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ABSTRACT

We consider example-guided audio source separation approaches,
where the audio mixture to be separated is supplied with source ex-
amples that are assumed matching the sources in the mixture both in
frequency and time. These approaches were successfully applied to
the tasks such as source separation by humming, score-informed mu-
sic source separation, and music source separation guided by covers.
Most of proposed methods are based on nonnegative matrix factor-
ization (NMF) and its variants, including methods using NMF mod-
els pre-trained from examples as an initialization of mixture NMF
decomposition, methods using those models as hyperparameters of
priors of mixture NMF decomposition, and methods using coupled
NMF models. Moreover, those methods differ by the choice of the
NMEF divergence and the NMF prior. However, there is no system-
atic comparison of all these methods. In this work, we compare
existing methods and some new variants on the score-informed and
cover-guided source separation tasks.

Index Terms— Example-guided audio source separation, non-
negative matrix factorization, coupled nonnegative matrix factoriza-
tion, comparative study

1. INTRODUCTION

Audio source separation remains still challenging [1], especially in
the single-channel case. As such, one of the popular recent trends
consists in turning from blind towards informed or guided source
separation approaches [2], where some additional information about
sources or mixing conditions is used so as to enhance the source sep-
aration quality. Many kinds of information were considered includ-
ing music scores for music sources [3], text for speech sources [4],
user-provided annotations [5, 6], a video corresponding to the sound
mixture [7], audio-visual objects motion information [8], etc.

In this work we are interested in example-guided source separa-
tion [9-14], a particular sub-trend of guided approaches, where the
additional information consists of source examples that are supposed
to be close in some sense to the sources in the mixture, though do
not coincide with them. More precisely, we consider here only the
approaches where it is assumed that the examples match the sources
both in frequency and time, thus excluding, e.g., the approaches sup-
porting time-frequency deformations [15], pitch variations in case of
speech sources [4], or the approaches where only spectral or tempo-
ral characteristics are matched [16]. The approaches we consider are
suitable for the following tasks:

e Humming-informed source separation [9, 10], where the
source examples are hummed by a user while listening to the
mixture;

e Score-informed music source separation [11, 12], where the
examples are synthesized from the corresponding music
scores;

e Cover-informed music source separation [13, 14], where the
examples are cover tracks played or sung by musicians.

To illustrate the main concepts, we show in Figure 1 some music
sources, the corresponding mixture and source examples (synthe-
sized from the scores as in [11,12]). Note that we here consider only
the single-channel source separation, while for some methods, es-
pecially for those based on the Itakura-Saito (IS) divergence, exten-
sions to multichannel case are quite straightforward, as it was done
for example for a general source separation framework using multi-
ple deformed references [17] extended to multichannel case in [15].

Most of NMF-based methods for example-guided audio source
separation rely on the same global strategy schematized on Figure 1.
First, the NMF models of the sources are estimated while trying
to maintain a good compromise between fitting the models to both
the examples and the mixture. Once the models have been esti-
mated, the sources are estimated in turn by applying the correspond-
ing NMF-driven Wiener filtering to the mixture. Estimating “good”
NMF models that represent well the sources is the most critical step,
and various strategies were proposed for that in different approaches.
Those strategies are based on different training steps and criteria that
are optimized in most cases using the multiplicative update (MU)
rules [18, 19].

In [13], for cover-informed task, the NMF models are first
learned from the examples, and then re-trained on the mixture. As
such, the information from examples is only injected via models
initialization for training from the mixture. Probabilistic latent
component analysis (PLCA) modeling is considered in [9, 11] with
application to humming-informed [9] and score-informed [11] tasks.
Since PLCA modeling was shown equivalent (in terms of the cri-
terion to be optimized) to the NMF with Kullback-Leibler (KL)
divergence [20], these approaches fall into the scope considered
here. In [9, 11] the models are first trained from the examples and
then re-estimated from the mixture, while enforcing the models to be
close to the example models within the estimation criterion, which
is achieved by using example model parameters as hyper-parameters
of some prior distributions. Within the probabilistic PLCA this may
be also interpreted as a maximum a posteriori (MAP) adaptation.
A similar approach was considered in [10] for humming-informed
task, though with a different prior distribution and with a differ-
ent model estimation algorithm (MU rules in [10] instead of the
expectation-maximization (EM) algorithm as in [9, 11]). In this case
the information from examples is injected into the final training
from the mixture via both initialization of parameters and priors
on them. Finally, coupled NMF modeling is considered in [14]
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Fig. 1. A general scheme of example-guided audio source separation based on NMF modeling. Here it is illustrated on score-informed music
source separation with examples synthesis [11,12]. All the signals and models are represented by the corresponding spectrograms. The music
sources (saxophone and piano) and the synthesized source examples are from TRIOS dataset [12].

for cover-informed task, where the NMF models are jointly trained
from the examples and the mixture, while optimizing a composite
criterion. As such, the information from examples (or the exam-
ples themselves) is directly used while learning from the mixture.
Similar approaches, though applied in slightly different contexts,
include those based on nonnegative matrix partial co-factorization
(NMPCF) modeling [4,21], where NMF model components [21] or
NMF model factors (in case of a slightly more complex model) [4]
are coupled only partially.

The state-of-the-art methods presented above differ not only by
the model estimation strategies, but also by several factors includ-
ing the choice of NMF divergence (e.g., KL divergence in [10] vs.
IS divergence in [14]), by the choice of prior distribution in case of
MAP-like model adaptation [9-11], and by the strategy of manage-
ment of the example-guidance constraint. The latter factor means
that the data (mixture) fit and the constraint (example) fit are often
traded off via some penalty A within the corresponding estimation
criterion, and in some approaches [10, 11] the penalty A is decreased
over the algorithm iterations, and in other it is kept constant [14].
Also, as explained above, not all the approaches were applied to all
tasks mentioned in the beginning of this section.

It is clear that there is a lack of comparison of different ap-
proaches on the same tasks, and the goal of this work is to fill in
this gap. To do so we evaluate different existing approaches and
their variants' on two informed source separation tasks, while vary-
ing several factors such as global estimation strategy, NMF diver-
gence, prior distribution, etc. We consider score-informed source
separation task and use TRIOS dataset [12] including 5 classic mu-
sic mixtures for evaluation; and we consider cover-informed source
separation task and use a dataset of 4 pop music mixtures introduced
in [13], which we here refer to as COVERS dataset. To keep the
evaluation as fair as possible, all the parameters are tuned via 5-fold
or 4-fold cross-validation depending on the dataset.

The paper is organized as follows. Problem formulation and ba-

'Some variants of the approaches we evaluate might be considered as
new, but in our opinion the novelty is incremental, since those variants are
obtained by straightforward combination of existing bricks.

sic NMF modeling aspects are given in Section 2. Various model
estimation strategies are presented in Section 3. Experimental proto-
col and simulations are given in Section 4 and conclusions are drawn
in Section 5.

2. PROBLEM FORMULATION AND MODELING

2.1. Problem formulation

Let us consider a single-channel mixture of J sources

J

Tpn = Zj:1 84, fns (€3]

where x ¢, and s; r,, are the short-time Fourier transform (STFT)
coefficients® of the mixture and the j-th source, respectively, while
f=1,...,Fandn = 1,..., N denote the frequency and time
indices. It is assumed that there are also .J source examples® of the
same length available. Let 5; r,, denote the corresponding STFT
coefficients. Assuming all the signals rewritten in a matrix form as
X = [zfnlfn, Sj = [84,fn]f,n and S; = [§; fn]fn, the problem
consists in estimating the sources S;, given the mixture X and the
examples S j- The examples are used to guide the source separation
process (see Fig. 1).

2.2. NMF modeling

Let V., V; and \ij be the spectrograms or the power spectrograms
(.e., V; = |X] or V, = |X]|? and the same for other matrices*)
of the mixture, the sources and the examples, respectively. Within

2Within this paper all the signals are introduced directly in the STFT do-
main, assuming that they can be always computed from the time signals with
an appropriate STFT, and that the respective time signals can be always re-
constructed by a corresponding inverse STFT.

3In a more general formulation it might be supposed that not all .J sources
are supplied with the corresponding examples [4, 17], though for the sake of
simplicity we here assume that there are always J examples.

4Within this paper the absolute value and the power operations are applied
to matrices element-wise.



the NMF-based approaches considered here the nonnegative (power)
spectrograms of the latent sources are assumed approximated as

V; ~ W;Hj;, )

where W and H; are both nonnegative matrices of sizes F' x K
and K X N, respectively; and the model order (also called the num-
ber of NMF components) K is usually chosen smaller than both
F and N. Here K is chosen the same for each source, while it
is also possible to adapt it to each source [22] by finding an op-
timal K ; per source among a fixed total number of components
K=Y, K,
Assuming V; known, NMF model parameters

0; ={W,,H;} 3)
are usually estimated by minimizing some measure of fit between
V; and W,;H; as

6, = arg min D(V;[|W/Hj), 4)
0.
J

where D(-||-) is a divergence computed as a sum over time-
frequency indices of a scalar divergence d(-|-) as

F,N
D(AIB) = 377" d(agalbsn). )

A = [afn]fn and B = [bsy]s,» being some F' X N nonnegative
matrices. The most popular scalar divergences we will consider here
include the KL divergence [18]

dx1.(alb) :alog% —a+b, (6)
the IS divergence [19]
dis(alp) = 3 —log 7 — 1, %
and the Euclidean (EUC) distance [18]
dguc(alb) = |a —b?. 8)

However, EUC distance was not found as efficient as two other diver-
gences for audio-related applications. Optimization in (4) is usually
achieved by applying multiplicative update (MU) rules [18, 19].

However, V; are unknown, and the main problem consists in
finding sufficiently good approximations (2), while using only the
mixture and the examples.

2.3. Source estimation

Once the NMF decompositions (2) are obtained, the source estimates
S; are usually computed by Wiener filtering as follows
. W.H.
Sj = =7~ 0X, ®
Z j=1 W;H;

where the matrix division is element-vise and ® denotes element-
vise matrix multiplication.

3. NMF MODEL ESTIMATION STRATEGIES

Let source NMF models (3) be concatenated into one mixture NMF
model with J Ky components as
W =[Wy,..., W],

which is parametrized as:

H= [H?w"vH?]Tv (10)

0 — (W, H}. an

We consider the following four model estimation strategies.

3.1. Strategy #1 - Retrained NMF
This strategy was considered in [13] and consists in following steps:

1. Example models 8; = {W;, H,} are initialized with ran-
dom nonnegative values and estimated optimizing the follow-
ing criterion (similar to criterion (4)):

0, = argmin D(V,|W/H}). (12)
o',

J

2. Mixture model @ (11) is initialized with example models éj
and retrained from the mixture optimizing the following cri-
terion:

0= argn%i/nD(VmHW’H/). (13)

3.2. Strategy #2 - Prior NMF
A so-called prior NMF strategy adopted in [9-11] consists in fol-
lowing steps:

1. Example models é]‘ are initialized with random nonnega-
tive values and estimated optimizing criterion (12), as for
retrained NMF strategy.

2. Mixture model @ (11) is initialized with example models é]-
and retrained from the mixture optimizing the following con-
strained criterion:

0 = arg rréi/n D(V.|[WH)+
A [0 (W[W) + v (HUED] - (14)

with A > 0 being a penalty factor, and

—~ N R -
Tw(WIW) = 235w, ()

~ F K,N -
Ua(HIE) = 230 Gl (16
where 1(ala) is a measure of fit between a parameter a of
the example models and the corresponding parameter a of
the mixture model.

Normalization factors N/K and F'/K in (15) and (16) serve to com-
pensate for the fact that the summation in D(V,|[WH) includes
FN terms (see (5)), while the summations in Wy (W||W) and
U (H|H) are over KF and K N terms, respectively.

In probabilistic settings, as considered in [9-11], D(V||WH)
represents negative log-likelihood, while Uy (W||W) and U (H||H)
represent negative log-priors, with W and H being some hyperpa-
rameters. In that case, criterion (14) corresponds to a MAP criterion.
X In [9, 11], ¥(ala) is defined via a Dirichlet prior, which leads
to:

Ybirichlet (a|@) = — log [(ld} . (17)

However, we do not claim here to reproduce the methods from [9,
11]. Indeed, due to slightly different PLCA modeling a and a are
conditional probabilities in [9, 11], thus they sum to 1 over k, while
we do not assume such a constraint here. Moreover, we here use MU
rules instead of an EM algorithm as in [9, 11], which may also lead

5Note that in the expressions for distributions in (17) and (18) constant
(i.e., independent on a) multiplicative factors and powers are omitted, since
constant multiplicative factors do not have any influence on the optimization
in (14), and constant powers are assumed to be absorbed into A in (14).



to a different result. As such, we only claim applying prior (17) to
the NMF model in our evaluation.

In [10], a Gamma distribution is considered, which leads to

1

YGamma(ald) = —log [a® '@~ " exp(a/a)] , (18)

and it is moreover assumed that v = 1.
Finally, we here consider three new measures of fit, notably

Yku(ala) = dxu(ala), (19)
Yis(ala) = dis(ala), and (20)
Yruc(ala) = dguc(ala), 21

where the corresponding divergences are defined in (6), (7) and (8).

3.3. Strategy #3 - Coupled NMF

This strategy [4,14] consists just in one step, where the NMF models
are estimated jointly (this is why it is also called joint NMF in [14])
from both the mixture and the examples by optimizing the following
criterion:

_ . Iyy/! J \/ . At
0 = argmin D(V.,[W'H') + AZFI D(V,;|W/H)). (22)

As usual, the NMF model parameters are initialized with random
nonnegative values.

3.4. Strategy #4 - Supervised NMF

For a completeness of the picture we are considering as well a so-
called supervised NMF [23] strategy, where the example NMF mod-
els are not adjusted on the mixture at all, and used as they are to
preform separation. This is simply achieved by discarding the sec-
ond step in the retrained NMF or the prior NMF strategy, i.e., the
models are just learned from the examples by optimizing criterion
(12).

3.5. Model estimation algorithms

All the criteria within this work are optimized via MU rules derived
using common heuristics as in [18,19,24].

3.6. Discussion

While model estimation strategies #1 to #3 are all based on a trade-
off between fitting the NMF models to both the examples and the
mixture, the supervised NMF strategy #4 estimates the models from
the examples only.

It is also worth to mention that the retrained NMF and the super-
vised NMF strategies are both limit cases of the prior NMF strategy.
Indeed, it is easy to see that with A = 0 in (14) the prior NMF strat-
egy reduces to the the retrained NMF strategy, and with A in (14)
having a very high value it reduces to the supervised NMF strat-
egy. As for the coupled NMF strategy, it reduces to the supervised
NMF strategy with A having a very high value. As such, we be-
lieve that more sophisticated strategies #2 and #3 (prior and coupled
NMEF) should lead to better results than simpler strategies #1 and #4
(retrained and supervised NMF), which has been already partially
observed in [14].

4. EXPERIMENTS

4.1. Data

For the score-informed task we use the TRIOS dataset [12]. It in-
cludes 5 mixtures of length from 18 to 53 seconds of classic music
performances, with 4 mixtures of 3 sources and one mixture of 5
sources. The dataset includes source examples as well, which are
already synthesized by a MIDI synthesized from the corresponding
scores and temporally aligned with the respective mixtures. All the
audio signals are sampled at 44100 Hz.

For the cover-informed task we use the COVERS dataset intro-
duced in [13] and further used in [14]. The dataset consists of 4
professionally produced pop music recordings of length from about
2 to 5 minutes. Each recording is a mixture of 4 to 6 tracks (sources)
to be separated. Moreover, the dataset includes cover tracks played
by musicians. The cover tracks are temporally aligned to the re-
spective mixtures. All the audio signals are sampled at 44100 Hz.
Following [13] we have resampled all the signals to 32000 Hz and
have retained for the experiments one 30 second expert per mixture,
as it is done in a preview of the dataset that can be found at ®.

4.2. Evaluation metrics

Following [13] and [14] we measure the quality of the estimated
sources in terms of the signal-to-distortion ratio improvement
(SDRI) that is the difference between the output signal-to-distortion
ratio (SDR) computed as proposed in [25] and the input SDR. The
input SDR is defined as the power ratio between the source to be
estimated and the mixture to be separated. A similar metric called
normalized SDR (NSDR) was proposed in [26].

To obtain an average SDRI over several mixtures, it is first aver-
aged over the sources in each mixture and then over all the mixtures.

4.3. Parameters

The STFTs are computed with half-overlapping sine windows of
length 2048, i.e. 46 ms, for the TRIOS dataset, and 64 ms, for
the COVERS dataset. Each MU rules algorithm is run for 50 itera-
tions. Following usual practice [18, 19] we used spectrograms (i.e.,
V. = |X], etc.) for KL-NMF and EUC-NMF decompositions and
power spectrograms (i.e., V. = |X|?2, etc.) for IS-NMF decompo-
sitions.

For model estimation strategies including a penalty factor A
(strategies #2 and #3) we consider the following two cases:

e Fixed: A = )¢ is kept constant over the algorithm iterations
as in [14].

o Decreased: ) is linearly decreased from Ao to O over the al-
gorithm iterations as in [10, 11].

4.4. Evaluation protocol

Simulations were carried using L-fold cross-validation with L = 5
for TRIOS dataset and L = 4 for COVERS dataset. Parameters K,
and )\ are varied over the following grid

K, = {5,10, 15, 20, 30, 40, 50, 70, 100, 150, 200, 300},

Ao = {1075,107%,107%,1072,107*, 10°, 10", 10, 10%, 10"},
while Ao is not varied for strategies #1 and #4.

Shttp://www.gipsa-lab.grenoble—inp.fr/~laurent.
girin/demo/ismir2012.html



Score-informed task — TRIOS dataset

Divergenférategy Strategy #1 Strategy #2 - Prior Strategy #3 Strategy #4
Retrained Dirichlet L Gamma L KL prior L IS prior L EUC prior Coupled Supervised
13.94 13.91/13.93 | 13.47/1340 | 13.93/13.94 | 1437/1442 | 13.94/13.94 || 13.94/13.94 1176
KL (100) (1007 100) (56/70) (100/100) | (300/300) | (100/100) (100/100) (34)
12.66 123771255 | 13.64/14.04 | 13.52/13.78 | 147171423 | 12.33/1238 || 13.76/13.68 11.73
IS (180) (180/180) | (134/150) | (270/300) | (150/180) | (180/180) (134/134) (134)
13.11 132471321 | 13.18/13.15 | 13.29/1331 | 1381/138 | 13.15/13.16 || 13.11/13.11 11.74
EUC (270) (300/300) | (260/230) | (300/300) (100/88) (300/300) (270/270) (100)
Cover-informed task — COVERS dataset
1031 10.14/ 104 9.8/10 10.86/11.19 | 10.89/10.94 | 10.55/10.64 || 10.99/11.2 10.6
KL (188) (200/275) (80/89) (163/225) (19/9) (225/250) (15/17) (15)
917 9.17/927 | 10271025 | 102471031 | 10747102 | 103/10.18 || 10.73710.61 10.11
IS (58) (58/58) (56/43) (105/75) (70/50) (85/83) (50/30) (28)
10.62 104271048 | 10.61/10.62 | 10.33/103 | 10.64/1091 | 10.98/1095 || 10.38/10.5 10.57
EUC (200) (200/200) | (200/200) | (160/185) (14/20) (187/200) (107/62) (17)

Table 1. Source separation performance of each method measured in terms of the average SDRI (in dB). The average optimal K value is
reported as well below in parentheses. As for the methods involving penalty A, the values at the left correspond to the fixed A, while the

values at the right correspond to the decreased .

4.5. Simulation results

The results are reported in Table 1, where we have also included
the average optimal K value in parentheses, since this value im-
pacts the computational load of the corresponding approach. First,
it should be noted that there is not much variation of performance
between different approaches: results vary within 3 dB for TRIOS
dataset and within 2.5 dB for COVERS dataset. Also, there is not so
much difference between keeping penalty A constant and decreasing
it, though for the COVERS dataset decreasing A leads in average to
slightly better results. As for the NMF divergence, it could be noted
that for both datasets the KL divergence performs in average better
than the IS divergence. Surprisingly and contrary to what is usually
reported for other NMF-based audio processing methods, the EUC
distance performs quite well in this constrained setting. As expected
(see discussion in Section 3.6), more sophisticated strategies #2 and
#3 outperform in most cases strategies #1 and #4. The best SDRI
for TRIOS dataset is obtained by prior NMF strategy with IS diver-
gence and IS prior, and for COVERS dataset by prior NMF strategy
with KL divergence and KL prior and by coupled KL-NMF. Those
methods are slightly new variants of the existing methods. Assum-
ing our experimental settings for COVERS dataset reproduce those
from [14], our best SDRI is on par or even slightly better than the
best SDRI reported in [14].

It is also interesting to note that while for TRIOS dataset su-
pervised NMF strategy performs worth than all other strategies, for
COVERS dataset the result of the supervised NMF with KL diver-
gence is not so bad, the corresponding SDRI is only 0.5 dB below
the best SDRI. This is an important observation, since the supervised
NMF strategy is much simpler than all others, it does not require any
model retraining or adaptation on the mixture.

The average optimal number of components K, varies quite
drastically depending on the method and it also often saturates to
the maximal K; = 300 we tested. One can only note that the su-
pervised strategy requires in most cases less components, possibly
because it might suffer from data overfitting, which is not the case
for the other methods.

Finally, we have also measured source separation performance

obtained without any modeling by directly using the power spectro-
grams of either examples or the sources. In the latter case it gives
just an oracle (akind of upper bound) performance, since the sources
are not known. This was achieved by simply replacing W ; H; in the
Wiener filtering (9) with either |S;|2 or |S;|-2. This lead to the av-
erage performances of 12.36 dB and 24.09 dB for TRIOS dataset
and of 3.49 dB and 15.82 dB for COVERS dataset. These results
indicate that the NMF modeling is important, since the best results
reported in Table 1 are substantially higher than 12.36 dB and 3.49
dB obtained by a direct use of the example power spectrograms, es-
pecially for the COVERS dataset. This indicates also that the COV-
ERS dataset is more difficult than the TRIOS one, i.e., there is more
mismatch between the sources and the source examples (a direct use
of examples as proxies for the sources leads to a quite bad separa-
tion). This was confirmed by an informal listening to the sources
and examples; and by visual comparison of their spectrograms. Fi-
nally, the oracle performances of 24.09 dB and 15.82 dB indicate
that there is still a room for improvement to go beyond the above
investigated NMF modeling strategies.

5. CONCLUSIONS

In this work we carried out an experimental comparison of example-
guided audio source separation approaches, where the audio mixture
is supplied with source examples. We compared several existing
NMEF-based strategies and slightly new variants of them on score-
informed and cover-informed music source separation tasks using
TRIOS and COVERS datasets, respectively. We have found that the
best results on both datasets were achieved by prior NMF strategy
with KL divergence and IS or KL prior, which are new variants of
existing methods we considered.

Further research on this topic should most probably focus on in-
troducing knowledge-based constraints or deformations within the
NMF modeling, as it was already started in [4, 15]. Other possi-
ble directions are to consider more sophisticated NMF models (e.g.,
convolutive NMF [27]), to reconsider NMF estimation procedures
(e.g., discriminative training [28]), or to develop deep learning-based
methods [29].
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