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Abstract—We consider the problem of distributed stochastic
optimization in networks. Each node adjusts its action in order
to optimize the global utility of the network, which is defined as
the sum of local utilities of all nodes. Since the computation of the
gradient may require much information exchange, we consider
here that each node only has a noisy numerical observation of
its local utility. This assumption is quite realistic, especially when
the system is too complicated or constantly changing. At each
time, nodes may exchange the observation of their numerical
local utilities to estimate the global utility. Under the assumptions
whether each node has collected the local utilities of all the other
nodes or only part of these utilities, we propose two stochastic
perturbation based distributed algorithms. We use tools from
stochastic approximation to prove that both algorithms converge
to the optimum. We then apply our algorithm to a power control
problem in wireless networks and present numerical results that
corroborate our claim.

I. INTRODUCTION

Distributed optimization is an important problem in net-
works. The goal is to maximize some predefined objective
function for the sake of the performance of the system.
Significant amount of work have been done to solve the
optimization problems in various applications, for example,
power control [1], [2] and beamforming allocation [3], [4].

This paper consider an optimization problem in a distributed
network where each node aims to maximize the global utility
of the system by adjusting its own action. The global utility
is the sum of the local utilities of all nodes of the network.
Gradient descent method is the most common technique to
deal with optimization problems. In many scenarios in prac-
tice, however, the computation of gradient may require too
much information exchange between the nodes, an example is
provided in Section IV. Furthermore, there are other contexts
also where the utility function of each node does not have
a closed form expression or the expression is very complex
which makes it very hard to use in the optimization, e.g.,
computation of the derivatives is very complicated or not
possible. In this paper, we consider therefore that a node
only has a noisy numerical observation of its utility function,
which is quite realistic when the system is complex and time-
varying. The nodes can only exchange the observation of their
local utilities so that each node can have the knowledge of
the whole network. However, a node may not receive all the
local utilities of the other nodes due to the network topology
or other practical issues, e.g., it is not possible to exchange
much signaling information. In this situation, a node has to
estimate the global utility with only incomplete information

of local utilities. We have also taken in account such issue in
this paper.

In summary, our problem is quite challenging due to the
following reasons: i) each node has only a numerical obser-
vation of its local utility at each time; ii) each node may have
incomplete information of the global utility of the network;
iii) the action of each node has an impact on the utilities of
the other nodes in the network; iv) the utility of each node is
also influenced by some stochastic process (e.g., time varying
channels in wireless networks) and the objective function is
the average global utility.

In this paper, we develop distributed algorithms to optimize
the global average utility of a network, where the nodes can
only exchange the numerical observation of their local utility.
The algorithms are closely related to extremum seeking using
stochastic perturbation. Two different versions of algorithms
are proposed, depending on whether each node has success-
fully collected the local utilities of all the other nodes or a part
of the utilities of other nodes. To the best of our knowledge, the
latter situation has not been considered previously. We have
proved the convergence of the algorithms in both situations,
using stochastic approximation tools. Our theoretical results
are further justified by simulations.

The rest of the paper is organized as follows. Section II
discusses some related work highlights our main contribution.
Section III presents the system model and some basic as-
sumptions. Section IV shows a motivating example to explain
the interest of our problem. Section V proposes an initial
version of our distributed optimization algorithm and proves
its convergence. Section VI considers the situation where a
node has incomplete information of the global utility of the
network. Section VII provides some numerical results as well
as a comparison with an alternative algorithm and Section VIII
concludes this paper.

II. RELATED WORK

Most of the prior work in the area of optimization consider
that the objective function has a well known and simple closed
form expression. Under this assumption, the optimization
problem can be performed using gradient ascent or descent
method [5]. This method can achieve a local optimum or
global optimum in some special cases (e.g. concavity of
the payoff, etc.) of the optimization problem. A distributed
asynchronous stochastic gradient optimization algorithms is



presented in [6]. Incremental sub-gradient methods for non-
differentiable optimization are discussed in [7]. Interested
readers are referred to a survey by Bertsekas [8] on incremen-
tal gradient, sub-gradient, and proximal methods for convex
optimization. The use of gradient-based method supposes in
advance that the gradient can be computed or is available at
each node, which is not always possible as this would require
too much information exchanges. In our case, the computation
of the gradient is not possible at each node since only limited
control information can be exchanged in the network. This
problem is known as derivative-free optimization, see [9]
and the references therein. Our goal is then to develop an
algorithm that requires only the knowledge of a numerical
observation of the utility function. The obtained algorithm
must be distributed.

Distributed optimization has also been studied in the litera-
ture using game theoretic tools. However, most of the existing
work assume that a closed form expression of the payoff is
available. One can refer to [10], [11] and the references therein
for more details, while we do not consider non-cooperative
games in this paper.

Stochastic approximation (SA) [12], [13] is an efficient
method to solve the optimization problems in noisy environ-
ment. Typically, the action is updated as follows

ak+1 = ak + βkĝk. (1)

where ĝk represents an estimation of the gradient gk. An
important assumption is that the estimation error εk = ĝk−gk
is seen as a zero-mean random vector with finite variance, for
example, see [14]. If the step-size βk is properly chosen, then
ak can tend to its optimum point asymptotically. The challenge
of our work is how to propose such estimation of the gradient
only with the noisy numerical observation of the utilities.

Most of the previous work related to derivative-free op-
timization consider a control center that updates the entire
action vector during the algorithm, see [9] for more details.
However, in our distributed setting, each node is only able
to update its own action. Nevertheless, a stochastic approxi-
mation method using the simultaneous perturbation gradient
approximation (SPGA) [15] can be an option to solve our
distributed derivative-free optimization problem. The SPGA
algorithm was initially proposed to accelerate the convergence
speed of the centralized multi-variate optimization problem
with deterministic objective function. Two measurements of
the objective function are needed per update of the action.
The approximation of the partial derivative of an element i is
given by

ĝi,k =
f (ak + γk∆k)− f (ak − γk∆k)

2γk∆i,k
, (2)

where γk > 0 is vanishing and ∆k = [∆1,k, . . . ,∆N,k]
with each element ∆i,k zero mean and i.i.d. Two succes-
sive measurements of the objective function are required to
perform a single estimation of the gradient. The interest
of the SPGA method is that each variable can be updated

simultaneously and independently. Spall has also proposed an
one-measurement version of the SPGA algorithm in [16] with

ĝi,k =
f (ak + γk∆k)

2γk∆i,k
. (3)

Such algorithm also leads ak to converge, while with a de-
creased speed compared with the two-measurement SPGA. An
essential result is that the estimation of gradient using (2) or (3)
is unbiased if γk is vanishing, as long as the objective function
f is static. However, if the objective function is stochastic and
its observation is noisy, there would be an additional term of
stochastic noise in the numerator of (2) and (3), which may
seriously affect the performance of approximation when the
value γk is too small. As a consequence, the SPGA algorithm
is not suitable to solve our stochastic optimization problem.

Extremum seeking (ES) is an interesting approach to deal
with non-model based real-time optimization with continuous
action spaces. Thanks to the stability results developed in [17],
ES is widely used in many applications, see [18], [19] for
example. Periodic (sinusoidal) perturbation has been used in
most of the ES algorithms, The authors in [20] proposed a
fully distributed Nash equilibrium seeking algorithm which
requires only a measurement of the numerical value of the
static utility function. Their scheme is based on deterministic
sine perturbation of the payoff function in continuous time.
In [21], the authors extended the work in [20] to the case of
discrete time and stochastic state-dependent utility functions,
convergence to a close region of Nash equilibrium has been
proved. However, in a distributed setting, it is challenging to
ensure that the sine perturbation of different nodes satisfy
the orthogonality requirement, especially when the number
of nodes is large. Moreover, the continuous sine perturbation
based algorithm converges slowly in a discrete-time system.
Extremum seeking with stochastic perturbation (ESSP) has
been proposed in [22] to solve an optimization problem. The
ESSP algorithm given by

ak+1 = ak + βvkf (ak + vk) , (4)

with vk the zero-mean stochastic perturbation. The behavior
of the ESSP algorithm has been analyzed in [22], however,
under the assumption that the objective function is static and
quadratic. Our proposed algorithm is different from (4) as
we use the random perturbation with vanishing amplitude.
In addition, the objective function is stochastic with non-
specified form in our setting, which is much more challenging.
Furthermore, we consider a situation where nodes have to
exchange their local utilities to estimate the global utility
and each node may have incomplete information of the local
utilities of other nodes.

III. SYSTEM MODEL

We consider a network composed of a set of nodes denoted
by N with |N | = N . At each time instant k, each node i has
a local utility function ui (ak,Sk), which depends on action
vector ak = [a1,k, . . . , aN,k]

T ∈ A of all the nodes and the
environment state matrix Sk ∈ S. In this work, we consider



Sk as an i.i.d. ergodic stochastic process and we assume that
S ⊆ RN×N . As we will see in Section IV, the elements of
Sk may represent the time-varying channel gain between all
the pairs of transmitters and receivers.

Assume that each node i only has a noisy numerical esti-
mation of its local utility function, rather than its closed-form
expression. Denote ũi,k as the noisy numerical observation of
ui (ak,Sk), i.e.,

ũi,k = ui (ak,Sk) + ηi,k, (5)

where ηi,k is assumed to be some zero-mean noise with
bounded variance.

Introduce f (ak,Sk) =
∑
i∈N ui (ak,Sk) as the global

utility function of the network and F (a) = ES (f (a,S)) as
the expected value of f . The objective of our work is to design
some distributed algorithm to allow each node i to choose an
optimal action a∗i to maximize F (a), i.e.,

a∗ = arg max
a

F (a) = arg max
a

ES (f (a,S)) , (6)

only based on the knowledge of ũi,ks.
Throughout this paper, we have the following assumptions:

• A1. (properties of ui) a 7−→ ui (a,S) is Lipschitz with
Lipschitz constant LS, i.e.,

‖ui (a,S)− ui (a′,S)‖ ≤ LS ‖a− a′‖ , ∀i ∈ N . (7)

Furthermore, S 7−→ ui (a,S) is integrable with respect
to S so that F (a) = ES

(∑
i∈N ui (a,S)

)
<∞.

• A2. (properties of F ) Both the first and the second order
partial derivatives of F exist continuously. There exists
a∗ such that ∂F

∂ai
(a∗) = 0 and ∂2F

∂a2i
(a∗) < 0, ∀i ∈ N .

Besides, ∣∣∣∣ ∂2F

∂ai∂aj
(a)

∣∣∣∣ ≤ α1, ∀i, j ∈ N . (8)

• A3. (properties of η) E (ηi,k) = 0, E
(
η2i,k

)
= α4, and

E (ηi,kηj,k) = 0 if i 6= j.

Remark 1. Assumption A1 states that ui (a,S) is a smooth
function for any node i. As a consequence, f (a,S) is also
Lipschitz with Lipschitz constant NLS

‖f (a,S)− f (a′,S)‖ =

∥∥∥∥∥∑
i∈N

(ui (a,S)− ui (a′,S))

∥∥∥∥∥
≤
∑
i∈N
‖ui (a,S)− ui (a′,S)‖ ≤ NLS ‖a− a′‖ . (9)

Assumption A2 means that a∗ is a maximizer of a 7−→ F (a)
and the objective function F (a) is locally concave at a∗. In
order to lighten the notations, we use

F ′i (a) =
∂F

∂ai
(a) , F ′′i,j (a) =

∂2F

∂ai∂aj
(a) ,

and ∇F (a) = [F ′i (a) , . . . , F ′N (a)] in the rest of the paper.

IV. MOTIVATING EXAMPLE

We consider a wireless network with N links: each link is
a transmitter-receiver pair. Hence a link here corresponds to
a node in the system model in Section III. Each transmitter
communicates with its corresponding receiver and introduces
an interference on the other receivers. Denote sij,k as the
channel gain between transmitter i and receiver j at time k.
In this example, the action ai,k is the transmission power of
node i at time k. We consider a simple utility function

ui (ak,Sk) = ω log

(
1 + log

(
1 +

ai,ksii,k
σ2 +

∑
j 6=i aj,ksji,k

))
− κai,k.

(10)
Let

MUIi,k = σ2 +
∑
j 6=i

aj,ksij,k,

SINRi,k = ai,ksii,k/MUIi,k,

ri,k = log (1 + SINRi,k) .

Then (10) can be written as

ui (ak,Sk) = ω log (1 + ri,k)− κai,k. (11)

Notice that we aim to maximize a log-function of the bit rate
ri,k, which is of type proportional fairness. This type of utility
function is used to ensure fairness among the nodes in the
network.

In order to use the gradient technique, each node should
know
∂

∂ai,k
f (Sk,ak) =

ω

1 + ri,k

sii,k
σ2 +

∑
j 6=i aj,ksji,k

− κ

−
∑
n∈N

ω

1 + rn,k

an,ksnn,ksni,k(
σ2 +

∑
j 6=n aj,ksjn,k

)(
σ2 +

∑
j aj,ksjn,k

)
= ω

(
SINRi,k

(1 + ri,k) ai,k
−
∑
n∈N

SINRn,k

1 + rn,k

sni,k

MUIn,k (1 + SINRn,k)

)
− κ.

(12)

We can see that the computation of the exact value of the
derivative needs too much exchanges of information: apart
from SINR, node i needs to know the values of the channel
gain sni,k ∀n ∈ N as well as an,ksnn,k ∀n ∈ N (in order
to get MUIn,k). Moreover, the channel gain at time k is not
possible to estimate as it is constantly changing.

For these reasons, it is important to propose an algorithm in
the situation where limited information can be exchanged in
the network. For instance, we consider that the nodes can only
exchange the numerical values of ui. In the next two sections,
we present our distributed optimization algorithms as well as
their performance, in the situations where each node has the
complete and incomplete knowledge of the local utilities of
the other nodes, respectively.

V. DISTRIBUTED OPTIMIZATION ALGORITHM USING
STOCHASTIC PERTURBATION

This section presents an initial version of our distributed
optimization algorithm. We consider an unconstrained opti-
mization problem, i.e., A = RN .



At the beginning of each iteration, nodes exchange the
numerical observation of their local utility function, which
is the result of the action performed in the last iteration.
In this section, we assume that each node has the complete
information of ũi,k, ∀i ∈ N , in order to calculate

f̃ (a,Sk) =
∑
i∈N

ũi,k =
∑
i∈N

(ui (a,Sk) + ηi,k)

= f (a,Sk) +
∑
i∈N

ηi,k. (13)

A. Algorithm

The distributed optimization algorithm using stochastic per-
turbation (DOSP) is presented in Algorithm 1. For an arbitrary
reference node i, the algorithm is given by

ai,k+1 = ai,k + βkΦi,kf̃ (ak + γkΦk,Sk) , (14)

where k denotes the index of iteration, both βk and γk
are vanishing, Φi,k is randomly generated, and Φk =
[Φ1,k, . . . ,ΦN,k]. Notice that the action performed by each
node is the sum of the updated ai,k with a random perturbation
γkΦi,k. More properties of βk and Φi,k will be discussed later.
Remark 2. Notice that the sine perturbation based extremum
seeking method [20], [21] considers a deterministic sine
function as the perturbation term. While we use a random
perturbation Φk in (14). Comparing (4) and (14), we can see
that the amplitude of random perturbation is vanishing in our
algorithm, which is not the case in the algorithm presented in
[22].

Notice that (14) can be written in the classical form (1) with

ĝi,k = Φi,kf̃ (ak + γkΦk,Sk) (15)

an estimation of the partial derivative ∂F/∂ai. As stated in
Lemma 4, this estimation is asymptotically unbiased if the
parameters satisfy the following assumptions:
• A4. (properties of Φk) The elements of Φk are i.i.d. and

mutually independent, each element Φi,k is zero-mean
and

E
(
Φ2
i,k

)
= α2, |Φi,k| ≤ α3.

• A5. (properties of βk and γk) Both βk and γk take real
positive values and tend to 0 as k tends to infinity, besides,

∞∑
k=1

βkγk =∞,
∞∑
k=1

β2
k <∞.

Algorithm 1 DOSP Algorithm for each node i
1) Initialize k = 0 and set the action ai,0 randomly.
2) Generate a random variable Φi,k, perform action ai,k +

γkΦi,k.
3) Estimate ũi,k, exchange its value with the other nodes

and calculate f̃ (ak + γkΦk,Sk) =
∑
j∈N ũi,k.

4) Update ai,k+1 according to equation (14).
5) k = k + 1, go to 2.

Remark 3. The conditions on βk and γk can be easily
achieved. For example, let βk = k−c1 and γk = k−c2 with the
constant c1, c2 ∈ R+, so that both βk and γk are vanishing.
If c1 > 0.5, then

∑∞
k=1 β

2
k converges. If c1 + c2 < 1 then∑∞

k=1 βkγk diverges. Clearly, there exist pairs of c1 and c2 to
make βk and γk meet the conditions in A5.

B. Convergence results

This section investigates the asymptotic behavior of Algo-
rithm 1.

Let gk denote the expected value of ĝk with respect to Φ,
S, and η, i.e.,

gk = ES,Φ,η (ĝk) . (16)

We rewrite (14) in the generalized Robbins-Monro form [13],
i.e.,

ak+1 = ak + βkĝk

= ak + βk (α2γk∇F (ak) + gk − α2γk∇F (ak) + ĝk − gk)

= ak + α2βkγk

(
∇F (ak) + bk +

ek
α2γk

)
, (17)

where

bk =
gk
α2γk

−∇F (ak) , (18)

ek = ĝk − gk, (19)

represent the estimation bias and the stochastic noise re-
spectively. The following lemmas present some important
properties of bk and ek.

Lemma 4. If the assumptions A1-A5 hold, then ‖bk‖ → 0 as
k →∞.

Proof: See Appendix A.

Lemma 5. If the assumptions A1-A5 hold and ‖ak‖ < ∞ ,
then

lim
K→∞

P

 sup
K′≥K

∥∥∥∥∥∥
K′∑
k=K

βkek

∥∥∥∥∥∥ ≥ ρ
 = 0, ∀ρ > 0. (20)

Proof: See Appendix B.
Based on the results in Lemma 4 and in Lemma 5, we can

build conditions under which ak → a∗ almost surely.

Theorem 6. If the assumptions A1-A5 hold and ‖ak‖ < ∞
almost surely, then ak → a∗ as k → ∞ almost surely by
applying Algorithm 1.

Proof: We may follow the steps in [15] to complete the
proof. From Lemma 5, we can say that the accumulation of
the stochastic noise, i.e.,

∑∞
k=1 βkek, converges almost surely

if all the mentioned conditions are satisfied. Then, from the
basic result of stochastic approximation [13], we obtain that
∇F (ak) + bk → 0 almost surely, as long as the condition
on the step size is satisfied, i.e.,

∑∞
k=1 βkγk = ∞. From

Lemma 4, the bias term bk is vanishing.
Due to the fact that both ∇F (ak)+bk and bk tend to zero,

we get that ∇F (ak)→ 0. Thus ak → a∗ almost surely.



VI. OPTIMIZATION ALGORITHM WITH INCOMPLETE
INFORMATION OF UTILITIES OF OTHER NODES

A limit of Algorithm 1 is that each node needs to know the
local utility of all the other nodes. Such issue is significant
as there are many nodes in the network. It is thus important
to consider the situation where a node only has access to the
local utilities of a subset Ii,k of nodes, with Ii,k ⊆ N \ {i}.
Throughout this section, we have the following assumption:
• A6). at any iteration k, an arbitrary node i knows the

utility ũj,k of another node j with a constant probability
p, i.e., the elements contained in the set Ii,k is random,
for any j 6= i, we have

P (j ∈ Ii,k) = p, P (j /∈ Ii,k) = 1− p. (21)

Notice that we do not assume any specified network topology
and each node i has a different and independent set Ii,k.

We propose a modified algorithm and then show its asymp-
totic performance. The algorithm is described in Algorithm 2.
The main difference between Algorithm 1 and Algorithm 2
comes from the approximation of the objective function, i.e.,

f̃
(I)
i (a,Sk, Ii,k)

=

{
ũi,k + N−1

|Ii,k|
∑
j∈Ii,k ũj,k, if |Ii,k| 6= 0,

0, if |Ii,k| = 0.
(22)

Similar to (14), the algorithm is given by

ai,k+1 = ai,k + βkĝ
(I)
i,k = ai,k + βkΦi,kf̃

(I)
i (a,Sk, Ii,k)

(23)

The basic idea is to consider (N − 1)
∑
j∈Ii,k ũj,k/ |Ii,k| as

a surrogate function of
∑
j∈N\{i} ũj,k, in the case where the

set Ii,k is non-empty. Otherwise, node i does not know any
utility of the other nodes, it then cannot estimate the global
utility of the system. As a result, node i keeps its previous
action, i.e., ai,k+1 = ai,k.

Algorithm 2 DOSP algorithm for each node i with incomplete
information of the utilities of other nodes

1) Initialize k = 0 and set the action ai,0 randomly.
2) Generate a random variable Φi,k, perform action ai,k +

γkΦi,k.
3) Estimate ũi,k, exchange its value with the other nodes

and calculate f̃ (I)
i using (22) based on the collected local

utilities.
4) Update ai,k+1 according to equation (23).
5) k = k + 1, go to 2.

The following lemma is useful for our convergence analysis.

Lemma 7. The expected value of f̃ (I)
i (a,Sk, Ii,k) over all

possible sets Ii,k is proportional to f̃ (a,Sk), i.e.,

EIi,k
(
f̃
(I)
i (a,Sk, Ii,k)

)
= (1− (1− p)N )f̃ (a,Sk) . (24)

Proof: See Appendix C.

Introduce q = 1−(1−p)N to simplify the notation. Similar
to (17), we rewrite (23) as

ai,k+1 = ai,k + α2qβkγk

(
F ′i (ak) + b

(I)
i,k +

e
(I)
i,k

α2qγk

)
(25)

with

b
(I)
i,k =

ES,Φ,η,Ii,k

(
ĝ
(I)
i,k

)
α2qγk

− F ′i (ak) , (26)

e
(I)
i,k =

ĝ
(I)
i,k − ES,Φ,η,Ii,k

(
ĝ
(I)
k

)
α2qγk

. (27)

We can follow similar steps as in Section V-B to investigate
the convergence of the algorithm.

Theorem 8. In the situation where nodes do not have the
access to all the other nodes’ local utilities and the objective
function is approximated by applying (22), then we still have
ak → a∗ as k → ∞ almost surely by applying Algorithm 2,
as long as the assumptions A1-A5 hold and ‖ak‖ <∞ almost
surely.

Proof: See Appendix D.
Remark 9. Although the asymptotic convergence still holds,
the convergence speed is reduced if the information of the
objective function is incomplete. By comparing (17) and (25),
we can see that the equivalent step size is decreased by q times.
Besides, the variance of the stochastic noise e

(I)
i,k is higher,

as the randomness is more significant when we use n < N
random symbols to represent the average of N symbols.

VII. SIMULATION RESULTS

In this section, we apply our algorithm to a power control
problem as introduced in Section IV in order to have some
numerical results. We consider (10) as the local utility function
of each node. The time varying channel hij between node i
(transmitter) and node j (receiver) is generated using a Gaus-
sian distribution with variance σ2

ii = 1 and σ2
ij = 1, ∀i 6= j.

Notice that the channel gain is sij = |hij |2. Besides, we set
σ2 = 1, ω = 10 and κ = 2.

In all the simulations (applying different algorithms), we
consider N = 4 nodes, the step size follows βk = 0.2k−0.3,
and the initial values of a0,i (∀i ∈ N ) are generated uniformly
in the interval (0, 20]. In both Algorithm 1 and Algorithm 2,
γk = 0.7k−0.05 and Φi,k follows the symmetrical Bernoulli
distribution, i.e., P (Φi,k = 1) = P (Φi,k = −1) = 0.5, ∀k, i.

We first compare our proposed algorithm with the sine
perturbation based algorithm in [21], considering the situation
in which every node has access to all the other nodes’ local
utilities. The sine perturbation based algorithm has a similar
shape as our stochastic perturbation algorithm, with the pertur-
bation term Φi,k replaced by a sine function λi sin (Ωitk + φi)

where tk =
∑k
k′=1 βk′ , Ωi 6= Ωi′ and Ωi′ + Ωi 6= Ωi′′

∀i, i′, i′′. In the simulation, we set Ω1 = 4.5, Ω2 = 5, Ω3 = 4,
Ω4 = 3.5, λi = 0.4 and φi = 0, ∀i ∈ N . Notice that this
algorithm is not easy to implement in practice as it is hard



to choose all the parameters properly, especially when |N | is
large.

Furthermore, in order to show the efficiency of our algo-
rithm, we simulate also an ideal algorithm using the exact
gradient calculated by (12) which is costly to be obtained in
practice as discussed in Section IV.

We have performed 100 independent simulations to obtain
the average results shown in Figures 1 and 2. Figure 1
represents the utility function f (a,S) as a function of number
of iterations. We find that our algorithm converges faster than
the reference algorithm proposed in [21] 1. Figure 2 shows the
evolution of the power (action) of the four nodes. Notice that
the four curves representing the action of each node are close
in average in each sub-figure, since we consider the model
with symmetric parameters. We find the oscillation of the
power (action) is more significant by applying the reference
algorithm.
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Figure 1. Evolution of the utility function, average results by 100 simulations
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Figure 2. Evolution of power (action) of 4 nodes, average results by 100
simulations

Now we consider the situation where each node has incom-
plete collection of local utilities. We perform 100 independent
simulation with p ∈ {1, 0.5, 0.25, 0.1}. Recall that p defined
in (21) represents the level of incompleteness. The results are
shown in Figure 3. We can see that the convergence speed

1The reference algorithm is quite sensitive to the parameters, the presented
results are the best that we have found so far.

decreases as the value of p goes smaller. Such influence is not
significant even if p = 0.5, i.e., a node has only 50% chance
to know the local utility of another user, which reduces a lot
the information exchange in the network. As the value of p
is very small, i.e., p = 0.1, same trend of convergence can
be observed, although the algorithm converges slowly. On the
figure, we show the results obtained after up to 104 iterations
only, which explains why for p = 0.1 the algorithm has not
converged yet to the optimal solution.
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Figure 3. Evolution of the utility function, average results by 100 simulations,
with p ∈ {1, 0.5, 0.25, 0.1}.

VIII. CONCLUSION

In this paper we have a challenging distributed optimization
problems, under the assumption that only a numerical value
of the stochastic state-dependent local utility function of the
node is available at each time and nodes need to exchange their
local values to optimize the total utilities of the network. We
have developed two fully distributed algorithms that converge
to the optimum, in the situations where each node has the
knowledge of all or only a part of the local utilities of
the others. The convergence of our algorithm is examined
by studying our algorithm using stochastic approximation
technique. Numerical results are also provided for illustration.

APPENDIX

A. Proof of Lemma 4

By definition, we have

gk = ES,Φ,η

(
Φk

(
f (ak + γkΦk,Sk) +

∑
i∈N

ηi,k

))
= EΦ (ΦkES (f (ak + γkΦk,Sk)))

= EΦ (ΦkF (ak + γkΦk)) , (28)

recall that the additive noise ηi,k is zero mean and F is the
expected value of f by definition.

Based on Taylor’s theorem and mean-valued theorem, there
exists ãk locating between ak and ak + ckΦk such that

F (ak + γkΦk) = F (ak) +
∑
j∈N

γkΦj,tF
′
j (ak)

+
∑

j1,j2∈N

γ2k
2

Φj1,kΦj2,kF
′′
j1,j2 (ãk) . (29)



Benefit from the properties of Φk (A4), we have, ∀i ∈ N ,

gi,k = F (ak)EΦ (Φi,k) + γk
∑
j∈N

F ′j (ak)EΦ (Φi,kΦj,k)

+
∑

j1,j2∈N

γ2k
2
EΦ

(
Φi,kΦj1,kΦj2,kF

′′
j1,j2 (ãk)

)
= α2γk (F ′i (ak) + bi,k) , (30)

from (28) and (29), with

bi,k =
∑

j1,j2∈N

γk
2α2

EΦ

(
Φi,kΦj1,kΦj2,kF

′′
j1,j2 (ãk)

)
.

From assumptions A2 and A4, |bi,k| can be upper bounded by

|bi,k| ≤
∑

j1,j2∈N

γk
2α2

α3
3α1 = γkN

2α
3
3α1

2α2
, (31)

then ‖bk‖ ≤ γkN
5
2
α3

3α1

2α2
= O (γk). Here we may conclude

that ‖bk‖ → 0 as γk → 0.

B. Proof of Lemma 5
Since ĝk and ĝk′ are independent if k 6= k′ and

ES,Φ,η (ei) = ES,Φ,η (ĝk − ES,Φ,η (ĝk)) = 0,

the sequence
{∑K′

k=K γkek

}
K′≥K

is martingale. By a mar-

tingale inequality [23], we have

P

 sup
K′≥K

∥∥∥∥∥∥
K′∑

k=K

βkek

∥∥∥∥∥∥ ≥ ρ


≤ 1

ρ2
ES,Φ,η

∥∥∥∥∥∥
K′∑

k=K

βkek

∥∥∥∥∥∥
2 (a)

=
1

ρ2
ES,Φ,η

 K′∑
k=K

‖βkek‖2


≤ 1

ρ2

∞∑
k=K

ES,Φ,η

(
β2
k ‖ĝk − ES,Φ,η (ĝk)‖2

)
=

1

ρ2

∞∑
k=K

β2
k

(
ES,Φ,η

(
‖ĝk‖

2)− ‖ES,Φ,η (ĝk)‖2
)

≤ 1

ρ2

∞∑
k=K

β2
kES,Φ,η

(
‖ĝk‖

2) (32)

where (a) holds as E
(
eTk1 · ek2

)
= 0 for any k1 6= k2.

We then need to show that the average value of ‖ĝk‖
2 is

bounded. For any i ∈ N , we evaluate

ES,Φ,η

(
ĝ2i,k
)

= ES,Φ,η

((
Φi,kf (ak + γkΦk,Sk) + Φi,k

∑
j∈N

ηj,k

)2)
(a)
= ES,Φ

(
(Φi,kf (ak + γkΦk,Sk))2

)
+Nα2α4

(b)

≤ α2
3ES,Φ

(
(f (ak + γkΦk,Sk))2

)
+Nα2α4

(c)

≤ α2
3ES,Φ

(
(‖f (0,Sk)‖+NLSk‖ak + γkΦk‖)2

)
+Nα2α4

(d)

≤ 2α2
3ES

(
µ2

Sk
+N2L2

Sk

(
‖ak‖+ γkN

1
2α3

)2)
+Nα2α4

(e)
= 2α2

3

(
µ+N2L

(
‖ak‖+ γkN

1
2α3

)2)
+Nα2α4

<∞ (33)

where (a) is due to EΦ,η

((
Φi,k

∑
j∈N ηj,k

)2)
= Nα2α4

and (b) is by Assumption A4. From (9), we have

‖f (a,S)‖−‖f (0,S)‖ ≤ ‖f (a,S)− f (0,S)‖ ≤ NLS ‖a‖ ,

so ‖f (a,S)‖ ≤ ‖f (0,S)‖ + LS ‖a‖, (c) can be obtained.
We denote µSk

= ‖f (0,Sk)‖ in (d) and the inequality is
because of (x+y)/2 ≤

√
(x2 + y2) /2, ∀x, y ∈ R. In (e), we

introduce µ = ES

(
µ2

Sk

)
and L = ES

(
L2

Sk

)
.

Combine (32) and (33), Lemma 5 can be proved as
limK→∞

∑∞
k=K β

2
k = 0 by Assumption A5.

C. Proof of Lemma 7

We start with the conditional expectation, based on (22), we
have

EIi,k
(
f̃
(I)
i (a,Sk, Ii,k)

∣∣ |Ii,k| = n
)

=

{
ũi,k + N−1

n EIi,k
(∑

j∈Ii,k ũj,k
∣∣ |Ii,k| = n

)
, if n 6= 0,

0, if n = 0.

(34)

Denote U (n)
i as a collection of all possible sets Ii,k such

that |Ii,k| = n, e.g., U (1)
i = {{1} , . . . , {i− 1} , {i+ 1} , . . .}.

Since each node has an equal probability to be involved in
Ii,k, the sets in U (n)

i are also equiprobable, i.e.,

P
(
Ii,k = I

∣∣ |Ii,k| = n
)

=
1(

N−1
n

) , ∀I ∈ U (n)
i ,

note that the cardinal of U (n)
i is

(
N−1
n

)
. We evaluate

EIi,k

 ∑
j∈Ii,k

ũj,k

∣∣∣∣ |Ii,k| = n


=

∑
I∈U(n)

i

1(
N−1
n

) ∑
j∈I

ũj,k =
1(

N−1
n

) n(N−1n )
N − 1

∑
j∈N\{i}

ũj,k

=
n

N − 1

∑
j∈N\{i}

ũj,k. (35)

Combine (34) and (35), for any n ∈ {1, . . . , N − 1}, we have

EIi,k
(
f̃
(I)
i (a,Sk, Ii,k)

∣∣ |Ii,k| = n
)

= f̃ (a,Sk) . (36)

According to the basic rule of expectation,

E
(
f̃
(I)
i (a,Sk, Ii,k)

)
=

N−1∑
n=0

P (|Ii,k| = n)EIi,k
(
f̃
(I)
i (a,Sk, Ii,k)

∣∣ |Ii,k| = n
)

=

N−1∑
n=1

P (|Ii,k| = n) f̃ (a,Sk)

= (1− P (|Ii,k| = 0)) f̃ (a,Sk)

=
(
1− (1− p)N

)
f̃ (a,Sk) .

Lemma 7 is then proved.



D. Proof of Theorem 8

As the analysis in Section V-B. We mainly need to check: i)
whether b(I)

i,k is vanishing; ii) whether
∑∞
k=1 βke

(I)
k converges.

The proof of these two statements are more complicated as
compared to Appendix A and Appendix B, since there is an
additional random term Ii,k in both b

(I)
i,k and e

(I)
i,k, compared

with bi,k and ei,k discussed in Section V
We start with the bias term, by Lemma 7,

ES,Φ,η,Ii,k

(
ĝ
(I)
i,k

)
= ES,Φ,η,Ii,k

(
Φi,kf̃

(I)
i (a,Sk, Ii,k)

)
= qES,Φ,η

(
Φi,kf̃ (a,Sk)

)
.

We then find that b(I)
i,k in this section is the same as bi,k defined

in (18), as

b
(I)
i,k =

qES,Φ,η

(
Φi,kf̃ (a,Sk)

)
α2qγk

− F ′i (ak) = bi,k.

Therefore, b(I)
i,k can be vanishing as γk is vanishing according

to Lemma 4.
Then we turn to analyze the stochastic noise. From the defi-

nition (27) , the sequence
{∑K′

k=K γke
(I)
k

}
K′≥K

is martingale.

Similar to (32)

P

 sup
K′≥K

∥∥∥∥∥∥
K′∑
k=K

βke
(I)
k

∥∥∥∥∥∥ ≥ ρ


≤ 1

ρ2

∞∑
k=K

β2
k

∑
i∈N

ES,Φ,η,Ii,k

((
ĝ
(I)
i,k

)2)
. (37)

In order to evaluate the average of
(
ĝ
(I)
i,k

)2
, we first consider,

for any n ∈ {1, . . . , N − 1},

EIi,k

((
ĝ
(I)
i,k

)2 ∣∣ |Ii,k| = n

)

= Φ2
i,kEIi,k

ũi,k +
N − 1

n

∑
j∈Ii,k

ũj,k

2 ∣∣∣∣ |Ii,k| = n


(a)

≤ α2
3 (n+ 1)

ũ2
i,k +

(
N − 1

n

)2

EIi,k

∑
j∈Ii,k

ũ2
j,k

∣∣∣∣ |Ii,k| = n


(b)
= α2

3 (n+ 1)

ũ2
i,k +

N − 1

n

∑
j∈N\{i}

ũ2
j,k


(c)

≤ α2
3

Nũ2
i,k + 2 (N − 1)

∑
j∈N\{i}

ũ2
j,k

 , (38)

where (a) is by Φ2
i,k ≤ α2

3 and
∑m
i=1 xi/m ≤

√∑m
i=1 x

2
i /m,

(b) can be proved using (35), and (c) is due to (n+ 1) /n ≤ 2
as 1 ≤ n ≤ N − 1.

Notice that the upper bound in (38) does not depend on n
and that ĝ(I)

i,k = 0 as n = 0, hence

EIi,k
((

ĝ
(I)
i,k

)2)
≤ α2

3

Nũ2i,k + 2 (N − 1)
∑

j∈N\{i}

ũ2j,k

 .

Our last target is then to verify ES,Φ,η

(
ũ2i,k

)
is bounded for

any i ∈ N , which can be proved using similar steps as in (33).
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