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Abstract
Cellular automata are a discrete, synchronous, and uniform dynamical system that give rise to a
wide range of dynamical behaviours. In this paper, we investigate whether this system can achieve
synchronisation. We study the cases of classical bi-infinite configurations, periodic configurations,
and periodic configurations of prime period. In the two former cases, we prove that only a
“degenerated” form of synchronisation – there exists a fix-point – is possible. In the latter case, we
give an explicit construction of a cellular automaton for which any periodic configuration of prime
period eventually converges to cycle of two uniform configurations. Our construction is based
upon sophisticated tools: aperiodic NW-deterministic tilings [7] and partitioned intervals [1].
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Introduction

Complex systems are systems compound of many “simple” components whose interactions
give birth to a wide range of complex behaviours. To better grasp mechanisms behind such
emerging behaviours, a classical theoretical approach is to reproduce these behaviours on a
regular and simple model. Introduced to model self-replication [10], cellular automata are an
example of such a basic simple discrete dynamical system. They consist in a bi-infinite line of
cells endowed with a state chosen among a finite alphabet. The system evolves thanks to the
uniform and synchronous application of a local rule. This rule gives the new state of a cell
according to its previous state and the ones of its neighbours. Despite its apparent simplicity,
cellular automata can exhibit a wide range of complex behaviours [11]. In this paper, we
focus on one specific behaviour: synchronisation. as in biological cell synchronisation.

Section 1 is devoted to present the context, provide a formal definition, and give several
preliminary properties. Inspired by biological cell synchronisation, synchronisation is the
following: is it possible, starting from any configuration, to ensure that all cells eventually
enter the same state at the same moment? This notion has also strong connections with the
Firing Squad Synchronisation Problem [2, 8]. In this paper, the two main specificities are that
the system is fully deterministic (no randomness is provided) and we require synchronisation
for every configuration.

Results are presented in two parts: in Section 2, we prove that our framework does not
allow “real” synchronisation neither over the whole configuration space nor over periodic
configurations. Then, in Section 3, we present our main result: a detailed construction of a
cellular automaton that – over periodic configurations of prime period – always converges
toward a cycle consisting of two uniform configurations, solving the synchronisation problem
as studied in [5]. Finally, Section 4 gives some consequences of our main result.
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54:2 On the Synchronisation Problem over Cellular Automata

(a) No synchronisation (b) Synchronisation (c) Synchronisation
towards a fix-point towards a cycle

Figure 1 Examples of partial space-time diagrams (time goes up).

1 Synchronisation

A cellular automaton (CA for short) is a pair (Q, f) where Q is a finite set of states
and f : Q3 → Q is the local rule. The cellular automaton acts on elements of QZ

called configurations. The resulting action is called global function F : QZ → QZ and is
defined by, for any c ∈ QZ, i ∈ Z, F (c)i = f(ci−1, ci, ci+1). The local function is extended
to finite words f : Qn → Qn−2 by, for any w0w1 . . . wn−1 ∈ Qn, f(w0w1 . . . wn−1) =
f(w0, w1, w2)f(w1, w2, w3) . . . f(wn−3, wn−2, wn−1). A configuration c ∈ QZ is of period
p ∈ N+ if, for any i ∈ Z, ci+p = cp. Due to uniformity of global function, the image of a
periodic configuration is periodic and its period divides the original period. In the rest of
the paper, the periodic configuration made by the repetition of the non-empty word u ∈ Q∗
is denoted as ωuω. When the period is 1, the configuration is called uniform.

The evolution of a configuration c ∈ QZ is often depicted by piling up the successive
iterations (c, F (c), F 2(c), . . .). Such a representation is called space-time diagram; examples
of such a representation can be seen in Figure 1. Intuitively, synchronisation is achieved
when, at some time, all cells reach an agreement, i.e. a uniform configuration (see Figure 1).

I Definition 1 (Synchronisation). A cellular automaton (Q, f) is synchronizing if, for any
configuration c ∈ QZ, there exist nc ∈ N∗ and a ∈ Q, such that Fnc(c) = ωaω.

Moreover, the cellular automaton is fully synchronizing if a does not depend on c – i.e.,
there exists a ∈ Q such that, for any configuration c ∈ QZ, there exists nc ∈ N∗ such that
Fnc(c) = ωaω.

A careful reader may notice that our definition allows cases where the synchronisation
does not bring meaningful information: for example, when a configuration converges to
a uniform fix-point as in Figure 1b. The solution to exclude these cases is to forbid the
existence of such a fix-point.

I Definition 2. A synchronizing CA is strongly synchronizing if it is synchronizing and does
not have a uniform fix-point (formally, there does not exist b ∈ Q such that F (ωbω) = ωbω).

Intuitively, synchronizing CA correspond to CA whose attractors are a finite set of cycles
(a unique cycle for fully synchronizing). Strongly synchronizing CA are the specific case
where none of these attractors is reduced to a single configuration.

Several results are known in slightly different contexts. In particular, M. Delacourt’s
construction in [4] can be used to construct a cellular automaton which converges toward a
uniform cycle of length two for almost all configurations or for almost all periodic configura-
tions [3]. In the case of probabilistic cellular automata, N. Fatès has shown a wide range of
rules displaying full strong synchronisation [5].
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2 On general and periodic configurations

We now show that, over the set of all configurations and over the set of periodic configura-
tions, strong synchronisation is not possible. Moreover, in the general case, the notion of
synchronisation corresponds exactly to the well-known notion of nilpotency (see [7] for more
information about this notion).

I Lemma 3. A cellular automaton (Q, f) is synchronizing over the set of all configurations
if and only if it is nilpotent (i.e., ∃a ∈ Q and N ∈ N such that, ∀c ∈ QZ, FN (c) = ωaω).

Proof. Trivially, nilpotency implies (full) synchronisation and existence of a fix-point.
For the other direction, the basic idea is to consider a universe configuration cΩ ∈ QZ

containing all finite words of Q∗ as factors. By definition, if the automaton is synchronizing,
there exist nΩ ∈ N and a ∈ Q such that FnΩ(cΩ) = ωaω. This implies that, for any
word u ∈ Q2nΩ+1, it holds fnΩ(u) = a. Hence, for any configuration c ∈ QZ, we have
FnΩ(c) = ωaω. J

I Lemma 4. Any synchronizing cellular automaton (Q, f) over the set of periodic configura-
tions has a fix-point.

Proof. Let us first consider the sequence of states (qn)n∈N defined by q0 = q1 = q2 =
q ∈ Q and for any n ≥ 2, qn+1 = f(qn−2, qn−1, qn). Since Q is finite, there exists
x, y > 2, x 6= y such that (qx−1, qx, qx+1) = (qy−1, qy, qy+1). Let us denote as σ : QZ →
QZ the shift defined by, for any c ∈ QZ and p ∈ Z, σ(c)p = cp+1. By construction,
F (ω(qxqx+1 . . . qy−1)ω) = σ2(ω(qxqx+1 . . . qy−1)ω) and, ∀n ∈ N, Fn(ω(qxqx+1 . . . qy−1)ω) =
σ2n(ω(qxqx+1 . . . qy−1)ω). Since the cellular automaton is synchronizing, there exists a ∈ Q
such that ω(qxqx+1 . . . qy−1)ω = ωaω which implies F (ωaω) = σ2(ωaω) = ωaω. J

In fact, the previous proof can also prove the following: if a cellular automaton does not
have a fix-point, then there exists a non-uniform periodic configuration on which it behaves
as a power of the shift.

Using the uniform fix-point as an sink-hole, it is easy to construct a wide range of possible
behaviours including non fully synchronizing cellular automata. For example, the automaton
on Q = {e, 0, 1} with the rule f(0, 0, 0) = 1, f(1, 1, 1) = 0 and f outputs e for any other case
gives a synchronizing CA on periodic configurations which either stays in the cycle ω0ω, ω1ω

(starting from one of these configurations) or goes into ωeω otherwise.

3 Our main result

At this point, our goal is to find a fully and strongly synchronizing cellular automaton. Indeed,
we give in this section an example for the set of automata working over finite configurations
of prime period.

I Theorem 5. There exists a fully and strongly synchronizing cellular automaton over the
set of periodic configurations of prime period (or unit period).

The rest of the section is devoted to construct a cellular automaton (Q, f) for which any
periodic configuration (of prime period) converges toward the length two cycle containing
the two configurations ω0ω and ω1ω (0, 1 ∈ Q).

The construction is done by using three layers of set of states Q = N ×K × C. At first,
Section 3.1 gives a non-deterministic automaton (N, f), on partially synchronized growing
intervals. This automaton is extended into a deterministic cellular automaton on set of

STACS 2017



54:4 On the Synchronisation Problem over Cellular Automata

Table 1 Set N of states. Symbol on top and left defines subset of the state set for convenience.

L (left border) I (interior) R (right border) D (dual)
B (before)

Sr (right signal) , , , ,
Sl (left signal) , , , , , ,
Er (erasure) ,

A (after)
V (values) 0 , 1

states N ×K × C where K and C are layers controlling which of the possible rules of f the
N -layer chooses from. In Section 3.2, we add the K-layer based on an aperiodic tiling to
ensure that any configuration will contain only full intervals. In Section 3.3, we define the
C-layer controlling disappearing behaviour of intervals, using (at last) primality, to achieve
the result.

3.1 Intervals
The central element of our construction is the notion of interval that contains an increasing
part of locally synchronized computation. In our cellular automaton, an interval is based
on a portion of the configuration between a left border depicted by symbol , and a right
border , containing interior. This interval is endowed with a signal going left Sl ( ,
and ) and right Sr ( , and ). To ensure that there is exactly one signal in each
interval, all cells in the interval, not containing the signal, indicate whether they are before

or after the signal. The states resulting from the product of these two elements are
detailed in Table 1 alongside the subsets of states used in the rest of the paper.

I Definition 6 (Interval). An interval is a word of the form
(
LI∗R

)⋂ (
B∗(Sl∪Sr∪Er)A∗

)
or an element of D.

The main idea of the construction is to divide the configuration into growing intervals
that will “compete” with each other until only one is left. In this section, we firstly assert
the behaviour of intervals on their own.

First and foremost, the transition rule is only defined on sequences of intervals separated
by portion of values. When the neighbourhood is not locally valid, the rule outputs a new
initial interval .

To achieve growth (Figure 2a), the signal inside the interval goes back and forth three
times. The third time the signal reaches the left border, the interval grows of one to the left
by moving its left border.

Moreover, on conditions which will be detailed in Section 3.3, the signal can decide to go
into erasure mode (see Figure 2b) when bouncing on the right border. In this case, it goes
back to the left border using the signal and then erases the interval from left to right by
pushing the left border with and filling the liberated space with 0 or 1 . This last
event can also occur if a grow cannot be achieved due to an obstruction on the left on the
interval (see Figure 2c).

This behaviour is implemented with rules depicted in Table 2.
In this section, we will focus on the set of pre-image f−1 : Nn → Nn+2 of finite factors

of intervals.

I Lemma 7. Any pre-image of an interval, except the initial one , contains an interval.
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Table 2 Local function of the cellular automaton (N, f).
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(a) When the central element is in I
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, ,

, , , ,

(b) When the central element is in R

,
,

,
0 1

0

,
0 , 1

, , ,

(c) When the central element is in L

0 , 1
0

0
0

0
0

0

(d) When the central element is in D

0 , 1
1

1

1 , 0
0

0

(e) When the central element is in V

The local function is given on the form c r
l f(l, c, r) .

Any undefined case outputs . When l or r is missing, it indicates all states locally valid that have not
been defined elsewhere.
Green indicates when the central element is unchanged; red indicates when the status of the central
element is changed. Blue indicates non-deterministic transitions which will be treated in Section 3.2 for
dark blue and in Section 3.3 for light blue. Gray indicates cases which are in fact unused after the initial
step due to Lemma 10.
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(b) Erasure of an interval
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(c) left blocked

Figure 2 Desired basic behaviour for interval and its implementation (note that this behaviour is
not currently deterministic).

Proof. Let (ci)1≤i≤n ∈ Nn be an interval and (bi)0≤i≤n+1 ∈ Nn+2 be one element of its
pre-image as depicted below. Cases where n = 1 (c = or c = ) can be checked directly
looking at the Table 2. For the other cases, we must have c1 ∈ L, cn ∈ R and (ci)2≤i≤n−1 ∈ I.

b0 b1 b2 . . . bn−1 bn bn+1

c1 c2 . . . cn−1 cn

Since f(x)i ∈ R if and only if xi ∈ R ∪ D (see Table 2), then among b, only bn ∈ R.
Moreover, f(x)i ∈ L implies xi−1, xi or xi+i ∈ L. At last, since c does not contain the state

, it must use the transitions explicitly defined in Figure 2 which force by construction the
word between the two latter positions to be an interval. J

Now, let us focus on what happens in the pre-image of proper factors of intervals. The
basic idea is that any proper factor must be issued from a “bigger” factor in the pre-image.
To prove this, we first need to introduce a specific notion of size.

I Definition 8 (Size). Given a factor f ∈ N∗ of an interval, the size s(f) corresponds to the
number of symbols except counting only one half for symbol .

For example: s( ) = 1, s( ) = 2, s( ) = 2.5 and s( ) = 3.

I Lemma 9. Any pre-image of a proper factor of an interval contains a factor of strictly
greater size.

Proof. The first remark is that the pre-image can indeed be an interval. The proof is done
by refining the previous proof. Let us consider the case when the proper factor is a prefix of
an interval (the suffix case is similar). This implies that cn ∈ I. Looking at the transition
table, we have that bn must be in I and bn+1 is either in I or in R. Then we have s(b) > s(c),
unless the left border in b is b2; but this is only possible when c1 = , and then we have
s(b) = n and s(c) = n− 1 + 1

2 = n− 1
2 . J
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(a) Rules outputting (b) Form of region in the space-time diagram.

Figure 3 Regions of (here, denotes either , or .)

At last, one can easily see that some words do not appear in any image:

I Lemma 10. 1 0 and 0 1 are not possible in the image.

Proof. Looking at Table 2, we can see that the only way to output a 1 are the cases:

0
1

0
1

0
1

Since outputting a 0 requires that there is no 0 in the neighbourhood and that neither
nor can generate 0 , no 0 can occur next to a 1 . J

With these first non-deterministic rules, any periodic configuration can be divided into
intervals or short-lived proper factors of them (since any letter is itself a proper factor)
separated by uniform spaces of 0 or 1. The only exception is when the configuration contains
only one periodic proper factor of an interval, which can only be of the form ω ω or ω ω.
As we want to keep only full intervals, the option selected is to add one layer to ensure the
two following properties: infinite configurations consisting only of interior will eventually
disappear ; proper factors of intervals cannot be created. This is done in the following section.

3.2 Ensuring intervals with an aperiodic tiling
To ensure the presence of at least one interval, we want to detect inside uniform or
regions the periodicity without perturbing the normal behaviour of such regions. To do this,
we shall add a layer containing an aperiodic tiling over each region independently. In this
section, we shall only detail the case since is similar.

The first remark is that state can only be generated by the rules depicted in Figure 3a
leading to a region in a bottom triangular form (see Figure 3b).

Then, we want to fill this region with a south-west deterministic tiling. Formally, a
Wang tile t is a square tile with coloured edges, as represented in Figure 4a. It is given by a
quadruplet (te, tw, tn, ts) of symbols, called colours. A tile-set τ is a finite set of Wang tiles.
A tiling of the plane by τ is a map t from the discrete plane Z2 to τ such that two tiles that
share a common edge agree on its colour: For all integers i, j we have t(i, j)e = t(i+ 1, j)w

and t(i, j)n = t(i, j + 1)s. A tile set is said to be south-west deterministic if there is at most
one possible tile for every possible (ts, tw) (see Figure 4b). A tile-set τ is aperiodic if there
exists at least a valid tiling of the plane by τ but no periodic tiling.

In this paper, we shall use Kari’s tile-set [7] (or more precisely, its horizontal flip). This
tile-set is based on Robinson’s aperiodic tiling [9] and was introduced to study nilpotency
on cellular automata. It can be described with two layers (corresponding to a Cartesian
product). The first one is just a regular 4 coloured grid. The second one is usually depicted
using lines. The tiles are depicted in Figure 5.

STACS 2017
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tw

tn

te

ts

(a) A Wang tile (b) Catenation of tiles

Figure 4 Wang tiles.

(a) Background layer (b) Signals layer

Only signal tiles whose both dark left and bottom lines ( , , , , , , , ) can

appear above the background .

Figure 5 A simplified representation of the south-west deterministic aperiodic tile-set.

I Theorem 11 (J. Kari, 1992 [7]). The tile set in Figure 5 is aperiodic and south-west
deterministic.

This tiling can locally be implemented as a one-way cellular automaton g over τ by
associating, for t, t′ ∈ τ , the only tile g(t, t′) fitting (by south-west determinism). One can
thus use this to construct the layer in the inside of the region by enhancing the rules as
depicted in Figure 6. In case no such tile exists, the transition is defined as . It can be
noted that the additional rule is compatible with Table 2 and even more, it suppresses both
cases of non-determinism in case (a).

The previous idea is only valid for the inside and it leaves the case of borders open. For
those, we need another property which is the existence of a “regular” north-east quarter of
the plane. This is the case for the previous tiling, in particular we shall use the partial tiling
depicted in Figure 7. Due to the self-similarity of the tiling, one can see the highlighted
column (resp. line) consists of a periodic sequence of size 4 {c0, c1, c2, c3} (resp. {l0, l1, l2, l3})
with the possible exception of the common initial tile i. We can use this property to define
the last remaining cases of Figure 3a to ensure the filling of the region exists and is as
depicted in Figure 6.

Let us now prove that the additional layer does indeed do what we want: forbid uniform
configuration of or , and forbid proper prefix of intervals. This is done in the two
following lemmas.

I Lemma 12. On a periodic configuration of period N , after less than |τ |N steps of the
automaton, the projected configurations ω ω and ω ω cannot appear.

Proof. By construction, such configurations contain a layer with the aperiodic tiling for
every pre-image. By contradiction, if the configuration appears after |τ |N steps, we can
extract |τ |N configurations for the tiling layer. In this case, at least two of them are identical
and can be glued into a valid periodic tiling leading to a contradiction. J
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t t′

t′′

t t′

i cn+1

cn

When g(t, t′) = t′′ When g(t, t′) is not defined

c0

c3

c0

i

ln+1

ln

l0

l3

l0

i

Tiles i, ci and li are the specific tiles on the border in Figure 7. Tile i is the bottom-left corner. Sequence
c0, c1, c2, c3 (resp. l0, l1, l2, l3) is the periodic sequence in the leftmost column (resp. bottom line).

Figure 6 Additional aperiodic layer.

C
L

i

c0

c1

c2

c3

l0 l1 l2 l3

Figure 7 Valid quarter of the plan tiling with regular diagonals.

Let us call TK
max(n) the bound in the previous lemma. This bound (which is independent

of the tiling) is exponential in N . For the specific tiling used here, a better study could
almost surely prove a quadratic bound.

More than just eliminating uniform configurations we do not want, this layer avoids the
creation of proper prefix of intervals.

I Lemma 13. On a periodic configuration of period N , after at most 2N+max(TK
max(N), 2N)

steps, the configuration does not contain any proper factor of interval.

Proof. By contradiction, assume there exists such a proper factor. We can look at its
sequence of pre-images.

If this sequence does not contain a full interval, by Lemma 9, it must increase in size
(and thus in length) and thus reaches one uniform configuration ω ω or ω ω in less than
2N steps which contradicts Lemma 12.

Let us consider now the step when the pre-image b is an interval and the image c is a
strict factor. The key point is that this case can only happen when there is an error in the
aperiodic layer outputting a symbol , otherwise, the image of an interval is an interval.
Without loss of generality, we can assume that this error occurs over the symbol .

In all cases, the error over occurs in a triangle of such states. However, the transitions
are made so that any point of the triangle behaves as the tiling depicted in Figure 7.

STACS 2017
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Thus there cannot be errors in the tiling. This implies that c is an interval, which is a
contradiction. J

Since no proper prefix of interval may be created after a certain time denoted as TR(N),
we can thus give a precise characterization of configurations which can appear after some
initial transient behaviour.

I Proposition 14. After TR(N) steps, the configuration consists only of intervals possibly
separated by uniform portions of 0 or 1.

Proof. This result follows directly from the two previous Lemmas and Lemma 10. J

Moreover, in this case, we have some additional very useful property.

I Lemma 15. After TR(N) steps, no right border is created and the number of intervals in
the configuration is decreasing.

Proof. It is sufficient to remark, looking at Figure 2, that only transitions outputting can
create a right border and that it cannot happen in the conditions depicted by the previous
lemma. Either because of the form of configurations (for the gray cases) or because there
cannot be an error (by the proof of Lemma 13). J

3.3 Comparing intervals
The last point of the construction is to effectively synchronize. The idea is to keep the largest
interval by comparing any two adjacent intervals and suppressing the smaller one. Here,
we shall at last use the property of primality which will ensure, in some sense, that such a
largest interval exists.

For this last proof, we add a layer C which contains a new full speed signal ( , )
and two vertical markers ( , ). This layer works in the following way (see Figure 8 for a
global view): Each time it encounters a new right neighbour (that is, when an interval on its
left has grown and reaches it), a comparison is started. This comparison launches the new
signal inside the left interval and adds a static marker to indicate a undergoing comparison.
The new signal makes a round trip around the left interval whereas the signal ( ,
) makes a similar trip in the right interval. The result of the comparison is determined
according to which of these signals comes back first on the marker. If the new signal arrives
first (meaning the left interval is strictly smaller than the right one), then a mark is left to
call for the destruction of the left interval by ensuring that the next time a signal ,
or arriving is transformed into (lifting the last non-deterministic case). In the other
case, nothing is done since the right interval will erase itself if it cannot grow.

One notable property is that the signal takes some time to go back and forth so the
comparison is not immediate and synchronous.

Let us now prove the constructed cellular automaton achieves the desired synchronizing
behaviour. For a fixed period N , the number of possible configurations is finite and thus any
configuration eventually reaches a cycle. In this cycle, the number of intervals is constant.
Let us define as s∞ the maximal size of an interval inside this cycle.

I Lemma 16. The case s∞ = 1 is not possible.

Proof. By contradiction assume that s∞ = 1. Since all intervals are of maximal size 1, there
is no L, R or I states in the configuration. Thus, it only consists of states either in V or in
D. After some time, those are stable since no interval is created nor destroyed. Let us look
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Figure 8 Comparison of intervals.

at some state in D at this point. Looking at the transition rule, the only possibility for this
state to stay in D is to alternate the sequence , , over time. However, the transition
→ requires its left state to be in D whereas the one → requires it to be in V ,

which is not possible. J

I Lemma 17. The case s∞ ≥ 2 is not possible.

Proof. By contradiction assume that s∞ ≥ 2. There exists a configuration with an interval
of size s∞. This interval must be persistent over time and thus makes a cycle going from
up to an interval of size s∞ then erases itself to , and then goes back to . For the
proof, let us look at the moment the interval goes into erasing mode. This can be due to two
different cases: either because its growth was denied or because a comparison has produced
an erasing signal (see Figure 2). Let us review the two cases.

When the interval disappears because of left blocking. In this case, the first trivial
remark is that there must be an interval to the left. As right borders are persistent in this
case conditions, there must be an interval directly to the left. Let us now look at the moment
t0 our interval has grown to size s∞. It has thus launched a comparison.

If the interval to the left is of size s < s∞, then the comparison would have detected this
before instant t0 + 2(s− 1) which is the time for the signal to do a round trip. Moreover,
this comparison would have resulted, for the left neighbour, in the appearance of an erasure
signal after at most 2(s− 1) steps. At last, this results in the erasure of the left interval in
less than 2(s− 1) + 2 steps. Since our interval is alive for at least 6 ∗ (s∞ − 1) steps, the left
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interval would have disappeared before our interval even tries to grow which contradicts it
being blocked.

Thus we can assume that the interval to the left is of size s∞ when comparing. It implies
that it will also erase itself later which can only be for the same reason (blocked) as the
initial interval.

By iterating the proof, we can see that there is an infinite sequence of intervals which
are all of size s∞. Even if this sequence is found at different times, since right borders do
not move, appear, or disappear, this means that the configuration has a right border every
s∞ cells. At last, since the period is a prime number, this implies that there is only one
interval (of size s∞). However, in this case, it is easy to see that it goes into the uniform
configuration ω 0

ω at the end of the erasure, which contradicts s∞ > 0.

When the interval disappears because it is erased. This proof is very similar to the
previous one. This case is only possible if the interval is strictly smaller than its right
neighbour. This can indeed happen if the comparison was done just before an increase. In
this case, the right neighbour was of size s∞ (before). Moreover, since the erasure is, as
in the previous case, done before the right neighbour grows, it implies that the latter also
disappears because of erasure. Thus, we are in the same case, when the configuration is split
into intervals regularly spaced which can only mean there is only one interval. This leads to
the same contradiction as before. J

4 Generalisation and extension

To summarise, this paper shows that synchronisation cannot be achieved in a spatially
uniform deterministic context with only local information. However, it gives one sufficient
and surprising global additional condition (primality) that can be exploited to achieve
synchronisation. Moreover, an anonymous referee has hinted that the proof can be extended
to the odd case by forcing the lifetime of an interval to be even. In that case, the contradiction
for Lemma 17 is achieved by the fact that at least two consecutive intervals should have a
even shift between which would results in their disappearance.

The construction done in the previous section can be extended to achieve one cycle of any
size. Once this is done, the same remark as in the end of Section 2 applies: using Cartesian
product, it is easy to add any additional distinct number of cycles of any length.

Nevertheless, our construction is quite complex and relies heavily on the fact that the
dimension is one. This opens immediately the question of the validity of this result in higher
dimension; especially since the extension of the primality condition is not clear. One other
extension is to consider robust computation by introducing in the transition rule a small
probability of error (see [6]). In this case, it may even be possible to get rid of the primality
requirement.
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