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We consider example-guided audio source separation approaches, where the audio mixture to be separated is supplied with source examples that are assumed matching the sources in the mixture both in frequency and time. These approaches were successfully applied to the tasks such as source separation by humming, score-informed music source separation, and music source separation guided by covers. Most of proposed methods are based on nonnegative matrix factorization (NMF) and its variants, including methods using NMF models pre-trained from examples as an initialization of mixture NMF decomposition, methods using those models as hyperparameters of priors of mixture NMF decomposition, and methods using coupled NMF models. Moreover, those methods differ by the choice of the NMF divergence and the NMF prior. However, there is no systematic comparison of all these methods. In this work, we compare existing methods and some new variants on the score-informed and cover-guided source separation tasks.

INTRODUCTION

Audio source separation remains still challenging [START_REF] Vincent | The signal separation evaluation campaign (2007-2010): Achievements and remaining challenges[END_REF], especially in the single-channel case. As such, one of the popular recent trends consists in turning from blind towards informed or guided source separation approaches [START_REF] Vincent | From blind to guided audio source separation: How models and side information can improve the separation of sound[END_REF], where some additional information about sources or mixing conditions is used so as to enhance the source separation quality. Many kinds of information were considered including music scores for music sources [START_REF] Ewert | Scoreinformed source separation for musical audio recordings: An overview[END_REF], text for speech sources [START_REF] Magoarou | Textinformed audio source separation. Example-based approach using non-negative matrix partial co-factorization[END_REF], user-provided annotations [START_REF] Ozerov | Multichannel nonnegative tensor factorization with structured constraints for user-guided audio source separation[END_REF][START_REF] Bryan | ISSE: An interactive source separation editor[END_REF], a video corresponding to the sound mixture [START_REF] Wang | Video assisted speech source separation[END_REF], audio-visual objects motion information [START_REF] Parekh | Motion informed audio source separation[END_REF], etc.

In this work we are interested in example-guided source separation [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF][START_REF] Fritsch | Score informed audio source separation using constrained nonnegative matrix factorization and score synthesis[END_REF][START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF][START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF], a particular sub-trend of guided approaches, where the additional information consists of source examples that are supposed to be close in some sense to the sources in the mixture, though do not coincide with them. More precisely, we consider here only the approaches where it is assumed that the examples match the sources both in frequency and time, thus excluding, e.g., the approaches supporting time-frequency deformations [START_REF] Souviraá-Labastie | Multi-channel audio source separation using multiple deformed references[END_REF], pitch variations in case of speech sources [START_REF] Magoarou | Textinformed audio source separation. Example-based approach using non-negative matrix partial co-factorization[END_REF], or the approaches where only spectral or temporal characteristics are matched [START_REF] Badawy | On-the-fly audio source separation -A novel user-friendly framework[END_REF]. The approaches we consider are suitable for the following tasks:

• Humming-informed source separation [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF], where the source examples are hummed by a user while listening to the mixture;

• Score-informed music source separation [START_REF] Ganseman | Source separation by score synthesis[END_REF][START_REF] Fritsch | Score informed audio source separation using constrained nonnegative matrix factorization and score synthesis[END_REF], where the examples are synthesized from the corresponding music scores;

• Cover-informed music source separation [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF][START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF], where the examples are cover tracks played or sung by musicians.

To illustrate the main concepts, we show in Figure 1 some music sources, the corresponding mixture and source examples (synthesized from the scores as in [START_REF] Ganseman | Source separation by score synthesis[END_REF][START_REF] Fritsch | Score informed audio source separation using constrained nonnegative matrix factorization and score synthesis[END_REF]). Note that we here consider only the single-channel source separation, while for some methods, especially for those based on the Itakura-Saito (IS) divergence, extensions to multichannel case are quite straightforward, as it was done for example for a general source separation framework using multiple deformed references [START_REF] Souviraá-Labastie | Audio source separation using multiple deformed references[END_REF] extended to multichannel case in [START_REF] Souviraá-Labastie | Multi-channel audio source separation using multiple deformed references[END_REF]. Most of NMF-based methods for example-guided audio source separation rely on the same global strategy schematized on Figure 1. First, the NMF models of the sources are estimated while trying to maintain a good compromise between fitting the models to both the examples and the mixture. Once the models have been estimated, the sources are estimated in turn by applying the corresponding NMF-driven Wiener filtering to the mixture. Estimating "good" NMF models that represent well the sources is the most critical step, and various strategies were proposed for that in different approaches. Those strategies are based on different training steps and criteria that are optimized in most cases using the multiplicative update (MU) rules [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis[END_REF].

In [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF], for cover-informed task, the NMF models are first learned from the examples, and then re-trained on the mixture. As such, the information from examples is only injected via models initialization for training from the mixture. Probabilistic latent component analysis (PLCA) modeling is considered in [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF] with application to humming-informed [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF] and score-informed [START_REF] Ganseman | Source separation by score synthesis[END_REF] tasks. Since PLCA modeling was shown equivalent (in terms of the criterion to be optimized) to the NMF with Kullback-Leibler (KL) divergence [START_REF] Gaussier | Relation between PLSA and NMF and implications[END_REF], these approaches fall into the scope considered here. In [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF] the models are first trained from the examples and then re-estimated from the mixture, while enforcing the models to be close to the example models within the estimation criterion, which is achieved by using example model parameters as hyper-parameters of some prior distributions. Within the probabilistic PLCA this may be also interpreted as a maximum a posteriori (MAP) adaptation. A similar approach was considered in [START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF] for humming-informed task, though with a different prior distribution and with a different model estimation algorithm (MU rules in [START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF] instead of the expectation-maximization (EM) algorithm as in [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF]). In this case the information from examples is injected into the final training from the mixture via both initialization of parameters and priors on them. Finally, coupled NMF modeling is considered in [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF] for cover-informed task, where the NMF models are jointly trained from the examples and the mixture, while optimizing a composite criterion. As such, the information from examples (or the examples themselves) is directly used while learning from the mixture. Similar approaches, though applied in slightly different contexts, include those based on nonnegative matrix partial co-factorization (NMPCF) modeling [START_REF] Magoarou | Textinformed audio source separation. Example-based approach using non-negative matrix partial co-factorization[END_REF][START_REF] Kim | Nonnegative matrix partial co-factorization for spectral and temporal drum source separation[END_REF], where NMF model components [START_REF] Kim | Nonnegative matrix partial co-factorization for spectral and temporal drum source separation[END_REF] or NMF model factors (in case of a slightly more complex model) [START_REF] Magoarou | Textinformed audio source separation. Example-based approach using non-negative matrix partial co-factorization[END_REF] are coupled only partially.

The state-of-the-art methods presented above differ not only by the model estimation strategies, but also by several factors including the choice of NMF divergence (e.g., KL divergence in [START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF] vs. IS divergence in [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF]), by the choice of prior distribution in case of MAP-like model adaptation [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF], and by the strategy of management of the example-guidance constraint. The latter factor means that the data (mixture) fit and the constraint (example) fit are often traded off via some penalty λ within the corresponding estimation criterion, and in some approaches [START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF] the penalty λ is decreased over the algorithm iterations, and in other it is kept constant [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF]. Also, as explained above, not all the approaches were applied to all tasks mentioned in the beginning of this section.

It is clear that there is a lack of comparison of different approaches on the same tasks, and the goal of this work is to fill in this gap. To do so we evaluate different existing approaches and their variants1 on two informed source separation tasks, while varying several factors such as global estimation strategy, NMF divergence, prior distribution, etc. We consider score-informed source separation task and use TRIOS dataset [START_REF] Fritsch | Score informed audio source separation using constrained nonnegative matrix factorization and score synthesis[END_REF] including 5 classic music mixtures for evaluation; and we consider cover-informed source separation task and use a dataset of 4 pop music mixtures introduced in [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF], which we here refer to as COVERS dataset. To keep the evaluation as fair as possible, all the parameters are tuned via 5-fold or 4-fold cross-validation depending on the dataset.

The paper is organized as follows. Problem formulation and ba-sic NMF modeling aspects are given in Section 2. Various model estimation strategies are presented in Section 3. Experimental protocol and simulations are given in Section 4 and conclusions are drawn in Section 5.

PROBLEM FORMULATION AND MODELING

Problem formulation

Let us consider a single-channel mixture of J sources

x f n = J j=1 s j,f n , (1) 
where x f n and s j,f n are the short-time Fourier transform (STFT) coefficients2 of the mixture and the j-th source, respectively, while f = 1, . . . , F and n = 1, . . . , N denote the frequency and time indices. It is assumed that there are also J source examples 3 of the same length available. Let sj,fn denote the corresponding STFT coefficients. Assuming all the signals rewritten in a matrix form as

X = [x f n ] f,n , Sj = [s j,f n ] f,n and Sj = [s j,f n ] f,n
, the problem consists in estimating the sources Sj, given the mixture X and the examples Sj. The examples are used to guide the source separation process (see Fig. 1).

NMF modeling

Let Vx, Vj and Vj be the spectrograms or the power spectrograms (i.e., Vx = |X| or Vx = |X| .2 and the same for other matrices 4 ) of the mixture, the sources and the examples, respectively. Within the NMF-based approaches considered here the nonnegative (power) spectrograms of the latent sources are assumed approximated as

Vj ≈ WjHj, (2) 
where Wj and Hj are both nonnegative matrices of sizes F × Ks and Ks × N , respectively; and the model order (also called the number of NMF components) Ks is usually chosen smaller than both F and N . Here Ks is chosen the same for each source, while it is also possible to adapt it to each source [START_REF] Bilen | Automatic allocation of NTF components for user-guided audio source separation[END_REF] by finding an optimal Ks,j per source among a fixed total number of components K = J j=1 Ks,j. Assuming Vj known, NMF model parameters

θj = {Wj, Hj} (3) 
are usually estimated by minimizing some measure of fit between Vj and WjHj as θj = arg min

θ j D(Vj W j H j ), (4) 
where D(• •) is a divergence computed as a sum over timefrequency indices of a scalar divergence d(•|•) as

D(A B) = F,N f,n=1 d(a f n |b f n ), (5) 
A = [a f n ] f,n and B = [b f n ] f,n being some F × N nonnegative matrices.
The most popular scalar divergences we will consider here include the KL divergence [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF] 

dKL(a|b) = a log a b -a + b, (6) 
the IS divergence [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis[END_REF] 

dIS(a|b) = a b -log a b -1, (7) 
and the Euclidean (EUC) distance [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF] dEUC(a|b

) = |a -b| 2 . ( 8 
)
However, EUC distance was not found as efficient as two other divergences for audio-related applications. Optimization in ( 4) is usually achieved by applying multiplicative update (MU) rules [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis[END_REF]. However, Vj are unknown, and the main problem consists in finding sufficiently good approximations (2), while using only the mixture and the examples.

Source estimation

Once the NMF decompositions (2) are obtained, the source estimates Sj are usually computed by Wiener filtering as follows

Sj = WjHj J j=1 WjHj X, (9) 
where the matrix division is element-vise and denotes elementvise matrix multiplication.

NMF MODEL ESTIMATION STRATEGIES

Let source NMF models (3) be concatenated into one mixture NMF model with JKs components as

W = [W1, . . . , WJ ], H = [H T 1 , . . . , H T J ] T , (10) 
which is parametrized as:

θ = {W, H}. (11) 
We consider the following four model estimation strategies.

Strategy #1 -Retrained NMF

This strategy was considered in [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF] and consists in following steps:

1. Example models θj = { Wj, Hj} are initialized with random nonnegative values and estimated optimizing the following criterion (similar to criterion (4)):

θj = arg min θ j D( Vj W j H j ). (12) 
2. Mixture model θ (11) is initialized with example models θj and retrained from the mixture optimizing the following criterion:

θ = arg min θ D(Vx W H ). (13) 

Strategy #2 -Prior NMF

A so-called prior NMF strategy adopted in [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF] consists in following steps:

1. Example models θj are initialized with random nonnegative values and estimated optimizing criterion [START_REF] Fritsch | Score informed audio source separation using constrained nonnegative matrix factorization and score synthesis[END_REF], as for retrained NMF strategy.

2. Mixture model θ (11) is initialized with example models θj and retrained from the mixture optimizing the following constrained criterion:

θ = arg min θ D(Vx W H )+ λ ΨW (W W) + ΨH (H H) , (14) 
with λ ≥ 0 being a penalty factor, and

ΨW (W W) = N K K,F k,f =1 ψ(w f k | wfk ), (15) 
ΨH (H H) = F K K,N k,n=1 ψ(h kn | hkn ), (16) 
where ψ(a|ã) is a measure of fit between a parameter ã of the example models and the corresponding parameter a of the mixture model.

Normalization factors N/K and F/K in ( 15) and ( 16) serve to compensate for the fact that the summation in D(Vx WH) includes F N terms (see ( 5)), while the summations in ΨW (W W) and ΨH (H H) are over KF and KN terms, respectively. In probabilistic settings, as considered in [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF], D(Vx WH) represents negative log-likelihood, while ΨW (W W) and ΨH (H H) represent negative log-priors, with W and H being some hyperparameters. In that case, criterion ( 14) corresponds to a MAP criterion.

In [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF], ψ(a|ã) is defined via a Dirichlet prior, which leads to: 5ψ Dirichlet (a|ã) = -log a ã .

However, we do not claim here to reproduce the methods from [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF]. Indeed, due to slightly different PLCA modeling a and ã are conditional probabilities in [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF], thus they sum to 1 over k, while we do not assume such a constraint here. Moreover, we here use MU rules instead of an EM algorithm as in [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF], which may also lead to a different result. As such, we only claim applying prior [START_REF] Souviraá-Labastie | Audio source separation using multiple deformed references[END_REF] to the NMF model in our evaluation. In [START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF], a Gamma distribution is considered, which leads to ψGamma(a|ã) = -log a α-1 ã-α exp(a/ã) ,

and it is moreover assumed that α = 1.

Finally, we here consider three new measures of fit, notably 

ψKL(a|ã) = dKL(a|ã), (19) ψIS 
where the corresponding divergences are defined in ( 6), ( 7) and (8).

Strategy #3 -Coupled NMF

This strategy [START_REF] Magoarou | Textinformed audio source separation. Example-based approach using non-negative matrix partial co-factorization[END_REF][START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF] consists just in one step, where the NMF models are estimated jointly (this is why it is also called joint NMF in [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF]) from both the mixture and the examples by optimizing the following criterion:

θ = arg min θ D(Vx W H ) + λ J j=1 D( Vj W j H j ). ( 22 
)
As usual, the NMF model parameters are initialized with random nonnegative values.

Strategy #4 -Supervised NMF

For a completeness of the picture we are considering as well a socalled supervised NMF [START_REF] Smaragdis | Supervised and semi-supervised separation of sounds from single-channel mixtures[END_REF] strategy, where the example NMF models are not adjusted on the mixture at all, and used as they are to preform separation. This is simply achieved by discarding the second step in the retrained NMF or the prior NMF strategy, i.e., the models are just learned from the examples by optimizing criterion (12).

Model estimation algorithms

All the criteria within this work are optimized via MU rules derived using common heuristics as in [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis[END_REF][START_REF] Févotte | Algorithms for nonnegative matrix factorization with the beta-divergence[END_REF].

Discussion

While model estimation strategies #1 to #3 are all based on a tradeoff between fitting the NMF models to both the examples and the mixture, the supervised NMF strategy #4 estimates the models from the examples only.

It is also worth to mention that the retrained NMF and the supervised NMF strategies are both limit cases of the prior NMF strategy. Indeed, it is easy to see that with λ = 0 in (14) the prior NMF strategy reduces to the the retrained NMF strategy, and with λ in ( 14) having a very high value it reduces to the supervised NMF strategy. As for the coupled NMF strategy, it reduces to the supervised NMF strategy with λ having a very high value. As such, we believe that more sophisticated strategies #2 and #3 (prior and coupled NMF) should lead to better results than simpler strategies #1 and #4 (retrained and supervised NMF), which has been already partially observed in [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF].

EXPERIMENTS

Data

For the score-informed task we use the TRIOS dataset [START_REF] Fritsch | Score informed audio source separation using constrained nonnegative matrix factorization and score synthesis[END_REF]. It includes 5 mixtures of length from 18 to 53 seconds of classic music performances, with 4 mixtures of 3 sources and one mixture of 5 sources. The dataset includes source examples as well, which are already synthesized by a MIDI synthesized from the corresponding scores and temporally aligned with the respective mixtures. All the audio signals are sampled at 44100 Hz.

For the cover-informed task we use the COVERS dataset introduced in [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF] and further used in [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF]. The dataset consists of 4 professionally produced pop music recordings of length from about 2 to 5 minutes. Each recording is a mixture of 4 to 6 tracks (sources) to be separated. Moreover, the dataset includes cover tracks played by musicians. The cover tracks are temporally aligned to the respective mixtures. All the audio signals are sampled at 44100 Hz. Following [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF] we have resampled all the signals to 32000 Hz and have retained for the experiments one 30 second expert per mixture, as it is done in a preview of the dataset that can be found at6 .

Evaluation metrics

Following [START_REF] Gerber | Professionally-produced music separation guided by covers[END_REF] and [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF] we measure the quality of the estimated sources in terms of the signal-to-distortion ratio improvement (SDRI) that is the difference between the output signal-to-distortion ratio (SDR) computed as proposed in [START_REF] Vincent | Performance measurement in blind audio source separation[END_REF] and the input SDR. The input SDR is defined as the power ratio between the source to be estimated and the mixture to be separated. A similar metric called normalized SDR (NSDR) was proposed in [START_REF] Ozerov | Adaptation of bayesian models for single-channel source separation and its application to voice/music separation in popular songs[END_REF].

To obtain an average SDRI over several mixtures, it is first averaged over the sources in each mixture and then over all the mixtures.

Parameters

The STFTs are computed with half-overlapping sine windows of length 2048, i.e. 46 ms, for the TRIOS dataset, and 64 ms, for the COVERS dataset. Each MU rules algorithm is run for 50 iterations. Following usual practice [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence. With application to music analysis[END_REF] we used spectrograms (i.e., Vx = |X|, etc.) for KL-NMF and EUC-NMF decompositions and power spectrograms (i.e., Vx = |X| .2 , etc.) for IS-NMF decompositions.

For model estimation strategies including a penalty factor λ (strategies #2 and #3) we consider the following two cases:

• Fixed: λ = λ0 is kept constant over the algorithm iterations as in [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF].

• Decreased: λ is linearly decreased from λ0 to 0 over the algorithm iterations as in [START_REF] Fitzgerald | User assisted source separation using nonnegative matrix factorisation[END_REF][START_REF] Ganseman | Source separation by score synthesis[END_REF].

Evaluation protocol

Simulations were carried using L-fold cross-validation with L = 5 for TRIOS dataset and L = 4 for COVERS dataset. Parameters Ks and λ0 are varied over the following grid Ks = {5, 10, 15, 20, 30, 40, 50, 70, 100, 150, 200, 300}, λ0 = {10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1 , 10 0 , 10 1 , 10 2 , 10 3 , 10 4 }, while λ0 is not varied for strategies #1 and #4. 

Score-informed task -TRIOS dataset X X X X X X
Table 1. Source separation performance of each method measured in terms of the average SDRI (in dB). The average optimal Ks value is reported as well below in parentheses. As for the methods involving penalty λ, the values at the left correspond to the fixed λ, while the values at the right correspond to the decreased λ.

Simulation results

The results are reported in Table 1, where we have also included the average optimal Ks value in parentheses, since this value impacts the computational load of the corresponding approach. First, it should be noted that there is not much variation of performance between different approaches: results vary within 3 dB for TRIOS dataset and within 2.5 dB for COVERS dataset. Also, there is not so much difference between keeping penalty λ constant and decreasing it, though for the COVERS dataset decreasing λ leads in average to slightly better results. As for the NMF divergence, it could be noted that for both datasets the KL divergence performs in average better than the IS divergence. Surprisingly and contrary to what is usually reported for other NMF-based audio processing methods, the EUC distance performs quite well in this constrained setting. As expected (see discussion in Section 3.6), more sophisticated strategies #2 and #3 outperform in most cases strategies #1 and #4. The best SDRI for TRIOS dataset is obtained by prior NMF strategy with IS divergence and IS prior, and for COVERS dataset by prior NMF strategy with KL divergence and KL prior and by coupled KL-NMF. Those methods are slightly new variants of the existing methods. Assuming our experimental settings for COVERS dataset reproduce those from [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF], our best SDRI is on par or even slightly better than the best SDRI reported in [START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF].

It is also interesting to note that while for TRIOS dataset supervised NMF strategy performs worth than all other strategies, for COVERS dataset the result of the supervised NMF with KL divergence is not so bad, the corresponding SDRI is only 0.5 dB below the best SDRI. This is an important observation, since the supervised NMF strategy is much simpler than all others, it does not require any model retraining or adaptation on the mixture.

The average optimal number of components Ks varies quite drastically depending on the method and it also often saturates to the maximal Ks = 300 we tested. One can only note that the supervised strategy requires in most cases less components, possibly because it might suffer from data overfitting, which is not the case for the other methods.

Finally, we have also measured source separation performance obtained without any modeling by directly using the power spectrograms of either examples or the sources. In the latter case it gives just an oracle (a kind of upper bound) performance, since the sources are not known. This was achieved by simply replacing WjHj in the Wiener filtering [START_REF] Smaragdis | Separation by "humming": User-guided sound extraction from monophonic mixtures[END_REF] with either | Sj| .2 or |Sj| .2 . This lead to the average performances of 12.36 dB and 24.09 dB for TRIOS dataset and of 3.49 dB and 15.82 dB for COVERS dataset. These results indicate that the NMF modeling is important, since the best results reported in Table 1 are substantially higher than 12.36 dB and 3.49 dB obtained by a direct use of the example power spectrograms, especially for the COVERS dataset. This indicates also that the COV-ERS dataset is more difficult than the TRIOS one, i.e., there is more mismatch between the sources and the source examples (a direct use of examples as proxies for the sources leads to a quite bad separation). This was confirmed by an informal listening to the sources and examples; and by visual comparison of their spectrograms. Finally, the oracle performances of 24.09 dB and 15.82 dB indicate that there is still a room for improvement to go beyond the above investigated NMF modeling strategies.

CONCLUSIONS

In this work we carried out an experimental comparison of exampleguided audio source separation approaches, where the audio mixture is supplied with source examples. We compared several existing NMF-based strategies and slightly new variants of them on scoreinformed and cover-informed music source separation tasks using TRIOS and COVERS datasets, respectively. We have found that the best results on both datasets were achieved by prior NMF strategy with KL divergence and IS or KL prior, which are new variants of existing methods we considered. Further research on this topic should most probably focus on introducing knowledge-based constraints or deformations within the NMF modeling, as it was already started in [START_REF] Magoarou | Textinformed audio source separation. Example-based approach using non-negative matrix partial co-factorization[END_REF][START_REF] Souviraá-Labastie | Multi-channel audio source separation using multiple deformed references[END_REF]. Other possible directions are to consider more sophisticated NMF models (e.g., convolutive NMF [START_REF] Smaragdis | Non-negative matrix factor deconvolution; extraction of multiple sound sources from monophonic inputs[END_REF]), to reconsider NMF estimation procedures (e.g., discriminative training [START_REF] Weninger | Discriminative nmf and its application to single-channel source separation[END_REF]), or to develop deep learning-based methods [START_REF] Miron | Monaural score-informed source separation for classical music using convolutional neural networks[END_REF].

Fig. 1 .

 1 Fig. 1. A general scheme of example-guided audio source separation based on NMF modeling. Here it is illustrated on score-informed music source separation with examples synthesis [11,12]. All the signals and models are represented by the corresponding spectrograms. The music sources (saxophone and piano) and the synthesized source examples are from TRIOS dataset [12].

  (a|ã) = dIS(a|ã), and (20) ψEUC(a|ã) = dEUC(a|ã),

  X

	Divergence Strategy	Strategy #1			Strategy #2 -Prior			Strategy #3	Strategy #4
		Retrained	Dirichlet	Gamma	KL prior	IS prior	EUC prior	Coupled	Supervised
	KL	13.94 (100)	13.91 / 13.93 (100 / 100)	13.47 / 13.40 (56 / 70)	13.93 / 13.94 (100 / 100)	14.37 / 14.42 (300 / 300)	13.94 / 13.94 (100 / 100)	13.94 / 13.94 (100 / 100)	11.76 (34)
	IS	12.66 (180)	12.37 / 12.55 (180 / 180)	13.64 / 14.04 (134 / 150)	13.52 / 13.78 (270 / 300)	14.71 / 14.23 (150 / 180)	12.33 / 12.38 (180 / 180)	13.76 / 13.68 (134 / 134)	11.73 (134)
	EUC	13.11 (270)	13.24 / 13.21 (300 / 300)	13.18 / 13.15 (260 / 230)	13.29 / 13.31 (300 / 300)	13.81 / 13.8 (100 / 88)	13.15 / 13.16 (300 / 300)	13.11 / 13.11 (270 / 270)	11.74 (100)
				Cover-informed task -COVERS dataset			
	KL	10.31 (188)	10.14 / 10.4 (200 / 275)	9.8 / 10 (80 / 89)	10.86 / 11.19 (163 / 225)	10.89 / 10.94 (19 / 9)	10.55 / 10.64 (225 / 250)	10.99 / 11.2 (15 / 17)	10.6 (15)
	IS	9.17 (58)	9.17 / 9.27 (58 / 58)	10.2 / 10.25 (56 / 43)	10.24 / 10.31 (105 / 75)	10.74 / 10.2 (70 / 50)	10.3 / 10.18 (85 / 83)	10.73 / 10.61 (50 / 30)	10.11 (28)
	EUC	10.62 (200)	10.42 / 10.48 (200 / 200)	10.61 / 10.62 (200 / 200)	10.33 / 10.3 (160 / 185)	10.64 / 10.91 (14 / 20)	10.98 / 10.95 (187 / 200)	10.38 / 10.5 (107 / 62)	10.57

Some variants of the approaches we evaluate might be considered as new, but in our opinion the novelty is incremental, since those variants are obtained by straightforward combination of existing bricks.

Within this paper all the signals are introduced directly in the STFT domain, assuming that they can be always computed from the time signals with an appropriate STFT, and that the respective time signals can be always reconstructed by a corresponding inverse

STFT.[START_REF] Ewert | Scoreinformed source separation for musical audio recordings: An overview[END_REF] In a more general formulation it might be supposed that not all J sources are supplied with the corresponding examples[START_REF] Magoarou | Textinformed audio source separation. Example-based approach using non-negative matrix partial co-factorization[END_REF][START_REF] Souviraá-Labastie | Audio source separation using multiple deformed references[END_REF], though for the sake of simplicity we here assume that there are always J

examples.[START_REF] Magoarou | Textinformed audio source separation. Example-based approach using non-negative matrix partial co-factorization[END_REF] Within this paper the absolute value and the power operations are applied to matrices element-wise.

Note that in the expressions for distributions in[START_REF] Souviraá-Labastie | Audio source separation using multiple deformed references[END_REF] and (18) constant (i.e., independent on a) multiplicative factors and powers are omitted, since constant multiplicative factors do not have any influence on the optimization in[START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF], and constant powers are assumed to be absorbed into λ in[START_REF] Souviraá-Labastie | Music separation guided by cover tracks: designing the joint NMF model[END_REF].

http://www.gipsa-lab.grenoble-inp.fr/~laurent. girin/demo/ismir2012.html