

M

1.8

µ

0.4 1

2

0.2 0.5

0 0

(b) mµ = mx = 3 (e = 2.00%)

0.6

1

0.8

1

0.8

1.2

2

1.4

0.6

1.6

1.5

RPM approximation

M

1.8

µ

0.4 1

2

0.2 0.5

0 0

(c) mµ = mx = 4 (e = 1.24%)

0.6

1

0.8

1

0.8

1.2

2

1.4

0.6

1.6

1.5

RPM approximation

M

1.8

µ

0.4 1

2

0.2 0.5

0 0

(d) mµ = mx = 5 (e = 0.77%)

Figure 10: Approximations ¯̄F1 of F1 for increasing numbers of reference points and the optimized value of λik given by (31)

(a) Function F (b) RPM Reconstruction ¯̄F (e = 5%)

Figure 11: The function F and its approximation ¯̄F by mµ = 10 parameter and mx = 10 spatial reference points

and weak continuity from one patch to another according to other variables thanks to the introduction of340

influence/weight coefficients λi
µlk can similarly be considered. In this multivariable case, the choice of these

coefficients is not obvious. An easy and straightforward choice is to consider the independent minimization
by patch by considering that λi

µlk = δi
µlk, leading to a simple explicit reconstruction similar to (30).

18

3.3. Integral computation by RPM

Once the low-rank separated representation by patch ¯̄F defined by (26) has been reconstructed to ap-
proximate function F thanks to explicit formulas (28), the integral of F over the space-parameter domain
can be approximated as follows:

∫

D×Ω

F (µ, x) dx dµ =

mµ∑

i=1

mx∑

j=1

∫

Di×Ωj

F (µ, x) dx dµ ≈

mµ∑

i=1

mx∑

j=1

∫

Di×Ωj

aij(µ) bij(x) dx dµ (33)

Similarly, RPM can now be used to approximate each contribution to the ROM, αij defined by (20) and345

involved in the Galerkin projection of the preliminary step (see Problem 4).

3.3.1. Application to the reference problem

By introducing approximation space Ph ∈ P defined by (15) into contribution αij given by (20), one
gets:

αij =

∫

D×Ω

λ∗(µ) Φi(x)H
−(u(n);x,µ) Φj(x) δλi(µ) dx dµ (34)

≈

∫

D×Ω

(
p
∑

r=1

λ∗rξr(µ)

)

Φi(x)H
−(u(n);x,µ) Φj(x)

(
p
∑

s=1

δλs
i ξs(µ)

)

dx dµ (35)

≈

p
∑

r=1

p
∑

s=1

λ∗r






∫

D×Ω

ξr(µ) Φi(x)H
−(u(n);x,µ) Φj(x) ξs(µ)

︸ ︷︷ ︸

Integrand ωrsij(µ,x)

dx dµ




 δλs

i (36)

where repeated indice i is not summed over its range.350

Let split the two-dimensional parameter domain D into mµ sub-domains Di. The center µi of each sub-
domain Di is considered as a parameter reference point. Similarly, the space domain Ω is divided into mx

sub-domains Ωj whose centers xj definedmx spatial reference points. Spatial and parameter reference points
xj and µi can be chosen arbitrary on a regular grid for instance. In this case, a given reference patch (i, j)355

that occupies the part Di×Ωj of the four-dimensional space-parameter domain D×Ω is complicated to figure.

Generalized components of integrand ω in (36) (where subscripts rsij have been omitted to simplify the
notations) are denoted by ω̄ := {(ω̄µ

ab, ω̄
x
ab)} with: for 1 6 a 6 mµ and 1 6 b 6 mx:

ω̄ :=

{
ω̄µ
ab(µ) = ω(µ,xb) if µ ∈ Da | ω̄x

ab(x) = ω(µa,x) if x ∈ Ωb

ω̄µ
ab(µ) = 0 otherwise | ω̄x

ab(x) = 0 otherwise

}

(37)

The approximation ¯̄ω of integrand ω is defined by the following rank-one separated representation by patch:
for 1 6 a 6 mµ and 1 6 b 6 mx:

∀(µ,x) ∈ Da × Ωb, ω(µ,x) ≈ ¯̄ω(µ,x) = ¯̄ωµ
ab(µ) ¯̄ω

x
ab(x) (38)

where functions ¯̄ωµ
ab(µ) and ¯̄ωx

ab(x) are defined by explicit formulas defined in Section 3.2.3. To alleviate
the notations in the following, let assume that these functions are obtained by explicit formulas (30) (RPM
with independent minimizations by patch) instead of general formulas (28) such that:

¯̄ωµ
ab(µ) =

ω̄µ
ab(µ)

ω̄µ
ab(µa)

=
ω̄µ
ab(µ)

ω̄x
ab(xb)

and ¯̄ωx
ab(x) = ω̄x

ab(x) (39)

In this case, definition of integrand ω in (36) leads to: for 1 6 a 6 mµ and 1 6 b 6 mx: ∀(µ,x) ∈ Da ×Ωb,

ω(µ,x) ≈ ¯̄ωµ
ab(µ) ¯̄ω

x
ab(x) (40)

≈
1

H−(u(n);xb,µa)

(

ξr(µ)H
−(u(n);xb,µ) ξs(µ)

)(

Φi(x)H
−(u(n);x,µa) Φj(x)

)

(41)

19

The integral computation of ω over patch (a, b) by separation of variables can now be done as follows:

∫

Da×Ωb

ω dx dµ ≈ . . .

. . .
1

H−(u(n);xb,µa)

(∫

Da

ξr(µ)H
−(u(n);xb,µ) ξs(µ) dµ

)

︸ ︷︷ ︸

= (Ma(xb))
rs

(∫

Ωb

Φi(x)H
−(u(n);x,µa) Φj(x) dx

)

︸ ︷︷ ︸

≈ [Φi]Tb Kb (µa)[Φj]b

(42)

where approximation space Vh ∈ V defined by (12) has been introduced to approximate the second integral

on Ωb. The nodal vector associated with the discretization of space function Φi (Φi(x) ≈
∑N

j=1 Φ
j
iϕj(x) =

Φj
iϕj) restricted to space sub-domain Ωb is denoted by [Φi]b. Similarly, matrice Kb (µa) is obtained by the

assembly of spatial finite elements contributions located in sub-domain Ωb and whose entries are defined as
follows:

(
Kb (µa)

)

ij
=

∫

Ωb

ϕi(x) H
−
(

u(n);x,µa

)

ϕj(x) dx (43)

Let also introduce the restriction of the discretized k-order reduced-basis to sub-domain Ωb:

W k,b = [[Φ1]b[Φ2]b . . . [Φk]b] (44)

Figure 12 depicts the restriction of a discretized 3-order reduced-basis to a sub-domain Ωb for a 3 × 3
regular grid of spatial reference points (mx = 9). Thanks to (42), contribution αij given by (36) can be

0

0.5

1

0

0.5

1
−0.2

−0.1

0

0.1

0.2

X

Y

(a) PGD space mode [Φ1]

0

0.5

1

0

0.5

1
0

0.1

0.2

0.3

0.4

X
Y

(b) PGD space mode [Φ2]

0

0.5

1

0

0.5

1
−0.2

−0.1

0

0.1

0.2

X

Y

(c) PGD space mode [Φ3]

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0

0.05

0.1

X

Y

(d) Restriction [Φ1]b of mode [Φ1]

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0

0.05

0.1

X

Y

(e) Restriction [Φ2]b of mode [Φ2]

0
0.2

0.4
0.6

0.8
1

0

0.5

1

−0.15

−0.1

−0.05

0

0.05

X

Y

(f) Restriction [Φ3]b of mode [Φ3]

Figure 12: Restriction of a discretized 3-order reduced-basis to a sub-domain Ωb for a 3 × 3 regular grid of spatial reference
points (mx = 9)

360

20

approximated as follows:

αij ≈

p
∑

r=1

p
∑

s=1

λ∗r

(
mµ∑

a=1

mx∑

b=1

∫

Da×Ωb

ωrsij dx dµ

)

δλs
i (45)

≈

p
∑

r=1

p
∑

s=1

λ∗r

(
mµ∑

a=1

mx∑

b=1

1

H−(u(n);xb,µa)

(
Ma(xb)

)

rs

(
[Φi]

T
b Kb (µa)[Φj]b

)

)

δλs
i (46)

Similarly to (16), one deduces that the contribution to preliminary step of the sum over i of second terms
in left-hand side of (4) (or (14)) gives:

A
Patches (a,b)






1

H−(u(n);xb,µa)




W T

k,b
︸ ︷︷ ︸

k×Nb

Kb (µa)
︸ ︷︷ ︸

Nb×Nb

W k,b
︸ ︷︷ ︸

Nb×k




⊗Ma(xb)

︸ ︷︷ ︸

pa×pa






︸ ︷︷ ︸

pk×pk








[δλ1]
[δλ2]
...

[δλk]








︸ ︷︷ ︸

pk×1

(47)

where the symbol A denotes the assembly of the mµmx tensor products of matrices by patch (a, b). It is
worth noting at the fact that matrices Kb (µa) (resp. Ma(xb)) are computed only at the mµ parameter365

reference points µa (resp. mx spatial reference points xb). They have to be updated each time that the
LATIN search directionH− is updated. IfH− is not updated and if, in addition, the discretized reduced-basis
W k remains unchanged (k is unchanged), the projection onto the reduced-basis W k and tensor products
on each patch can be pre-computed accordingly.

3.3.2. Computational complexity analysis370

As noted in Section 2.3, RPM could also be used to approximate the nonlinear residue (right-hand
side member of (4)) whose complexity is O(pNk) for each new iterate. In this section, only the gain in
complexity associated with the evaluation of second terms in left-hand side of (4) (or (14)) is discussed.
Let recall that the parameter-dependency of the search direction H− prevents the separation of integrals
which leads to a computational complexity of O(pNk2) (resp. O(pN2k)) if the discretized operator is sparse375

(resp. full) for each new iterate u(n)(x,µ). As shown in Section 3.3.1, RPM enables one to provide an
approximation of this term as an assembly of tensor products of matrices by patch (see (47)).

By denoting by Nb (resp. pa) the number of spatial (resp. parameter) unknowns contains within
sub-domain Ωb (resp. sub-domain Da) in (47), the projection onto the restriction of the discretized k-order
reduced-basis to sub-domain Ωb, W k,b, involves two matrice-matrice products resulting into a computational
complexity that scales with O(Nbk +Nbk

2) if Kb (µa) is sparse. Complexity for evaluating tensor product
is O(pak

2) if Ma(xb) is sparse. If the number of arithmetical operations for evaluating one entry of matrice
Kb (µa) (resp. Ma(xb)) is supposed to be β (resp. γ), complexity for evaluating one patch contribution is:

O(Nb k +Nb k
2

︸ ︷︷ ︸

Projection on W k,b

+ Nb β
︸︷︷︸

Evaluation of Kb (µa)

+ pa k
2

︸ ︷︷ ︸

Tensor product

+ pa γ
︸︷︷︸

Evaluation of Ma(xb)

) (48)

Cost for the RPM reconstruction is negligible. Assuming that Nb ≈
N

mx
and pa ≈

p

mµ
, the total complexity

for evaluating the contributions of all the patches to the pk × pk matrice in (47) is roughly:

O

((
N

mx
k +

N

mx
k2 +

N

mx
β +

p

mµ
k2 +

p

mµ
γ

)

mx mµ

)

∼ O
(
N mµ k

2 + pmx k
2
)

(49)

if β ∼ O(1) and γ ∼ O(1). The total gain in case of sparse operators is consequently about:

O

((
N mµ k

2 + pmx k
2

pN k2

)−1
)

∼ O

((
mµ

p
+

mx

N

)−1
)

(50)

21

In practice for Problem 3, the number of spatial reference points mx is negligible compared with N and

one has
N

mx
≫

p

mµ
. For instance, if one chooses for Problem 3, N = 2500, p = 225 and mx = mµ = 10,

the gain is about one order of magnitude: O

(
p

mµ

)

∼ 10.380

4. Numerical example

In this section, the numerical simulation of Problem 1 is investigated. The RPM is here used to
approximate the preliminary step of the LATIN-PGD computational strategy for Problem 3. In the
following this strategy is denoted by LATIN-PGD-RPM. The computational gain according to the number
of reference points is investigated in Section 4.2 and compared to the expected gain (see (50)). Finally,385

a comparison between the LATIN-PGD-RPM and the EIM combined with reduced-order basis techniques
and Newton-based solution strategy [15], called RB-EIM, is proposed in Section 4.3.

4.1. On the choice of the reference points

Problem 1 is defined on the space-parameter domain D × Ω with D = [0.01, 10]2 ⊂ R
2 and Ω =

]0, 1[2⊂ R
2. A spatial (resp. parameter) point is defined by its components x = (x1, x2) ∈ Ω =]0, 1[2 (resp.390

µ = (µ1, µ2) ∈ D = [0.01, 10]2). Figure 13 depicts the situation where mx = 1× 1 spatial and mµ = 2× 2
parameter reference points are chosen on a regular grid.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

(a) mx = 1× 1 reference space points

0 2 4 6 8 10
0

2

4

6

8

10

µ
1

µ
2

(b) mµ = 2× 2 reference parameter points

Figure 13: Example of selection of reference points on a regular grid for space-parameter domain of Problem 1

For all the simulations of Section 4, the finite element approximation space Vh is fixed and obtained
by a finite element mesh of 50 × 50 bilinear quadrilateral elements leading to an approximation space of
dimension N = 2601. The reference solution uref refers to the solution obtained by solving Problem 2
with Newton-based nonlinear solution strategy (classical direct method without model reduction) for each
parameter value (see Figure 1). A number of p = 225 values for parameter µ is considered and chosen
from a regular grid as depicted in Figure 15(a). The following relative error ǫ is introduced:

ǫ = 1/p

p
∑

j=1

‖ uref (x,µj)− um (x,µj)‖L2

‖ uref (x,µj)‖L2

(51)

where um refers to the solution obtained with the chosen model reduction strategy: LATIN-PGD, LATIN-
PGD-RPM, RB or RB-EIM. The evolutions of ǫ with respect to the number of PGD pairs for increasing
numbers of spatial and parameter reference points are plotted in Figure 14. Note that for the LATIN-PGD395

or the LATIN-PGD-RPM, the number of generated PGD pairs is comparable to the number of LATIN
iterations since only one new PGD pair is generated per LATIN iteration at most.

22

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Number k of PGD pairs

ε

m
µ
=1× 1, m

x
=1× 1

m
µ
=2×2, m

x
=1× 1

m
µ
=3× 3, m

x
=1× 1

LATIN−PGD

(a) Error ǫ for mµ = {1× 1, 2× 2, 3× 3} and mx = 1× 1

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

number of PGD pairs

ε

m
µ
=1× 1, m

x
=1× 1

m
µ
=1×1, m

x
=2×2

m
µ
=1× 1, m

x
=3× 3

LATIN−PGD

(b) Error ǫ for mµ = 1× 1 and mx = {1× 1, 2× 2, 3× 3}

0 5 10 15 20
10

1

10
2

10
3

number of PGD pairs

s
e

c
o

n
d

s

m
µ
=1× 1, m

x
=1× 1

m
µ
=2× 2, m

x
=1× 1

m
µ
=3× 3, m

x
=1× 1

LATIN−PGD

Direct method

(c) CPU time for mµ = {1×1, 2×2, 3×3} and mx = 1×1

0 5 10 15 20
10

1

10
2

10
3

number of PGD pairs

s
e
c
o
n
d
s

m
µ
=1× 1, m

x
=1× 1

m
µ
=1× 1, m

x
=2× 2

m
µ
=1× 1, m

x
=3× 3

LATIN−PGD

Direct method

(d) CPU time for mµ = 1×1 and mx = {1×1, 2×2, 3×3}

Figure 14: Evolution of error ǫ (see (51)) and CPU time w.r.t. the number of PGD pairs for increasing numbers of spatial and
parameter reference points to solve Problem 1

It can be seen on Figure 14(a) and Figure 14(b) that, by adding more reference points, the error curve
of the LATIN-PGD-RPM converges to the one obtained with the LATIN-PGD. The CPU time also increases
accordingly and tends to the LATIN-PGD computational cost (see Figure 14(c) and Figure 14(d)). Let400

recall that RPM technique is used only for the preliminary step. Thus, if the RPM approximation is not
good enough, the generation of new PGD pairs as described in Algorithm 2 can palliate this and makes the
error monotonically decrease and the solution converge anyway. Obviously, this results into the generation
of more PGD pairs compared with the LATIN-PGD curve for a given level of error.

It is worth noting at the fact that an error level of 10−3 can be reached with only one spatial reference405

point and a few parameter reference points (see dash-dot line with cross markers in Figure 14(a)). For
this example, adding more parameter reference points seems to be better than adding more spatial reference
points in order to converge to the optimal LATIN-PGD curve (see dash-dot lines with cross markers in
Figure 14(a) and Figure 14(c)). Indeed, as it is often the case in structural mechanics, the spatial
gradients of quantities are stronger than their variations in parameter variable for this nonlinear parametrized410

elliptic problem (see Figure 1). Since the parameter reference points {µa}16a6mµ
lead to the computation

of mµ integrals Kb (µa) (see (42) and (47)) over the space domain, adding more parameter reference points
is preferable to account for spatial gradients.

23

4.2. Computational gain analysis

As seen in the previous section, the more reference points are added, the more CPU time increases (see415

Figure 14(c) and Figure 14(d)). A compromise between the number of reference points – i.e. the CPU
time – and the number of generated PGD pairs – i.e. number of LATIN iterations – has to be done in
oder to reach a given level of error. For an error level of ǫ = 10−2, the CPU time gain compared with the
direct method increases from 6 for the LATIN-PGD to 18 for the LATIN-PGD-RPM (see Table 2). For a
very small number of reference points (mµ = 1 × 1 and mx = 1 × 1) and a few more PGD pairs, the total420

CPU time gain is here multiplied by a factor of 3 thanks to the RPM applied to the preliminary step of the
LATIN-PGD.

LATIN-PGD-RPM
LATIN-PGD mµ = 1× 1 mµ = 2× 2 mµ = 3× 3

mx = 1× 1 mx = 1× 1 mx = 1× 1

Number of PGD pairs 7 9 7 7
Gain w.r.t. direct method 6 18 14.2 11.5

Table 2: Total CPU time gain with respect to the direct method for a given level of error (ǫ = 10−2)

Table 3 provides the gain in CPU time on the preliminary step thanks to the RPM. For a significant
number of parameter reference points (mµ = 3 × 3), the real gain is very close to the theoretical gain in
computational complexity (50), that is to say approximately p/mµ where p is the number of parameter425

values.

LATIN-PGD-RPM
mµ = 1× 1 mµ = 2× 2 mµ = 3× 3
mx = 1× 1 mx = 1× 1 mx = 1× 1

Real gain with respect to LATIN-PGD 90 39 25

Expected gain (≈
p

mµ
) 225 56 25

Table 3: CPU time gain on the preliminary step with respect to the LATIN-PGD for a given level of error (ǫ = 10−2)

4.3. Comparison of RPM versus EIM: approximation versus interpolation techniques

In this section, a comparison of the performances of the RPM, described in Section 3, and the EIM is
proposed. It has to be first noticed that, the two methods are here combined with different model reduction
techniques and nonlinear strategies (see Table 4). As explained in Section 3.1, using EIM to solve the430

preliminary/update step of the PGD could be done but it may be less suitable when the reduced basis
evolves. The interested reader could nevertheless refer to [44, 45] for one of the first applications of DEIM
to PGD.

In the following, the more classical combination of EIM with reduced-basis techniques and offline-online
procedure is considered and called RB-EIM. In this case, combined with Newton-based incremental solution435

strategy, the reduced-basis approximation associated to the space weak form Problem 2 for each parameter
value µ ∈ D is considered instead of the space-parameter weak form Problem 3 used in the LATIN non-
incremental solution strategy.

Moreover, RPM and EIM are based on different approaches. As seen in Section 3.1, RPM is based on an
approximation technique of the integrals involved in the Galerkin projection onto an evolving reduced-basis440

whereas EIM is based on an interpolation procedure of the nonlinear terms (Jacobian and residue).

4.3.1. Summary of the RB-EIM procedure

The main steps of the online-offline procedure of the RB-EIM as described in [15] are here summarized.
During the offline stage, the following steps are performed:

24

Nonlinear solution Model order Comments
strategy reduction technique

EIM Newton method Reduced-basis (RB) Offline-online
procedure [15]

RPM LATIN PGD Evolving reduced
basis

Table 4: Context of application of the RPM and the EIM: LATIN-PGD-RPM and RB-EIM

• Construction of a nested coarse sample set ScM = {µM
m ∈ Dc}16m6M of magic parameter points thanks445

to a greedy selection process on coarse grid Dc ⊂ D based on a L2(Ω) norm. This requires the solution
of M nonlinear problems for each parameter value of Dc whose computational cost scales with the size
of Dc and N . This cost may be prohibitive in the parabolic case or when the nonlinear function g is
time-dependent or implicitly dependent to the field variable u, which is the case here.

• Greedy selection process of a reduced-order basis Wk = {Φi}i=16i6k for the solution u over the coarse450

sample set Dc. Note that snapshots of the solution, u(µM
m), computed for the elements of nested

sample set ScM ⊂ Dc, are reused in (52).

• Determination of the associated approximation space (collateral reduced-basis):

Wc
M = span

{
ξm = g

(
u(µM

m);x,µM
m

)}

16m6M
= span{qm(x)}16m6M (52)

where the M functions {qm(x)}16m6M and interpolation magic points {xM
m }16m6M are determined

progressively by the recursive solution of M small linear systems.

Once order-k reduced basisWk, collateral reduced-basisW
c
M and interpolation magic points {xM

m }16m6M455

have been determined once for all, one can proceed to the online stage on the fine parameter sample set
Df ⊂ D. For each parameter value µ ∈ Df and each iterate u(n), one has the following steps:

• Update of coefficient functions {ϕM
m (µ)}16m6M) for the reduced-order model of u(n) evaluated at

interpolation “Magic” points {xM
m }16m6M ;

• Update of tangent operator at cost O(Mk2) in (19) and residue (i.e. Galerkin projection on the order-k460

reduced basis Wk);

• Solution of the reduced-basis approximation onWk associated to the space weak form Problem 2 for
parameter value µ ∈ Df at cost O(k3) (factorization of the full k × k matrice).

The online computational complexity depends only on k, M and the number of Newton iterations. The N
independence of the online stage is recovered. As noticed previously, the costly part of the offline stage is465

mainly due to the construction of the coarse sample set ScM of magic parameter points {µM
m ∈ Dc}16m6M .

4.3.2. Application of the LATIN-PGD-RPM and the RB-EIM to the reference problem

As in [15], a 15×15 regular grid of parameter values is used for the fine sample setDf ⊂ D (Figure 15(a)).
This leads to a number p = 225 of parameter values for µ. For the offline stage of the RB-EIM, a 12 × 12
regular grid of parameter values is chosen for the coarse sample set Dc ⊂ D (Figure 15(b)).470

As explained at the end of Section 4.1, only one spatial reference point is used in the following for the
LATIN-PGD-RPM. Thus, one sets mx = 1× 1. Only the number mµ of parameter reference points varies.
For the RB-EIM, the influence on the convergence of the number M of magic points for a given size k of
the reduced basis Wk generated offline is investigated. For the LATIN-PGD-RPM, the reduced basis Wk is
progressively built and its size k increases throughout the LATIN iterations. As previously said, the number475

k of generated PGD pairs is comparable to the number of LATIN iterations since only one new PGD pair

25

0 2 4 6 8 10

0

2

4

6

8

10

µ
1

µ
2

(a) Fine regular grid Df of 15× 15 points

0 2 4 6 8 10

0

2

4

6

8

10

µ
1

µ
2

(b) Coarse regular grid Dc of 12× 12 points

Figure 15: Fine and coarse grids, Df and Dc, for the parameter domain discretization considered for the RB-EIM [15]

is generated per LATIN iteration at most.

The error ǫ given by (51) for various numbers of reference and magic points and Problem 1 is given
in Figure 16. The error of the classical reduced basis approach without EIM (dash-dot line with diamond

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Number k of PGD pairs

ε

m
µ
=1× 1, m

x
=1× 1

m
µ
=2×2, m

x
=1× 1

m
µ
=3× 3, m

x
=1× 1

LATIN−PGD

(a) Error ǫ for the LATIN-PGD-RPM with mx = 1 × 1
and mµ = {1× 1, 2× 2, 3× 3}

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Size of the RB basis

e
rr

o
r

EIM 1

EIM 3

EIM 5

EIM 11

EIM 13

EIM 15

EIM 19

RB
ε

(b) Error ǫ for the RB-EIM and various numbers M of
magic points from 1 to 19

Figure 16: Error ǫ given by (51) with respect to the size k of the reduced basis Wk for the LATIN-PGD-RPM and the RB-EIM
and various numbers of reference/magic points for Problem 1

480

markers denoted by RB) is also given for comparison. Both the LATIN-PGD-RPM and the RB-EIM lead
to the same level of error. However, some differences can be pointed out. For a given number M of magic
points, the RB-EIM convergence curve first decreases until a plateau is reached once k slightly exceeds
the value of M (see Figure 16(b)). Increasing M is necessary to make the error decrease. Indeed, for a
fixed number M of magic interpolation points the error in the coefficient functions {ϕM

m (µ)}16m6M used to485

interpolate the nonlinear terms (see (17)) ultimately dominates for increasing dimension k of the reduced
basis Wk. Increasing both M and k is necessary to lower the error. In the case of the LATIN-PGD-RPM
(see Figure 16(a)), the reduced basis Wk being enriched throughout the iterations, the error decreases
monotonically as expected by generating new PGD pairs. Increasing the number mµ of parameter reference
points improves the overall convergence rate. In any case, the LATIN-PGD-RPM solution converges.490

26

As pointed out in Section 4.3.1, despite the fact that the computational cost of the online stage depends
only on k, M and the number of Newton iterations and no more on N , the cost of the offline/learning stage
can be very high for nonlinear problems in order to generate a pertinent reduced-basisWk as well as a suitable
coarse sample set ScM of magic parameter points. A sufficiently fine coarse grid Dc may be necessary. More495

precisely, for the 12 × 12 coarse grid Dc of Figure 15(b), the offline stage of the RB-EIM accounts for
64% of the computational cost of the classic direct simulation performed on the 15 × 15 fine grid Df of
Figure 15(a). Error ǫ given by (51) for the RB-EIM with various regular coarse grids Dc used during the
offline stage is plotted in Figure 17. It can be seen on Figure 17(a) that a too coarse grid leads to a high
level of error whatever the number M of magic points is. For a 5× 5 grid, it can be seen on Figure 17(b)500

that error level is hardly improved for M higher than about 11.

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Size of the RB basis

e
rr

o
r

EIM 1

EIM 3

EIM 5

EIM 11

EIM 13

EIM 15

EIM 19

RB
ε

(a) Coarse grid Dc of 2× 2 points

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Size of the RB basis

e
rr

o
r

EIM 1

EIM 3

EIM 5

EIM 11

EIM 13

EIM 15

EIM 19

RB

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Size of the RB basis

e
rr

o
r

EIM 1

EIM 3

EIM 5

EIM 11

EIM 13

EIM 15

EIM 19

RB

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Size of the RB basis

e
rr

o
r

EIM 1

EIM 3

EIM 5

EIM 11

EIM 13

EIM 15

EIM 19

RB
ε

(b) Coarse grid Dc of 5× 5 points

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Size of the RB basis

e
rr

o
r

EIM 1

EIM 3

EIM 5

EIM 11

EIM 13

EIM 15

EIM 19

RB
ε

(c) Coarse grid Dc of 10× 10 points

0 5 10 15 20
10

−6

10
−4

10
−2

10
0

Size of the RB basis

e
rr

o
r

EIM 1

EIM 3

EIM 5

EIM 11

EIM 13

EIM 15

EIM 19

RB
ε

(d) Coarse grid Dc of 12× 12 points

Figure 17: Error ǫ given by (51) for the RB-EIM with various regular coarse grids Dc used during the offline stage

Finally, even though comparing a reduced basis approach with learning stage and a PGD-based model
reduction may be discussable, one nevertheless provides, in Table 5, CPU time gains with respect to the
direct simulation to reach an error level of ǫ = 10−2 for the LATIN-PGD-RPM and the RB-EIM with a505

comparable number of reference/magic points: mx = 1×1, mµ = 2×2 and M = 5. As discussed previously,
note that CPU time for the RB-EIM includes the time spent during the offline/learning stage, the online
stage cost being negligible. It can be seen that the CPU time gains for the two approaches are quite similar

27

in the case of Problem 1. The size k of the reduced basis Wk generated by the LATIN-PGD-RPM is also
comparable to the size of the reduced basis built by the RB-EIM during the offline stage.510

LATIN-PGD-RPM RB-EIM
mx = 1× 1 M = 5
mµ = 4× 4

Size k of reduced basis Wk 7 5
Gain w.r.t. direct method 14.2 18

Table 5: CPU time gain with respect to the direct simulation to reach an error level of ǫ = 10−2 for the LATIN-PGD-RPM
and the RB-EIM with a comparable number of reference/magic points

5. Conclusion

In order to tackle the bottleneck of nonlinear model reduction techniques, a new approximation tech-
nique, called Reference Point Method, has been proposed to reduce the computational complexity of alge-
braic operations for constructing reduced-order models in the case of time dependent and/or parametrized
nonlinear partial differential equations. It has been shown that this bottleneck is not specific to PGD-based515

model reduction but more generally to reduced-basis approximation in nonlinear model reduction. This
problem arises due to the fact that at each iteration of the solution strategy: (i) Galerkin projection onto
the ROB has to be performed, especially each time the reduced-order basis evolves which is the case for
PGD, (ii) non-linear terms (Jacobian and residue) have to be evaluated for each new iterate which prevents
pre-computations of operators. As a result, the complexity of these operations scales with the size of the520

original high-dimensional model.
Contrary to EIM which is based on an interpolation procedure of the nonlinear terms (Jacobian and

residue), RPM is based on an approximation technique of the integrals involved in the Galerkin projection
onto an evolving reduced-basis. For that two main features are introduced: (i) an approximation framework
with the introduction of reference points to simplify the evaluation of integrands, (ii) a low-cost technique525

to reconstruct by explicit formulas an approximate low-rank separated representation by patch of operators
without resorting to SVD-based techniques, which is a great advantage regarding integral computation by
separation of variables.

An application of the RPM with the LATIN-PGD nonlinear solution strategy to a nonlinear parametrized
elliptic PDE previously studied by other authors with reduced-basis method and EIM has been proposed.530

More precisely, the RPM has been used to approximate, at each iteration of the nonlinear solution strategy,
the so-called Preliminary step which is nothing more than an update of the reduced model from the reduced
basis obtained from the previous iterations.

It has been shown that the convergence of the whole strategy is ensured, whatever the number of
reference points is (even if a very moderate increase of the number of the generated PGD modes is required535

to compensate a possible lack of accuracy of the RPM approximation). Increasing the number of reference
points makes the convergence curve tend to the one obtained with the classical LATIN-PGD approach.

Moreover, computational complexity as well as CPU time to construct the reduced-order model of the
preliminary step can be divided in practice by one order of magnitude. The implementation of RPM for
more complex problems is currently in progress and one can expect higher gains.540

Acknowledgements

This work was supported by the French Agence Nationale pour la Recherche through the SIM-DREAM
project ANR-10-COSI-0006.

28

Appendix A. Nonlinear solution strategy by an alternating-direction scheme: the LATIN
method545

In order to solve Problem 3, the LATIN method is used as a nonlinear solution strategy. By a two-stage
iterative scheme and two search directions, the LATIN method generates approximations of the solution that
belong alternatively to two manifolds, Ad and Γ as represented in Figure A.18. Manifold Ad is defined
by the linear, possibly global, equations of the problem whereas manifold Γ contains the local, possibly
nonlinear, equations. Similarly to augmented Lagrangian techniques, the key point of the strategy consists,550

for Problem 3, in introducing manifold Γ = {(u,w) ∈ V×W; w = g(u;µ), ∀µ ∈ D} withW = L2(Ω). The
problem solution is found by solving alternatively the local stage and the global stage as described hereafter.

A
d
	

Γ

u	

w	

ŝ(n+1/2)	

s(n)	

sexact	

E+	

E-	

s(n+1)	

Figure A.18: The LATIN alternating-direction scheme: manifolds Ad and Γ, search directions E+ and E−

.

Appendix A.1. Local stage at iteration n+ 1

Local stage consists in building solution ŝ(n+1/2) = (û(n+1/2), ŵ(n+1/2)) ∈ Γ, i.e. that verifies nonlinear
equation ŵ(n+1/2) = g(û(n+1/2);µ) for all µ, knowing solution s(n) = (u(n), w(n)) ∈ Ad coming from the
previous global stage thanks to search direction E+, verified by ŝ(n+1/2) − s(n):

E+ : ∀µ ∈ D, ∀x ∈ Ω, (ŵ(n+1/2) − w(n)) +H+(û(n+1/2) − u(n)) = 0 (A.1)

where H+ is a symmetric definite operator which is a parameter of the method. At this stage, the problem is
nonlinear but local in space variable. A simple choice is to take a stiff ascending search direction (H+ →∞),
which is equivalent to set û(n+1/2) = u(n). In this case, solution is found explicitly without resorting to a
local nonlinear solver and solution ŝ(n+1/2) = (û(n+1/2), ŵ(n+1/2)) is simply defined by:

∀µ ∈ D, ∀x ∈ Ω,

{
û(n+1/2) = u(n)

ŵ(n+1/2) = g(û(n+1/2);µ) = g(u(n);µ)
(A.2)

Appendix A.2. Global stage at iteration n+ 1555

Global stage consists in building solution s(n+1) = (u(n+1), w(n+1)) ∈ Ad, knowing solution ŝ(n+1/2) =
(û(n+1/2), ŵ(n+1/2)) ∈ Γ coming from the previous local stage thanks to search direction E− satisfied by
s(n+1) − ŝ(n+1/2):

E− : ∀µ ∈ D, ∀x ∈ Ω, (w(n+1) − ŵ(n+1/2))−H−(u(n+1) − û(n+1/2)) = 0 (A.3)

Similarly to ascending search direction H+ of the local stage, the descending search direction H− is a
parameter of the method. It is shown in [22] that a well-suited choice is to choose the tangent operator for
H−:

H− =
∂g(u;µ)

∂u

∣
∣
∣
∣
u=û(n+1/2)

=
∂g(u;µ)

∂u

∣
∣
∣
∣
u=û(n+1/2)=u(n)

(A.4)

29

Second equality is due to the choice made for search direction E− (see (A.2)). A constant operator could
be also chosen:

H− =
∂g(u;µ)

∂u

∣
∣
∣
∣
u=û(0)

= H−
0

(A.5)

In this case, the algorithm bears similarities to a quasi-Newton scheme. As shown in [22], the choice of
search directions H+ and H− does not affect the solution at convergence but it can change the convergence
rate. Figure A.19 depicts the evolution of LATIN convergence indicator δL (see (A.9) in Appendix A.3)
as a function of the number of iterations for Problem 1. It can be seen that using a tangent operator (A.4)
instead of a constant one (A.5) drastically improves the convergence rate. Using tangent operator (A.4) or,560

at least, updating search direction H− is consequently recommended.

0 20 40 60 80 100
10

−4

10
−3

10
−2

10
−1

10
0

10
1

LATIN Iterations

e
rr

o
r

in
d
ic

a
to

r

H = tangent operator
H = H

0
 = constant

δL

Figure A.19: Convergence of LATIN error indicator δL (A.9) for Problem 1 and two choices of search direction H−: tangent
operator (A.4) and constant operator (A.5)

The global stage problem reads as follows:

Problem 5 (Global stage). Given ŝ(n+1/2) = (û(n+1/2), ŵ(n+1/2)), find s(n+1) = (u(n+1), w(n+1)) ∈ Ad

that satisfies search direction (A.3) and such that:

∀v ∈ S,

∫

D

a(u(n+1), v) dµ+

∫

D×Ω

w(n+1) v dx dµ =

∫

D×Ω

f(x) v dx dµ (A.6)

By introducing search direction (A.3) in (A.6), one obtains:

∀v ∈ S,

∫

D

a(u(n+1), v) dµ+

∫

D×Ω

H− u(n+1) v dx dµ = . . .

. . .

∫

D×Ω

f(x) v dx dµ−

∫

D×Ω

(

ŵ(n+1/2) −H−û(n+1/2)
)

v dx dµ (A.7)

The only unknown in this latter equation is u(n+1). This equation is global over the space-parameter domain
but linear.565

Due to the specific choices done for search directionsE− (see (A.2)) andE+ (see (A.4)) and by introducing
the correction δu(n+1) = u(n+1) − u(n) between two consecutive global stages, Problem 5 also reads:

Problem 6 (Global stage on correction). Find δu(n+1) = u(n+1) − u(n) ∈ S and w(n+1) ∈ S such that:

30

∀v ∈ S,

∫

D

a(δu(n+1), v) dµ+

∫

D×Ω

H−(u(n);µ) δu(n+1) v dx dµ = −

∫

D

R(u(n), v;µ) dµ

∀µ ∈ D, ∀x ∈ Ω, w(n+1) = ŵ(n+1/2) +H− δu(n+1)

(A.8)
where : 





R(u(n), v;µ) = a(u(n), v) −

∫

Ω

f(x) v dx +

∫

Ω

g(u(n);µ) v dx

H−(u(n);µ) =
∂g(u;µ)

∂u

∣
∣
∣
∣
u=u(n)

At each iteration, a local stage and a global stage have to be solved until convergence. It is clear that contrary
to classical incremental solution strategies, one has to store the iterate on the whole space-parameter domain.570

Indeed, at each stage, one seeks a correction δu(n+1) ∈ S = L2(D,V). In order to overcome this data storage
issue, a dedicated representation of unknowns has to be proposed. In the LATIN method [22], Proper
generalized decomposition of the iterates is classically used to the purpose as described in Section 2.2.

Appendix A.3. LATIN convergence indicator

In order to check the convergence of the nonlinear iterative scheme, the following error indicator is
defined:

δ
(n+1)
L =

‖u(n+1) − û(n+1/2)‖
1
2 ‖u

(n+1) + û(n+1/2)‖
with ‖ · ‖ =

∫

D×Ω

· 2 dx dµ

This error indicator measures, at iteration n+1, the distance between the iterate of Γ generated at the local
stage and the subsequent iterate of Ad obtained at the global stage (Figure A.18). Due to the particular
choice made for search direction H+ (see (A.2)), it also simply reads:

δ
(n+1)
L =

‖u(n+1) − u(n)‖
1
2‖u

(n+1) + u(n)‖
=

‖δu(n+1)‖
1
2‖u

(n+1) + u(n)‖
(A.9)

Under the hypothesis of a monotonous operator g(u;µ), the iterative scheme converges to the reference575

solution sref for any choice of symmetric positive operator H− [22].

Appendix B. LATIN-PGD final algorithm

The final algorithm of the LATIN-PGD nonlinear solution strategy is given in Algorithm 2.

Remark 4. The computation of an admissible initial solution s(0) = (u(0), w(0)) ∈ Ad depends on the
problem to solve. It can be obtained by solving the problem for a given value of parameter or a simplified580

problem by neglecting nonlinear terms. One can also solve Problem 6 for n = −1 by a progressive Galerkin
PGD with Algorithm 1. In this case, the first generated spatial function Φ1 can be chosen as the first
element of the reduced-order basis W1. For more details on the initialization of the algortihm, the interested
reader can refer for example to [31].

31

Algorithm 2 LATIN-PGD nonlinear solution strategy

1: s(−1) = (u(−1), w(−1))← (0, 0) ⊲ Initialization
2: Compute ŝ(−1/2) = (û(−1/2), ŵ(−1/2)) ⊲ Solve local stage (A.2) for n = −1
3: Compute s(0) = (u(0), w(0)) ∈ Ad ⊲ Solve Problem 6 for n = −1 (see Remark 4)
4: Create reduced-order basis W1 ← {Φ1} ⊲ See Remark 4
5: for n = 0 to nmax do ⊲ LATIN iterations
6: procedure Local stage

7: Compute ŝ(n+1/2) = (û(n+1/2), ŵ(n+1/2)) ∈ Γ ⊲ Solve local stage (A.2)
8: end procedure
9: procedure Global stage ⊲ Compute s(n+1) = (u(n+1), w(n+1)) ∈ Ad

10: Update parameter functions {λi ← λi + δλi}16i6k ⊲ Solve preliminary step Problem 4

11: ŭ
(n+1)
k = u(0) +

∑k
i=1 Φi λi

12: Compute performance indicator η0 (5)
13: if η0 6 tol then
14: Generate a new PGD pair (λk+1,Φk+1) with Algorithm 1
15: procedure ROB Update ⊲ Use Gram-Schmidt process with inner product (·, ·)
16: Update parameter functions {λi ← λi + λk+1(Φi,Φk+1)}16i6k

17: Orthogonalize space function Φk+1 ← Φk+1 w.r.t. current ROB Wk

18: if Φk+1 is a “new” function then
19: Update ROB Wk ←Wk+1 by adding new orthogonalized function

20: u(n+1) = u(0) +
∑k+1

i=1 Φi λi

21: else
22: u(n+1) = u(0) +

∑k
i=1 Φi λi

23: end if
24: end procedure
25: else
26: u(n+1) = ŭ

(n+1)
k

27: end if
28: w(n+1) = ŵ(n+1/2) +H−

(
u(n+1) − û(n+1/2)

)

29: end procedure
30: Check LATIN convergence indicator δL (A.9)
31: end for

Appendix C. Minimization of the RPM functional585

Minimization of functional J({(aij , bij)}16j6mx
) with 1 6 i 6 mµ (see (27)) leads to:

∀(δaik, δbik),
mx∑

k=1

[

∆ωk λ2
ik

∫

Di

(δaik(µ) bik(xk) + aik(µ) δbik(xk)) (Āik(µ)− aik(µ)bik(xk)) dµ + . . .

. . . ∆µi

∫

Ωj

(δaik(µi) bik(x) + aik(µi) δbik(x)) (B̄ik(x)− aik(µi)bik(x)) dx

]

= 0 (C.1)

By considering variations (δaik, δbik) such that ∀ (i, k), δbik(x) = 0 and δaik(µi) = 0, one gets from
(C.1): for 1 6 i 6 mµ and 1 6 k 6 mx:

aik(µ) =

∑mx

k=1 ∆ωk bik(xk) Āik(µ) λ
2
ik

∑mx

k=1 ∆ωk b2ik(xk) λ2
ik

, ∀ µ ∈ Di (C.2)

32

Similarly, by considering variations (δaik, δbik) such that ∀ (i, k), δbik(xj) = 0 and δaik(µ) = 0, (C.1) leads
to: for 1 6 i 6 mµ and 1 6 k 6 mx:

bij(x) =
B̄ij(x)

aij(µi)
, ∀ x ∈ Ωj (C.3)

Equation (C.3) and (C.2) gives: for 1 6 i 6 mµ and 1 6 k 6 mx:

aij(µ) =

(∑mx

k=1 ∆ωk Āik(µ) B̄ik(µi) λ
2
ik

∑mx

k=1 ∆ωk B̄ik(xk)2 λ2
ik

)

aik(µi), ∀ µ ∈ Di (C.4)

Since B̄ik(xk) = Āik(µi) by definition of the generalized components (see (24)), this also reads:

aij(µ) =

(∑mx

k=1 ∆ωk Āik(µ) Āik(µi) λ
2
ik

∑mx

k=1 ∆ωk Āik(µi)2 λ2
ik

)

aij(µi), ∀ µ ∈ Di (C.5)

Reconstruction ¯̄F of F (see (26)) is given by: for 1 6 i 6 mµ and 1 6 j 6 mx:

F (µ, x) ≈ ¯̄F (µ, x) =

(∑mx

k=1 ∆ωk Āik(µ) Āik(µi) λ
2
ik

∑mx

k=1 ∆ωk Āik(µi)2 λ2
ik

)

B̄ij(x), ∀(µ, x) ∈ Di × Ωj (C.6)

Without changing the reconstruction, one can slightly modify the expressions (C.5) and (C.3) for functions
aij and bij by scaling aij and multiplying bij by aik(µi), their product remaining unchanged. This leads to
the following explicit formulas: for 1 6 i 6 mµ and 1 6 j 6 mx:

aij(µ) =

∑mx

k=1 ∆ωk Āik(µ) Āik(µi) λ
2
ik

∑mx

k=1 ∆ωk Āik(µi)2 λ2
ik

and bij(x) = B̄ij(x) (C.7)

References

[1] A. Chatterjee, An introduction to the proper orthogonal decomposition, Current Science 78 (7) (2000) 808–817.
[2] J. A. Atwell, B. B. Kings, Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations,

Mathematical and computer modelling 33 (2001) 1–19.
[3] K. Kunish, L. Xie, Pod-based feedback control of the burgers equation by solving the evolutionary hjb equation., Computers590

and Mathematics With Applications 49(7-8) (2005) 5730 – 5742.
[4] K. Carlberg, C. Bou-Mosleh, C. Farhat, Efficient nonlinear model reduction via a least-squares petrov-galerkin projection

and compressive tensor approximations., International Journal for Numerical Methods in Engineering 86 (1) (2010) 155–
181.

[5] S. Zhu, L. Dedè, A. Quarteroni, Isogeometric analysis and proper orthogonal decomposition for parabolic problems,595

Numerische Mathematik 135 (2) (2017) 333–370.
[6] G. Kerschen, J. Golinval, A. Vakakis, L. Bergman, The method of proper orthogonal decomposition for dynamical char-

acterization and order reduction of mechanical systems: An overview, Nonlinear Dynamics 1 (41) (2005) 147–169.
[7] P. Glüsmann, E. Kreuzer, On the application of karhunen–loève transform to transient dynamic systems, Journal of Sound

and Vibration 328 (4-5) (2009) 507–519.600

[8] L. Boucinha, A. Ammar, A. Gravouil, A. Nouy, Ideal minimal residual-based proper generalized decomposition for non-
symmetric multi-field models – application to transient elastodynamics in space-time domain, Computer Methods in
Applied Mechanics and Engineering 273 (1) (2014) 56–76.

[9] C. Prud’homme, D. Rovas, K. Veroyand, L. Machiels, Y. Maday, A. Patera, G. Turinici, Reliable real-time solution of
parametrized partial differential equations: Reduced-basis output bound methods, Journal of Fluids Engineering 124 (1)605

(2002) 70–80.
[10] Y. Maday, E. M. Ronquist., The reduced-basis element method: application to a thermal fin problem, SIAM Journal on

Scientific Computing 26(1) (2004) 240–258.
[11] K. Veroy, A. T. Patera, Certified real-time solution of the parametrized steady incompressible navier-stokes equations:

rigorous reduced-basis a posteriori error bounds, International Journal for Numerical Methods in Fluids 47 (1) (2005)610

773–788.
[12] N. Nguyen, K. Veroy, A. Patera, Certified real-time solution of parametrized partial differential equations, Vol. Handbook

of materials modeling, Springer, Berlin, 2005, pp. 1523 – 1558.
[13] G. Rozza, Reduced-basis methods for elliptic equations in sub-domains with a posteriori error bounds and adaptivity,

Applied Numerical Mathematics (55) (2004) 403–424.615

33

[14] A. Quarteroni, G. Rozza, A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations
and applications, Journal of Mathematics in Industry 1 (1) (2011) 3.

[15] M. Grepl, Y. Maday, N. Nguyen, A. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential
equations, Modélisation mathématique et analyse numérique 41 (3) (2007) 575–605.

[16] G. Rozza, A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic620

coercive partial differential equations, Archives of Computational Methods In Engineering (15) (2008) 229–275.
[17] J. Galvis, S. K. Kang, Spectral multiscale finite element for nonlinear flows in highly heterogeneous media: A reduced

basis approach, Journal of Computational and Applied Mathematics 260 (1) (2014) 494–508.
[18] F. Chinesta, P. Ladevèze, E. Cueto, A short review on model order reduction based on proper generalized decomposition,

Arch Comput Methods Eng (18) (2011) 395–404.625

[19] F. Chinesta, P. Ladevèze, Separated Representations and PGD-Based Model Reduction: Fundamentals and Applications,
CISM International Centre for Mechanical Sciences, Springer Vienna, 2014.

[20] F. Chinesta, R. Keunings, A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations: A
Primer, SpringerBriefs in Applied Sciences and Technology, Springer International Publishing, 2013.

[21] P. Ladevèze, Sur une famille d’algorithmes en mécanique des structures, Comptes Rendus Académie des Sciences. Paris.630

Ser. II (300) (1985) 41–44.
[22] P. Ladevèze, Nonlinear Computational Structural Mechanics - new approaches and non-incremental methods of calculation,

Mechanical Engineering Series, Springer New York, 1999.
[23] P. Boisse, P. Bussy, P. Ladevèze, A new approach in non-linear mechanics: the large time increment method, International

Journal for Numerical Methods in Engineering 29 (1990) 647–663.635

[24] D. Ryckelynck, Réduction a priori de modèles thermomécaniques, Compte Rendu Mecanique 330 (2002) 499–505.
[25] P. Ladevèze, A. Nouy, On a multiscale computational strategy with time and space homogenization for structural me-

chanics, Computational Methods Applied Mechanical Engineering (192) (2003) 3061–3087.
[26] P. Ladevèze, J.-C. Passieux, D. Néron, On multiscale computational mechanics with time-space homogenization, Oxford

University Press, 2009, pp. 247–282.640

[27] P. Ladevèze, J.-C. Passieux, D. Néron, The latin multiscale computational method and the proper generalized decompo-
sition, Computational Methods Applied Mechanical Engineering (199) (2010) 1287–1296.

[28] P. Ladevèze, On reduced models in nonlinear solid mechanics, European Journal of Mechanics - A/Solids 60 (2016)
227–237.

[29] A. Nouy, A priori model reduction through proper generalized decomposition for solving time-dependent partial differential645

equations, Computational Methods Applied Mechanical Engineering 199 (23-24) (2010) 1603–1626.
[30] G. Bonithon, A. Nouy, A priori tensor approximations for the numerical solution of high dimensional problems: alter-

native definitions, in: 28th GAMM-Seminar Leipzig on Analysis and Numerical Methods in Higher Dimensions, Leipzig,
Allemagne, 2012.

[31] D. Néron, P.-A. Boucard, N. Relun, Time-space pgd for the rapid solution of 3d nonlinear parametrized problems in the650

many-query context, International Journal for Numerical Methods in Engineering 103 (4) (2015) 275–292.
[32] D. Amsallem, J. Cortial, K. Carlberg, C. Farhat, A method for interpolating on manifolds structural dynamics reduced-

order models, International Journal for Numerical Methods in Engineering 80 (1) (2009) 1241–1258.
[33] M. Barrault, Y. Maday, N. Nguyen, A. Patera, An ‘empirical interpolation’ method: application to efficient reduced-basis

discretization of partial differential equations, Comptes Rendus Académie des Sciences. Paris. Ser. I (339) (2004) 667–672.655

[34] N. C. Nguyen, J. Peraire, An efficient reduced-order modeling approach for non-linear parametrized partial differential
equations, International Journal for Numerical Methods in Engineering 76 (2008) 27–55.

[35] S. Chaturentabut, D. Sorensen, Nonlinear model reduction via discrete empirical interpolation, Society for Industrial and
Applied Mathematics 32 (5) (2010) 2737–2764.

[36] D. Ryckelynck, A priori hypereduction method: an adaptive approach, International Journal of Computational Physics660

202 (1) (2005) 346–366.
[37] P. Astrid, S. Weiland, K. Willcox, T. Backx, Missing point estimation in models described by proper orthogonal decom-

position, IEEE Transactions on Automatic Control 53 (10) (2008) 2237 – 2251.
[38] K. Carlberg, C. Farhat, J. Cortial, D. Amsallem, The gnat method for nonlinear model reduction : Effective implementa-

tion and application to computational fluid dynamics and turbulent flows, Journal of Computational Physics (242) (2013)665

623–647.
[39] C. Farhat, P. Avery, T. Chapman, J. Cortial, Dimensional reduction of nonlinear finite element dynamic models with finite

rotations and energy-based mesh sampling and weighting for computational efficiency, International Journal for Numerical
Methods in Engineering 98 (9) (2014) 625–662.

[40] P. Ladevèze, A computational technique for the integrals over the time-space domain in connection with the latin method670

(in french), Tech. Rep. 193, LMT Cachan (1997).
[41] R. Glowinski, P. Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM studies in

applied mathematics, Society for Industrial and Applied Mathematics, 1989.
[42] C. Heyberger, P.-A. Boucard, D. Néron, Multiparametric analysis whitin the proper generalized decomposition framework,

Computational Mechanics 49 (3) (2011) 277–289.675

[43] N. Relun, D. Néron, P. Boucard, A model reduction technique based on the pgd for elastic-viscoplastic computational
analysis, Computational Mechanics.

[44] J. V. Aguado, F. Chinesta, A. Leygue, E. Cueto, A. Huerta, Deim-based pgd for parametric nonlinear model order
reduction, in: J. P. M. de Almeida, P. Diez, C. Tiago, N. Parés (Eds.), VI International Conference on Adaptive Modeling
and Simulation, ADMOS, 2013.680

34

[45] F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar, A. Huerta, Pgd-
based computational vademecum for efficient design, optimization and control, Archives of Computational Methods in
Engineering 20 (1) (2013) 31–59.

35

