Huan Fu 
email: huan.fu@student.uts.edu.auchaohui.wang@u-pem.frdacheng.tao@uts.edu.aublack@tuebingen.mpg.de
  
Chaohui Wang 
  
Dacheng Tao 
  
Michael J Black 
  
Occlusion Boundary Detection via Deep Exploration of Context

Occlusion boundaries contain rich perceptual information about the underlying scene structure. They also provide important cues in many visual perception tasks such as scene understanding, object recognition, and segmentation. In this paper, we improve occlusion boundary detection via enhanced exploration of contextual information (e.g., local structural boundary patterns, observations from surrounding regions, and temporal context), and in doing so develop a novel approach based on convolutional neural networks (CNNs) and conditional random fields (CRFs). Experimental results demonstrate that our detector significantly outperforms the state-of-the-art (e.g., improving the F-measure from 0.62 to 0.71 on the commonly used CMU benchmark). Last but not least, we empirically assess the roles of several important components of the proposed detector, so as to validate the rationale behind this approach.

Introduction

Occlusions are ubiquitous in 2D images of natural scenes (Fig. 1). They are introduced in the 3D-to-2D projection process during the image formation, due to the overlapping of the 2D extents (in the image plane) of 3D components/surfaces. In this paper, we focus on the problem of detecting occlusion boundaries, each of which separates two 2D regions projected from two parts of scene surfaces that overlap locally in either of those regions.

Occlusion boundary detection is of interest in computer vision, image analysis, and other related fields (e.g., [START_REF] Feldman | Motion segmentation and depth ordering using an occlusion detector[END_REF][START_REF] Galasso | A unified video segmentation benchmark: Annotation, metrics and analysis[END_REF][START_REF] Owens | Camouflaging an object from many viewpoints[END_REF][START_REF] Taylor | Causal video object segmentation from persistence of occlusions[END_REF]). Indeed, occlusions constitute an obstacle to designing rigorous models and efficient algorithms in computer vision and image analysis. Besides the lack of information on invisible scene components, another main reason is that occlusions invalidate the assumption that two neighboring pixels in a 2D image correspond to two adjacent points lying on a common part of a 3D surface. Nevertheless, this invalid assumption is often made, either ex-Figure 1. Illustration of ubiquitous occlusions and local occlusion patterns (source image from [START_REF] Scharstein | High-resolution stereo datasets with subpixel-accurate ground truth[END_REF]). plicitly or implicitly, in existing methods (e.g., the use of smoothness priors for aggregating spatial information in the 2D image). The localization of occlusion boundaries would, therefore, be very useful for overcoming this limitation and improving the solution in these tasks. Furthermore, since occlusion boundaries separate visible scene components from locally occluded components and usually correspond to an abrupt change in depth (along the line of view), these boundaries contain rich perceptual information about the underlying 3D scene structure, the exploitation of which would be beneficial in various visual perception applications. For example, occlusion boundaries can serve as important cues for object discovery and segmentation (e.g., [START_REF] Ayvaci | Detachable object detection: Segmentation and depth ordering from short-baseline video[END_REF][START_REF] Feldman | Motion segmentation and depth ordering using an occlusion detector[END_REF]), since an object is generally delimited from its environment by the isolation of its 3D surface. Indeed, psychologists have long studied their importance in human visual perception (e.g., Gibson, Biederman) [START_REF] Biederman | On the semantics of a glance at a scene[END_REF][START_REF] Gibson | The perception of surface layout: A classification[END_REF].

Despite the considerable number of studies on occlusion boundary detection (e.g., [START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF][START_REF] Hoiem | Recovering occlusion boundaries from a single image[END_REF][START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF][START_REF] Sargin | Probabilistic occlusion boundary detection on spatiotemporal lattices[END_REF][START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF][START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF]), the stateof-the-art is still unsatisfactory. We believe that one main reason for this is that contextual information has not been sufficiently explored in an efficient way. In fact, numerous previous studies developed their approaches based on structural modeling tools, e.g., Markov/Conditional Ran-dom Fields (MRFs/CRFs) [START_REF] Blake | Markov random fields for vision and image processing[END_REF][START_REF] Wang | Markov random field modeling, inference & learning in computer vision & image understanding: A survey[END_REF], to exploiting contextual information and demonstrated the importance of this information in solving various computer vision and image analysis problems (e.g., [START_REF] Carbonetto | A statistical model for general contextual object recognition[END_REF][START_REF] Jia | Video repairing under variable illumination using cyclic motions[END_REF][START_REF] Myeong | Learning object relationships via graph-based context model[END_REF][START_REF] Oliva | The role of context in object recognition[END_REF][START_REF] Torralba | Context-based vision system for place and object recognition[END_REF][START_REF] Tu | Auto-context and its application to highlevel vision tasks and 3d brain image segmentation[END_REF][START_REF] Xiang | Model selection for unsupervised learning of visual context[END_REF][START_REF] Yao | Modeling mutual context of object and human pose in human-object interaction activities[END_REF]). This has motivated us to better explore contextual information in detecting occlusion boundaries.

In this work, we are interested in exploring three main types of contextual information that are useful for occlusion boundary detection: (i) local contextual correlations in pixel labeling1 (e.g. [START_REF] Ganin | Nˆ4-fields: Neural network nearest neighbor fields for image transforms[END_REF][START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF][START_REF] Hoiem | Recovering occlusion boundaries from a single image[END_REF][START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF][START_REF] Sargin | Probabilistic occlusion boundary detection on spatiotemporal lattices[END_REF][START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF][START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF]); (ii) contextual correlations between the labeling of pixels (e.g., patch) and the observations from the surrounding area of the region (e.g., [START_REF] Ganin | Nˆ4-fields: Neural network nearest neighbor fields for image transforms[END_REF][START_REF] Hoiem | Recovering occlusion boundaries from a single image[END_REF]); and (iii) temporal contextual information contained in video sequences (e.g., [START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF][START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF]). Moreover, we aim to jointly model these three types of information so as to better explore them and boost occlusion boundary detection performance. To this end, we finally propose a novel approach for occlusion boundary detection based on convolutional neural networks (CNNs) [START_REF] Bengio | Deep learning. Book in preparation for[END_REF] and CRFs [START_REF] Blake | Markov random fields for vision and image processing[END_REF][START_REF] Wang | Markov random field modeling, inference & learning in computer vision & image understanding: A survey[END_REF], two of the most powerful and successful modeling tools in computer vision and related fields.

More specifically, in order to better explore type (i) and (ii) contextual information, our CNN model considers a relatively big image patch "L" as input, performs reasoning on it, and outputs the state of a relatively small patch "S" with the same center with "L" (referred to as L2S). It provides not only a probabilistic labeling map on "S", but also deep features that aggregate the high-level contextual information on "L". These are then fed into our CRF model to globally infer the occlusion boundaries in the whole image. For exploring type (iii) contextual information, we consider the scenario in which a video sequence is the input data (similar to many existing works e.g., [START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF][START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF][START_REF] Sargin | Probabilistic occlusion boundary detection on spatiotemporal lattices[END_REF][START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF][START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF]) 2 , and two simple optical-flow-based motion features are exploited to efficiently capture temporal contextual information.

Experimental results demonstrate that the proposed detector significantly outperforms the state-of-the-art, e.g., by improving the F-measure from 0.62 to 0.71 on the commonly used CMU benchmark [START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF] (see Fig. 2 for the precision-recall curves and Tab. 1 for the F-measures). Last but not least, we empirically demonstrate the importance of spatial and temporal contextual information in occlusion boundary detection, and compare several CNN-based alternative methods to illustrate that L2S provides more robust and discriminative deep occlusion features than those variants. These validate the underlying rationale of our approach, which would also be helpful for addressing other visual perception tasks. Based on the commonly used CMU benchmark [START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF], we compare our results with those of Sundberg et al. [START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF], Sargin et al. [START_REF] Sargin | Probabilistic occlusion boundary detection on spatiotemporal lattices[END_REF], Stein et al. [START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF] and He et al. [START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF].

Related Work

Occlusion boundary estimation has attracted extensive attention in computer vision over the past few years. Several methods have been proposed to detect occlusion boundaries in a single image. For example, Saxena et al. [START_REF] Saxena | Learning depth from single monocular images[END_REF] learn an MRF to capture 3D scene structure and depth information from single images. Hoiem et al. [START_REF] Hoiem | Recovering occlusion boundaries from a single image[END_REF] demonstrate the importance of 2D perceptual cues and 3D surface and depth cues for occlusion boundary detection, and compute these geometric contexts to reason about occlusions within their CRF model.

Due to the fact that occlusion boundary detection from a single 2D image is ambiguous, many applications consider videos or image sequences as inputs and extend occlusion boundary detection to the temporal dimension. Apostoloff and Fitzgibbon [START_REF] Apostoloff | Learning spatiotemporal t-junctions for occlusion detection[END_REF] observe that the T-junction is a particularly strong occlusion indicator, and thus learn a relevance vector machine (RVM) T-junction classifier on spatiotemporal patches and fuse Canny edges and T-junctions to detect occlusion edges in the spatial domain. Feldman and Weinshall [START_REF] Feldman | Motion segmentation and depth ordering using an occlusion detector[END_REF] define the average of the second moment matrix around a pixel as a gradient structure tensor by regarding the video sequence as a spatiotemporal intensity function, and demonstrate that the smallest eigenvalue of this tensor is the occlusion indicator. Stein and Hebert [START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF] exploit subtle relative motion cues present at occlusion boundaries during a sequence of frames and develop a global boundary model that combines these motion cues and standard appearance cues based on an initial edge detector [START_REF] Martin | Learning to detect natural image boundaries using local brightness, color, and texture cues[END_REF]. Black and Fleet [START_REF] Black | Probabilistic detection and tracking of motion boundaries[END_REF] represent occlusion boundaries via a generative model that explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appear-ance/disappearance of pixels at the boundary. Based on this model, the motion of occlusion boundaries is predicted and thus information over time is integrated. Besides, both motion boundaries and image boundaries are combined within an MRF framework in [START_REF] Black | Combining intensity and motion for incremental segmentation and tracking over long image sequences[END_REF] to better reason about the occlusion structure in the scene over time.

Although some aforementioned methods attempt to develop discriminative occlusion features on a spatiotemporal volume, recent works have shown that directly using flow-based occlusion features as the temporal information is more convenient and efficient. To name a few, Sargin et al. [START_REF] Sargin | Probabilistic occlusion boundary detection on spatiotemporal lattices[END_REF] introduce a probabilistic cost function to generate a spatiotemporal lattice across multiple frames to produce a factor graph. Boundary feature channels are then learned using this factor graph, by taking some independent flow-based occlusion feature channels into account. He and Yuille [START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF] argue that image depth discontinuities often occur at occlusion boundaries and estimate the pseudo-depth using the singular value decomposition (SVD) technique from motion flow as a cue for their occlusion detector. Sunberg et al. [START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] recompute occlusion motion flows on each edge fragment at region boundaries from the initial optical flow [START_REF] Brox | Large displacement optical flow: descriptor matching in variational motion estimation[END_REF], based on the observation that an occlusion boundary can be handled by comparing the difference in optical flow in regions on either side. Reporting that local patch features are unable to handle highly variable appearances or intra-object local motion, Raza et al. [START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF] estimate temporally consistent occlusion boundaries via an MRF model whose potentials are learned by random forests using global occlusion motion features and a high-level geometric layout on segmentation boundaries.

Regarding contextual information, it has already proved to play an important role in many computer vision tasks such as object detection, localization, and recognition [START_REF] Carbonetto | A statistical model for general contextual object recognition[END_REF][START_REF] Malisiewicz | Beyond categories: The visual memex model for reasoning about object relationships[END_REF][START_REF] Myeong | Learning object relationships via graph-based context model[END_REF][START_REF] Tu | Auto-context and its application to highlevel vision tasks and 3d brain image segmentation[END_REF]. Recently, context modeling has also been introduced to boundary detection. Dollár and Zitnick [START_REF] Dollár | Structured forests for fast edge detection[END_REF] adopt random decision forests [START_REF] Kontschieder | Structured class-labels in random forests for semantic image labelling[END_REF] to capture structural information of local patch edges. Weinzaepfel et al. [START_REF] Weinzaepfel | Learning to detect motion boundaries[END_REF] extend [START_REF] Dollár | Structured forests for fast edge detection[END_REF] to video datasets and exploit temporal information and static image cues to learn correlations between motion edges within local patches (edges between motion objects).

Previous studies have suggested that the brain encodes contextual information and biologically inspired deep CNNs have been shown to be powerful for feature extraction and description [START_REF] Hinton | A fast learning algorithm for deep belief nets[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], which have motivated us to learn the internal correlation of an occlusion boundary in local patches using the CNN framework. Patch-level CNNs have been widely used in a variety of computer vision tasks, with excellent progress made over recent years. For example, Fan et al. [START_REF] Fan | Combining local appearance and holistic view: Dual-source deep neural networks for human pose estimation[END_REF] combine local image patches and a holistic view in a CNN framework to learn contextual information for human pose estimation. Wang et al. [START_REF] Wang | Designing deep networks for surface normal estimation[END_REF] exploit physical constraints in local patches using a CNN-based model or surface normal estimation. Sun et al. [START_REF] Sun | Deep learning face representation from predicting 10,000 classes[END_REF] and Li et al. [START_REF] Li | Shape driven kernel adaptation in convolutional neural network for robust facial trait recognition[END_REF] learn convolutional features from multiple local regions for facial trait recognition. Besides, Sun et al. [START_REF] Sun | Learning a convolutional neural network for non-uniform motion blur removal[END_REF] formulate an MRF model to remove non-uniform motion blur using the patch-level probabilistic motion blur distribution by CNNs. Motivated by nearest neighbor relationships within a local patch, Ganin and Lempitsky [START_REF] Ganin | Nˆ4-fields: Neural network nearest neighbor fields for image transforms[END_REF] detect edges by learning a 4 × 4 label feature vector for each patch and matching against a sample CNN output dictionary corresponding to training patches with known annotation. Shen et al. [START_REF] Shen | Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection[END_REF] make use of the structural information of object contours in contour detection, by classifying image patches into different boundary types and accordingly defining a special loss function for training a CNN.

The Proposed Occlusion Boundary Detector

Firstly, in order to better characterize local contextual correlations in pixel labeling and contextual correlations between regional pixel labeling and surrounding observations, we: (i) consider each individual pixel patch as the unit of interest, and (ii) adopt a CNN to learn and predict a patch's occlusion boundary map based on the observation of a larger patch of pixels with the same center. Secondly, we efficiently explore and encode temporal contextual information within the whole framework by adopting effective motion features in the CNN. Finally, we use a CRF model to integrate patch-based occlusion boundary maps and soft contextual correlations between neighboring pixels to achieve occlusion boundary estimation for the entire image. Each part is described below.

Patch-based Labeling using CNNs

We are interested in modeling and predicting labeling of a patch of pixels based on the observation of a larger patch with the same center via a structured learning/prediction process. Mathematically, given the K-channel observed data on an N × N patch centered at pixel c, denoted

x c ∈ R K * N 2
, we aim to obtain the weighted occlusion boundary map y c ∈ R M 2 on an M × M (M < N ) patch that is also centered at pixel c, which is achieved via our structured CNN convolutional neural network illustrated in Fig. 3. Below we first briefly describe the architecture of our structured CNN and then discuss the initial input features/cues used for occlusion boundary detection.

CNN Architecture

We train a CNN using a cross entropy loss function to predict the probability distribution in a small 7 × 7 patch from a large 27 × 27 image patch (i.e., M = 7 and N = 27 in our experiments). The overall CNN architecture is shown in Fig. 3. The input of our CNN consists of 3 static color channels and 2 temporal channels [START_REF] Wang | Designing deep networks for surface normal estimation[END_REF], which corresponds to a probabilistic labeling map of size 7×7. Here, conv, maxp, LRN, f c, and dropout denote the convolutional layer, max pooling layer, local response normalization layer, fully-connected layer, and dropout layer, respectively. The LRN scheme implements a form of lateral inhibition, encouraging competition for large activations in the neuronal output [START_REF] Boureau | Learning mid-level features for recognition[END_REF][START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF]. The dropout layer is used to prevent units from co-adapting too much when training a large neural network [START_REF] Hinton | Improving neural networks by preventing co-adaptation of feature detectors[END_REF].

→ maxp2 → LRN 2 → conv3 (96@6*6) → maxp3 → f c1 (2048) → dropout1 → f c2 (2048) → dropout2 → f c3
In our CNN architecture, the rectified linear units (ReLU s) non-linear active function, f (x) = max(0, x), is followed by all conv and f c layers except f c3. A sigmoid function is applied to f c3 to obtain a probabilistic labeling map; and accordingly the cross entropy loss function is adopted for the training process. Furthermore, the output of M axp3 provides learned deep features that aggregate the high-level contextual information (referred to as deep contextual features), which are then used in the CRF model (see Sec. 2.2) to globally reason about occlusion boundaries.

Initial Features for Occlusion Reasoning

Many previous occlusion boundary detection methods have attempted to extract various specific features that character-ize occlusions in raw images such as T-junctions, relative depths, and other useful 3D scene properties [START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF][START_REF] Hoiem | Recovering occlusion boundaries from a single image[END_REF][START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF]. However, accurate automatic extraction of such features is also challenging. To avoid these difficulties, we aim to perform occlusion reasoning by using simple but effective initial features/cues. To this end, we first convert an RGB image to Lab space and consider the gradient magnitude of the Lab maps as three feature maps for the CNN model. In addition, we include two optical-flow-based motion features to efficiently encode temporal contextual information in video sequences and further improve detection performance. Finally, the input of our CNN model consists of 5 (3 static + 2 motion) feature maps. The two motion features are detailed below.

• Motion Feature 1 The first occlusion motion feature OM F 1 aims to capture optical flow discontinuity which suggests occlusion boundaries. We use f t,t+t0 (t 0 ∈ N * ) to denote the optical flow map from frame t to frame t + t 0 (t 0 = 5 in the experiments). To capture the discontinuity of f t,t+t0 , we compute the unoriented gradient magnitude GF t,t+t0 :

GF t,t+t0 = |∇f t,t+t0 | (1) 
Since both forward flow f t,t+t0 and backward flow f t,t-t0 provide motion information from frame t, in order to achieve robustness, we compute GF t,t-t0 similarly together with GF t,t+t0 and consider their geometric mean as one occlusion motion feature OM F 1 : • Motion Feature 2 The second occlusion motion feature OM F 2 models the fact that the consistency of the flow f t,t+t0 and reverse flow f t+t0,t is not satisfied when occlusion occurs [START_REF] Humayun | Learning to find occlusion regions[END_REF]. We measure these inconsistencies using both location and angle, illustrated in Fig. 4. Let f l and f l denote the flow values at location l in the forward and reverse flow maps f t,t+t0 and f t+t0,t , respectively. If a point located at l in frame t is visible at t and t + t 0 , its correspondence in frame t+t 0 should be located at l+f l and should return to its start position l after being transported to frame t by the reverse flow f l+f l . And with respect to angle, flow f l and reverse flow f l+f l should be π apart if consistent. Hence, we measure these inconsistencies as follow:

OM F 1 = GF t,t+t0 * GF t,t-t0 (2) 
Γ l = |f l + f l+f l | (3) 
Λ l =    0 P |Q arccos{ -f l •f l+f l |f l ||f l+f l | } others (4) 
where P and Q represent |f l | < δ and |f l+f l | < δ, respectively, and are used to filter out the likely static pixels and prevent the denominator of the formulation above from being 0 (δ = 0.01 * max l (|f l |) for each frame in the experiments). Since both Γ and Λ describe inconsistent properties when occlusions occur, we combine them to obtain our inconsistency descriptor IC t,t+t0 , via a Gaussian smoothness process:

IC t,t+t0 (l) = l * σ(d -|l * -l|)e -|l * -l| 2 2 Γ l * Λ l *
(5) where σ(x) = 1 when x ≥ 0 and 0 otherwise, and d = 2 in the experiments. Similar to OM F 1 , OM F 2 also takes the backward flow into consideration and is defined as:

OM F 2 = IC t,t+t0 * IC t,t-t0 (6)

Image-level Reasoning via CRFs

We then adopt CRFs to efficiently integrate patch-based occlusion boundary maps and soft contextual correlations between neighboring pixels, so as to achieve global occlusion boundary estimation for the entire image. Here, we consider the most common pairwise CRF with 4neighborhood system used in computer vision and image analysis 3 . In the CRF model, the nodes correspond to the pixel lattice and the edges to pairs of neighboring nodes. Let V and E denote the node set and the edge set, respectively. The CRF energy is defined as:

E(x) = i∈V θ i (x i ) + {i,j}∈E θ ij (x ij ) (7)
Unary potentials (θ i (•)) i∈V are used to encode the data likelihood on individual pixels based on the patch-based probabilistic labeling maps provided by the CNN presented in Sec. 2.1, by defining θ i (•) as the negative logarithm of the average probability pi (•) over all output patches that cover the pixel i:

θ i (x i ) = -log pi (x i ) (8) 
Let R i denote the deep contextual features of the local patch centered at pixel i provided by maxp3 layer of our CNN, and the l 2 norm between R i and R j is measured to capture the dissimilarity between neighboring pixels i and j. To penalize different labels between neighboring pixels, the Pairwise potentials (θ ij (•)) {i,j}∈E between pairs of nodes are defined as:

θ ij (x i , x j ) = 0 if x i = x j w • exp{-R i -R j } otherwise (9)
where w is a weight coefficient balancing the importance of the unary and pairwise terms (w = 2.1 in the experiments).

Implementation Details

We adopt the region detector provided in [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF], which produces a large number of small regions, so as to preserve nearly all types of boundaries, including occlusion boundaries. The occlusion boundary detection boils down to a binary classification problem which determines whether the boundary between regions is or is not an occlusion boundary, which is the same setting as many previous work (e.g., [START_REF] Hoiem | Recovering occlusion boundaries from a single image[END_REF][START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF][START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF][START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF]). In order to address the ground truth labeling bias (e.g., the original set of boundaries created by [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] are often 1 or 2 pixels away from the corresponding ground truth boundaries drawn by hand [START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF]), we consider all pixels within 2 pixels of the boundaries obtained by [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] to produce image patches 4 . To balance the number of positive patches (patches containing an occlusion boundary curve) and negative patches during training, we randomly sample 100,000 training patches in a 1:1 ratio.

The 3 image and 2 motion cue channels are the CNN input to learn internal correlations around occlusion boundaries and predict probabilistic labeling maps and extract deep contextual features. See Sec. 2.1 for the motion cues computation and structured CNN framework. Our structured CNN model is built based on Caffe [START_REF] Jia | Caffe: Convolutional architecture for fast feature embedding[END_REF], developed by the Berkeley Vision And Learning Center (BVLC) and community contributors. The CRF model is then constructed to globally estimate occlusion boundaries for each image using the probabilistic labeling maps and the deep contextual features provided by the learned CNN model. Regarding the CRF inference, many powerful off-the-shelf algorithms can be directly applied to solve the CRF model [START_REF] Wang | Markov random field modeling, inference & learning in computer vision & image understanding: A survey[END_REF]. We simply used sum-product loopy belief propagation [START_REF] Weiss | Comparing the mean field method and belief propagation for approximate inference in mrfs[END_REF] to estimate approximate-marginal probabilities of all nodes/pixels via message passing over the graph, so as to get a probabilistic boundary labeling map on the entire image and directly compare with previous methods using the same quality metric, i.e., F-measure.

In the final step, we apply the method in Arbelaez et al. [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF] to remove isolated pixels and connect disconnected short lines that might belong to a long boundary in our probabilistic occlusion boundary map η. This produces contour boundary map Ω. We then combine η and Ω by learning a weight factor α using SVM to get obtain our final occlusion boundary detector ξ:

ξ = α * η + (1 -α) * Ω (10) 
In this paper, the final α is 0.65.

Experimental Results

Following most previous work on occlusion boundary detection, such as [START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF][START_REF] Leordeanu | Efficient closed-form solution to generalized boundary detection[END_REF][START_REF] Sargin | Probabilistic occlusion boundary detection on spatiotemporal lattices[END_REF][START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF][START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF], we evaluate the performance of the proposed detector on the CMU benchmark [START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF], and perform quantitative comparison with previous work using the precision (P re) vs. recall (Rec) curve and F-measure (F-measure = 2 * P re * Rec P re+Rec ) as quality measures. In addition, we also perform quantitative evaluation on the datasets provided by [START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] and [START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF] and compare with their methods. In the following, we will first exhibit the obtained qualitative and quantitative results, and then empirically analyze the importance of several major components via the 4 This operation also prevents CNN from paying too much attention to the center of the label patch and assigning a high probability to it. comparison between the corresponding variants of the proposed detector.

Algorithm

F-measure Stein et al. [START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF] 0.48 Sargin et al. [START_REF] Sargin | Probabilistic occlusion boundary detection on spatiotemporal lattices[END_REF] 0.57 He et al. [START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF] 0.47 Sundberg et al. [START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] 0.62 Leordeanu et al. [START_REF] Leordeanu | Efficient closed-form solution to generalized boundary detection[END_REF] 0.62 Our detector (probability) 0.71 Our detector (hard) 0.63

Table 1. F-measure values (the average of maximal F-measure values over the whole benchmark) obtained by the considered methods on the CMU benchmark.

Algorithm F-measure Dataset [START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] Dataset [START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF] Sundberg et al. [START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] 0.56 N/A Raza et al. [START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF] N/A 0.60 Our detector 0.59 0.63

Table 2. Comparison with [START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] and [START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF] on their datasets.

Qualitative and Quantitative Results

A representative set of qualitative results on the CMU benchmark are exhibited in Fig. 5. The quantitative comparison with several important previous methods [START_REF] He | Occlusion boundary detection using pseudo-depth[END_REF][START_REF] Leordeanu | Efficient closed-form solution to generalized boundary detection[END_REF][START_REF] Sargin | Probabilistic occlusion boundary detection on spatiotemporal lattices[END_REF][START_REF] Stein | Occlusion boundaries from motion: Low-level detection and mid-level reasoning[END_REF][START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] is shown in Tab. 1 and Fig. 2, where the quantitative results of the previous methods are taken from their papers. Specifically, the P recision vs. Recall curves of different methods are shown in Fig. 2, which indicates that our detector significantly outperforms previous methods, especially withn a recall interval of [0.6, 0.9].

The evaluation based on F-measure is shown in Tab. 1, which also demonstrates a significant improvement over previous methods. Following previous work, we range the threshold on the probabilistic occlusion boundary map obtained for each image and compute the average of the maximal F-measure (AMF) across the whole dataset, and report the obtained results in Tab. 1. Moreover, considering that: (i) the optimal threshold that leads to the maximal Fmeasure of the occlusion boundary map generally varies between input test images, (ii) hard boundary labeling results (i.e., each pixel is labeled either 0 or 1) is often desirable for certain research problems and applications, we also report in Tab. 1 the average F-measure on the hard occlusion labeling maps 5 obtained by our method with the same parameter setting for all testing data.

Finally, quantitative comparison with [START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] and [START_REF] Raza | Finding temporally consistent occlusion boundaries in videos using geometric context[END_REF] on their datasets is shown in Tab. 2 and also demonstrates the superiority of our detector.

Contribution of Temporal Cues

Based on Classic-NL [START_REF] Sun | A quantitative analysis of current practices in optical flow estimation and the principles behind them[END_REF], we performed experiments to estimate the contribution of each type of occlusion motion context to our algorithm. We can see from Tab. 3 that: (i) motion contexts are important cues that have a large impact on the performance of the occlusion boundary detection, and (ii) the two motion features used in our method both significantly contribute to the performance of the method, and jointly using them achieves the highest accuracy. Furthermore, in order to evaluate how the method's performance depends on the accuracy of optical flow computation, in Tab. 4, we report the F-measures using three typical optical flow algorithms proposed by: Broxs et al. [START_REF] Brox | Large displacement optical flow: descriptor matching in variational motion estimation[END_REF], Sun et al. [START_REF] Sun | A quantitative analysis of current practices in optical flow estimation and the principles behind them[END_REF] and Weinzaepfel et al. [START_REF] Weinzaepfel | Deepflow: Large displacement optical flow with deep matching[END_REF]. These similar F-measures demonstrate that our method is quite robust with respect to the choice of optical flow algorithm.

Optical Flow

F-measure LDOF [START_REF] Brox | Large displacement optical flow: descriptor matching in variational motion estimation[END_REF] 0.68 Classic-NL [START_REF] Sun | A quantitative analysis of current practices in optical flow estimation and the principles behind them[END_REF] 0.71 Deepflow [START_REF] Weinzaepfel | Deepflow: Large displacement optical flow with deep matching[END_REF] 0.69 Table 4. F-measures using different optical flow algorithms.

Different CNN Frameworks The way contextual information is explored via local patches is a key factor of the method, since the edge and node potentials in the final CRF framework are related to the contextual information aggregated by CNNs. In order to validate our choice (i.e., L2S: we learn the mapping from a large patch "L" to a small patch "S" with the same center with "L" ), we compare it with four variants, which are: (i) L2P: we learn the mapping from "L" to the pixel at the center of "L"; (ii) L2SP: we learn the mapping from "L" to "S" by independently learning the mapping to each individual pixel located within "S"; (iii) L2L: we learn the mapping from "L" to "L"; and (iv) S2S: we learn the mapping from "S" to "S". The results are shown in Tab. 5, from which we observe that: (i) the F-measure by S2S is obviously lower than that of other methods since the small input image patches contain much less contextual information and the contextual information of the surrounding area is ignored; (ii) compared to L2S, the CNN is slightly less effective at extracting discriminative spatial contextual information when learning the mapping from "L" to its center pixel, each individual pixel located within "S", and "L" itself (L2P, L2SP, and L2L). We explain these differences as follows: (i) L2P and L2SP: the CNN concentrates more on learning the differences between input samples to binary classify large patches and ignores correlations around occlusion edges within local image patches; (ii) L2L: on the one hand, the fixed training set becomes over sparse when the size of labeling map is too large, in which case the CNN can only learn superficial structural features; on the other hand, contextual correlation between the labeling of pixels and the observations from the surrounding area is not considered; and (iii) L2S: it properly handles the aforementioned issues exhibited in the variants so as to achieve better discriminative structured features. 

Conclusion

In this paper, we aim to exploit contextual information, including local structural boundary patterns, observations from surrounding regions, temporal context, and soft contextual correlations between neighboring pixels to improve performance of occlusion boundary detection. Computed occlusion motion cues and color cues are fed into a CNN framework to obtain a probabilistic occlusion boundary map on a small patch from a large patch with the same center and also to aggregate deep contextual features. Based on these, a CRF model is then adopted to achieve global occlusion boundary estimation. Our detector significantly outperforms the current state-of-the-art (e.g., F-measure increases from 0.62 [START_REF] Leordeanu | Efficient closed-form solution to generalized boundary detection[END_REF][START_REF] Sundberg | Occlusion boundary detection and figure/ground assignment from optical flow[END_REF] to 0.71 on the CMU benchmark). Last but not least, we empirically demonstrate the importance of the temporal contextual cues and the advantage of our approach to exploring contextual information.

Figure 2 .

 2 Figure 2. Precision-recall curves. Based on the commonly used CMU benchmark [40], we compare our results with those of Sundberg et al. [44], Sargin et al. [36], Stein et al. [40] and He et al. [18].

Figure 3 .

 3 Figure 3. Illustration of the CNN architecture and the output of several layers. For a 27 × 27 patch of the given input sequence, we first extract 5 (3 static + 2 motion) initial feature maps, which is the input of the CNN. The output of M axp3 layer corresponds to deep features that aggregate the high-level contextual information (referred to as deep contextual features). f c3 layer outputs a probabilistic labeling map on a 7 × 7 patch.

Figure 4 .

 4 Figure 4. Illustration of flow inconsistencies.

Figure 5 .

 5 Figure 5. Representative occlusion boundary detection results. Each row corresponds to one testing sequence in the CMU benchmark [40] and consists of (from left to right): a reference frame, the occlusion boundary ground truth, the occlusion boundary map obtained by Stein et al. [40] (F-measure = 0.48), global probability boundary (gPb) map obtained by Arbelaez et al. [2] (F-measure = 0.53), and the occlusion boundary map obtained by our method (F-measure = 0.71).

Table 3 .

 3 Temporal contextual exploration. The contribution of the motion cues in the whole boundary detector is demonstrated.

	Features	F-measure
	Image	0.60
	Image + OMF1	0.65
	Image + OMF2	0.64
	Image + OMF1 + OMF2	0.71

Table 5 .

 5 F-measures using different mapping methods.

	Mapping methods F-measure
	L2P	0.66
	L2SP	0.65
	L2L	0.66
	S2S	0.63
	L2S	0.71

Like most existing methods, we formulate the problem by endowing each pixel with a binary variable denoting whether the pixel is on occlusion boundaries.

It should be noted that our method can also be applied directly to the scenario where an individual 2D image is the input (see Tab.

3).

The whole method is modular with respect to the choice of CRFs. A main reason to adopt the pairwise CRF with

4-neighborhood system in the experiments, instead of more sophisticated CRFs, is to demonstrate more clearly the effectiveness of the whole method.

In the experiments, the hard occlusion labeling maps is computed from the obtained probabilistic occlusion boundary map with a threshold of 0.4.
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