
HAL Id: hal-01578368
https://hal.science/hal-01578368

Submitted on 29 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High strength-high conductivity carbon
nanotube-copper wires with bimodal grain size

distribution by spark plasma sintering and wire-drawing
David Mesguich, Claire Arnaud, Florence Lecouturier, Nelson Ferreira,
Geoffroy Chevallier, Claude Estournès, Alicia Weibel, Claudie Josse,

Christophe Laurent

To cite this version:
David Mesguich, Claire Arnaud, Florence Lecouturier, Nelson Ferreira, Geoffroy Chevallier, et al..
High strength-high conductivity carbon nanotube-copper wires with bimodal grain size distribu-
tion by spark plasma sintering and wire-drawing. Scripta Materialia, 2017, vol. 137, pp. 78-82.
�10.1016/j.scriptamat.2017.05.008�. �hal-01578368�

https://hal.science/hal-01578368
https://hal.archives-ouvertes.fr


Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 17905 

To link to this article : DOI:10.1016/j.scriptamat.2017.05.008 
URL : http://dx.doi.org/10.1016/j.scriptamat.2017.05.008 

To cite this version : Mesguich, David and Arnaud, Claire and 
Lecouturier, Florence and Ferreira, Nelson and Chevallier, Geoffroy 
and Estournès, Claude and Weibel, Alicia and Josse, Claudie and 
Laurent, Christophe High strength-high conductivity carbon 
nanotube-copper wires with bimodal grain size distribution by spark 
plasma sintering and wire-drawing. (2017) Scripta Materialia, vol. 
137. pp. 78-82. ISSN 1359-6462 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



High strength-high conductivity carbon nanotube-copper wires with
bimodal grain size distribution by spark plasma sintering
and wire-drawing

David Mesguich a, Claire Arnaud a,b, Florence Lecouturier b, Nelson Ferreira b, Geoffroy Chevallier a,c,
Claude Estournès a,c, Alicia Weibel a, Claudie Josse a,d, Christophe Laurent a,⁎
a Université de Toulouse, CIRIMAT, CNRS-INPT-UPS, Université Paul-Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
b Laboratoire National des Champs Magnétiques Intenses, UPR3228 CNRS-UPS-INSA-UGA, 143 avenue de Rangueil, F-31400 Toulouse, France
c Plateforme Nationale CNRS de Frittage Flash, PNF2, MHT, Université Paul-Sabatier, 118 route de Narbonne, F-31062 Toulouse cedex 9, France
d Université de Toulouse, Centre de Microcaractérisation Raimond Castaing, UMS 3623, Espace Clément Ader, 3 rue Caroline Aigle, 31400 Toulouse, France

a b s t r a c t

Copper and 1 vol% carbon nanotube-copper cylinderswith amicrometric copper grain size and either a unimodal

or a bimodal grain size distribution were prepared using spark plasma sintering. The cylinders served as starting

materials for room temperature wire-drawing, enabling the preparation of conducting wires with ultrafine

grains. The tensile strength for the carbon nanotube-copper wires is higher than for the corresponding pure cop-

per wires. We show that the bimodal grain size distribution favors strengthening while limiting the increase in

electrical resistivity of the wires, both for pure copper and for the composites.
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There is a demand for stronger conducting wires, in fields such as

aeronautics, space, energy and high-fieldmagnets. Establishedmethods

to strengthenmetals, like cold working, alloying or introducing another

phase, simultaneously decrease the electrical conductivity through the

introduction of defects [1–4]. However, a specific type of grain bound-

ary, the coherent twin boundary, was shown to strengthen electro-

chemically-deposited copper films without introducing additional

electron scattering [5]. Similar results were reported for nanotwinned

bulk materials [6] and wires [7,8] prepared using cryo-deformation.

We have reported [9] an innovative approach combining spark plasma

sintering (SPS) and room-temperature (RT) wire-drawing to produce

Cuwireswith both a high ultimate tensile strength (UTS) and high elec-

trical conductivity. The short sintering times used in SPS [10] permit to

produce Cu cylinders (to bewire-drawn)with an ultra-finemicrostruc-

ture, ten times smaller than for conventional cylinders [9,11]. Strength-

ening of the wires originates from the propagation of dislocations by an

Orowan-type dislocation glide mechanism in grains smaller than

250 nm [9]. Double-walled carbon nanotube (DWCNT)-Cu wires show

a higher UTS than the Cu wires but also a higher resistivity at 77 K

[12]. Here, we show that the preparation of SPS cylinders with a bimod-

al, as opposed to unimodal, Cu grain size distribution ultimately favors

strengthening the wires while limiting the increase in electrical

resistivity.

The CNT sample (Nanocyl, Belgium) was described elsewhere [13].

The number of walls and external diameters were measured for about

100 CNTs on HRTEM images. CNTs with 3–22 walls are observed but

CNTs with 7–9 walls are dominant, representing 62% of the total. Exter-

nal diameters are in the range 5.8–18.8 nm and the average external di-

ameter is equal to 10.2 nm. Length is below 1.5 μm. The CNTs were

carboxyl-functionalized with a nitric acid solution (100 °C, 3 mol·L−1)

[14]. Commercial spherical Cu powders (Alfa Aesar, 99%) were used,

with either a unimodal (d10, d50 and d90 = 0.45, 0.76 and 1.36 μm, re-

spectively) or a bimodal (d10, d50 and d90 = 0.63, 1.33 and 4.15 μm, re-

spectively) grain size distribution. Samples prepared using the

unimodal and bimodal powders will be denoted hereafter U and B, re-

spectively. The homogeneous distribution of CNTs into the Cu matrix

is a key issue [15]. For the preparation of the CNT-Cu powders (1 vol%

carbon), an aqueous suspension of the Cu powder was poured into the

CNT suspension (2.5 g/L) under ultrasonic agitation (Bioblock Scientific

VibraCell 75,042) and then freeze-dried (Christ alpha 2–4 LD, Bioblock

Scientific,−40 °C, 12 Pa, 48 h). The so-obtained powders were heated

in H2 (220 °C, 1 h) to reduce any copper oxide that may be present.

Scanning electron microscopy (SEM, JEOL JSM 6700 F) images for the

U powder show that the CNTs distribution is homogeneous (Fig. 1a,

b), indeed it was shown to be the case even though the CNTs have not
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been functionalized [13]. By contrast, for the B powder (Fig. 1c, d), the

areas corresponding to the larger Cu grains are devoid of CNTs.

Cu and CNT-Cu cylinders (diameter 8 mm and length 33 mm) were

prepared by SPS (PNF2-Toulouse, Dr. Sinter 2080, SPS Syntex Inc., Japan)

using 8 mm inner diameter WC/Co dies according to a procedure de-

scribed elsewhere [12], changing only the heating rates: 25 °C·min−1

from RT to 350 °C and 50 °C·min−1 from 350 °C to either 600 °C (U

samples) or 700 °C (B samples), where a 5 min dwell was applied. No

phase change such as carbide formation was detected by X-ray diffrac-

tion in agreement with other works [13,16,17]. The cylinders relative

density (Archimedes' method) is equal to 94 ± 1% (U samples) and

88 ± 2% (B samples). These values were found convenient for the rest

of the study, because a too high density hampers the deformability of

the cylinder during wire-drawing, resulting in sample breaking. Earlier

electron microscopy observations of U cylinders [9] have revealed that

the Cu grains have not grown significantly from the original size and

contain some thermal twins, as in [18]. The B cylinders were investigat-

ed by SEM observations (JEOL JSM 7100FTTLS LV operated at 20 kV)

using electron backscattered diffraction (EBSD).

For the CNT-Cu B cylinder, the transverse (Fig. 2a) and longitudinal

(Fig. 2b) sections both reveal isotropic Cu grains, no preferential texture

and the preservation of the bimodal grain size distribution. This is con-

firmed by the analysis of the EBSD grain size maps (5° disorientation

angle) (Fig. 2c), showing fine (0.5–1 μm) and larger (2–5 μm) grains.

Twins (in red in Fig. 2c) were identified using a 60° disorientation

angle around the Cu 〈111〉 direction. The Cu-cylinder EBSD images

(not shown) show the same morphology and texture.

The cylinderswerewire-drawn at RT through conicalWCdies to ob-

tain wires with decreasing diameters down to 0.5 mm (U wires, for

which further drawing leads to breaking) or 0.2 mm (B wires) [9]. The

4mmdiameter wires are 99± 1% dense. The density is probably higher

for lower-diameter wires but the measurement uncertainty is too high

to give a meaningful value. EBSD images of the transverse (Fig. 2d)

and longitudinal (Fig. 2e) sections of the 0.506 mm diameter CNT-Cu

B wire reveal grains elongated over several micrometers (some of

them about 20 μm long) with the Cu〈111〉 and〈001〉 orientations

along the wire-drawing direction. Transmission electron microscopy

(TEM, JEOL JEM 2100F operated at 200 kV) observations of a longitudi-

nal section of the CNT-Cu U wire (0.506 mm) (Fig. 2f) confirm the la-

mellar microstructure [19], i.e. elongated grains parallel to the wire-

drawing direction. The width distribution of the lamellae will be

discussed later in the paper. Dislocation substructures are observed

within the lamellae (arrowed in Fig. 2f) but there are no twins because

the deformation during wire-drawing provoked their migration due to

twin boundaries acting as non-regenerative dislocations sources [20].

Coherent twin boundaries were not observed, contrary to results re-

ported for cryo-drawn wires [6–8]. No difference is observed between

the microstructure of the Cu and CNT-Cu wires. The CNTs are supposed

to be aligned along the wire-drawing direction and thus located along

the Cu grains.

The electrical resistivity was measured at 77 K (Fig. 3a) using the

four-probe method with a maximum current of 100 mA to avoid

heating the wires. The resistivity increases slightly upon the decrease

in wire diameter, reflecting grain refinement and the increase in the

density of grain boundaries acting as scattering centers for conduction

electrons. The order of increasing resistivity is OFHC-Cu b B-Cu b U-Cu

b B-CNT-Cu b U-CNT-Cu. Ex-carboxylate oxygen ions present at the sur-

face of the CNTs are known to resist H2 reduction and SPS [21] and a

strong Cu-O-C interface would increase the resistivity. Moreover, the

acid functionalization may have degraded the conductivity of the CNTs.

Tensile tests (INSTRON 1195machine)were performed at 293K and

77 K on wires 170 mm long and 0.198–1.023 mm in diameter. Precise

stresses were measured by the stress gauge system (250 N, 1.6

× 10−5m·s−1). Typical stress-strain curves for similarwires and details

about UTS calculation from such data are shown elsewhere [9,12]. The

UTS at 293 K (Fig. 3b) and 77 K (Fig. 3c) of the present samples are com-

pared to those obtained [9] for wires prepared using a conventional cyl-

inder (grain size 10 μm) prepared from standard cast oxygen-free high

conductivity (OFHC) Cu. The UTS for the OFHC-Cu wires (ca. 450 MPa)

are close to the value (460 MPa) reported [11] for a Cu wire deep-

drawn at RT using a cylinderwith a comparable grain size (9.4 μm), val-

idating both ourwire-drawing and UTSmeasurement processes [9]. For

the present Cu wires, the UTS values are systematically higher (550 vs

Fig. 1. SEM images of the CNT-Cu powders prepared with the Cu powder with (a, b)

unimodal and (c, d) bimodal grain size; b) and d) are higher magnification images

showing the areas highlighted in a) and c).



450 MPa at 293 K and 700 vs 550 MPa at 77 K) than for the OFHC-Cu

wires.

The UTS for the CNT-Cu wires are still noticeably higher, reflecting

first that the presence of the CNTs hampers dislocation glide and that

the dislocations pile-up at the CNT/Cu interface, producing less plastic

deformation and second the strengthening role of the CNTs due to

their high resistance to elongation [22]. A strong Cu-O-C interface

would favor charge transfer. Ductile fracture was observed for all

wires (Fig. 4a). CNTs are seen protruding from the fracture surface

(inset in Fig. 4a), which may reveal some degree of pull-out. Their frac-

ture could be along the “sword-sheath”mode [22]. The UTS values tend

to increase upon the decrease in wire diameter, reflecting the finer mi-

crostructure, notably for the B samples. Interestingly, the UTS values are

significantly higher for the CNT-Cu U wires than for the CNT-Cu B wires

down to a diameter of 0.5 mm (771 MPa vs 676 MPa at 77 K,

respectively).

By contrast, the thinner CNT-Cu B wires show ever higher UTS,

reaching 876MPa (77 K) for the 0.198 diameter. These are significantly

better strength/conductivity combinations compared to Cu-based alloys

([4] and references therein). The UTS are 50% and 20% higher than for

cryo-drawn Cu wires [8] and DWCNT-Cu wires [12], respectively. Such

high UTS values at 77 K are interesting for non-destructive pulsed mag-

nets operating in liquid nitrogen [23]. In the thinner wires, the elongat-

ed Cu grain (lamella) width is of the order of the size of the dislocation

cells (about 150–200 nm) [9] and it is assumed that the plasticitymech-

anisms during wire-drawing are based on Orowan-type dislocation

glide [24,25]. Assuming a homothetic deformation, it is reasonable to

assume that for the U wires, which originate from a powder and cylin-

der with a uniform grain size, and whatever their diameter (Fig. 4b),

the elongated Cu grainswill have a relatively narrow lamella-width dis-

tribution. By contrast, the Bwireswill retain a relativelywide size distri-

bution until a certain wire diameter is reached, evaluated at about

0.5 mm, where the distribution will be similar to that for a U wire

(Fig. 4c), withmost grains about 150–200 nm in size. Moreover, it is im-

portant to note that the larger Cu grains found in the B powder and cyl-

inder will form upon drawing the B wires longer grains than those

found in the U wires. In order to corroborate these hypotheses, the

size (lamella width) of over 1000 grains was measured on EBSD grain

size maps of longitudinal sections of selected wires. First, CNT-Cu U

and B wires of the same diameter (0.506 mm) are compared (Fig. 4d).

For the U wire (solid red circles in Fig. 4d), the average lamella width

is 0.28 μm(with d10, d50 and d90 equal to 0.06, 0.18 and 0.46 μm, respec-

tively) and for the Bwire (solid blue triangles in Fig. 4d), the average la-

mellawidth is 0.34 μm(with d10, d50 and d90 equal to 0.12, 0.29 and 0.54

μm, respectively). Clearly, large grains are more abundant in the

0.506 mm B wire than in the 0.506 mm U wire. Then, the lamella-

width distribution was calculated for a thinner (0.251 mm) B wire

(open blue triangles in Fig. 4d). The average lamella width is 0.26 μm

(with d10, d50 and d90 equal to 0.05, 0.19 and 0.39 μm, respectively).

These values are fairly similar to that for the 0.506mmUwire. These re-

sults strongly support our hypotheses. We propose that in the early

stages of wire-drawing, i.e. for wire diameters above about 0.5 mm,

the presence of the larger Cu grains still predominates in B wires and

only the limited portion of smaller Cu grains contribute to Orowan

Fig. 2. a) EBSD inverse polefiguremaps of the transverse section (CNT-Cu B cylinder); (b) EBSD inverse polefiguremaps of the longitudinal section (CNT-Cu B cylinder); c) EBSD grain size

maps of the transverse section showing grains (black) and twins (red) (CNT-Cu B cylinder); d) EBSD inverse polefiguremaps of the transverse section (0.506mmCNT-CuBwire); e) EBSD

inverse pole figuremaps of the longitudinal section (0.506mmCNT-Cu Bwire). f) TEMbright-field image of the longitudinal section of the (0.506mmCNT-CuUwire). (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)



strengthening, accounting for the lower UTS and lower resistivity com-

pared to the U wires. In the latter stages, i.e. for wire diameters below

about 0.5 mm, the previously larger Cu grains in B wires are now

more elongated and the accompanying nanostructuration accounts for

the steep increase in UTS (N20%) whereas for U wires further strength-

ening is not possible anymore, most grains having already reached the

dislocation cell size. Moreover, as noted above, the larger grains end

up significantly longer than those originating from the smaller ones

and are devoid of CNTs, therefore producing only a small increase in

resistivity.

In conclusion, a bimodal distribution of the Cu grain size in Cu and

CNT-Cu wires prepared by a combination of spark plasma sintering

and RT wire-drawing favors high strength while limiting the increase

in electrical resistivity.
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