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Abstract—Cloud computing allows for elasticity as users can
dynamically benefit from new virtual resources when their work-
load increases. Such a feature requires highly reactive resource
provisioning mechanisms. In this paper, we propose two new
workload prediction models, based on constraint programming
and neural networks, that can be used for dynamic resource pro-
visioning in Cloud environments. We also present two workload
trace generators that can help to extend an experimental dataset
in order to test more widely resource optimization heuristics.
Our models are validated using real traces from a small Cloud
provider. Both approaches are shown to be complimentary as
neural networks give better prediction results, while constraint
programming is more suitable for trace generation.

I. INTRODUCTION AND RELATED WORK

In the past ten years, the use of cloud computing tech-
nologies has significantly increased. This increase comes with
a major problem, namely energy consumption. In 2010, the
electricity used only by data centers accounted for between
1.1% and 1.5% of the world energy consumption. For the US,
it even has increased to a level between 1.7% and 2.2% [13].
Up to 30% of the electricity consumption of a typical data
center is dedicated to cooling the system [17]. In [5], Bel-
oglazov et al. showed that the electricity consumption of a
data center is linked to its resources usage. A lot of research
focuses on optimizing the resources usage of a data center.
One common way to optimize resource utilization is to use
workload prediction [12].

To predict the workload of a data center, in [11] and [12],
Ismaeel et al. use a special type of neural network called
an extreme learning machine. An extreme learning machine
is a single-hidden layer feed-forward neural network, where
the weights connecting inputs to hidden nodes are randomly
assigned and never updated [10]. In their work, as in many
work in the literature, they assimilate the workload of a
data center to the number of virtual machines running in the
data center. Therefore, forecasting the data center workload
amounts predicting the number of virtual machines requests.
Our approach assimilates the workload of a data center to its
CPU usage that we model with times-series. In our context this
approach is more suitable as the specification of the machines
of a data center directly involves their CPU capacities and
consequently their energy consumption [5]. Moreover, it can
help to implement energy-efficient techniques such as CPU
over-commitment [4].

Another issue encountered in designing resource optimiza-
tion heuristics for data center is the availability of real work-
load traces to validate the proposed algorithms. In most of
the cases, for reasons such as confidentiality, the real data are

not available in enough quantities. One of the few available
traces in the community comes from Google and provides
a one-month trace for about 12,500 machines [9]. Yet, this
kind of hyper-scale Clouds are only minor contributors to the
global energy consumption of data centers (under 4%), while
small- and medium-sized data centers account for half of this
global electricity consumption [19]. In this paper, we focus
on these small and medium energy-hungry Clouds that present
workload patterns different from the ones experienced in large-
scale public clouds [19].

We present two complementary models, one based on neural
networks and the other one based on constraint programming
to address these issues: workload prediction and lack of real
traces. Therefore, the contribution of this paper is twofold.
• To predict the CPU workload of a data center, we

present and compare two machine learning models, which
are respectively based on constraint programming and
neural networks. To the best of our knowledge, constraint
programming has not been used to predict a data center
workload.

• To extend any real workload data set, we present a
workload traces generator. The generator uses the learned
constraint model to generate time series that are similar
to real workload traces.

The rest of the paper is organized as follows: Section II
presents the real workload traces that we are using in this
paper. Section III presents the machine learning models, and
Section IV gives the workload generator model. Section V
concludes this work.

II. REAL WORKLOAD DESCRIPTION

Finding real traces for data center’s activity is very difficult.
For this, we have partnered with a french SME company:
EasyVirt, a company specializing in virtualized data center
analysis. In part of its activities, EasyVirt deploys software
probes in the infrastructure of their clients and archives data
in a MySQL database. These probes collect system resources’
consumption of the physical servers and virtual machines.
For confidentiality reasons, the companies in which the data
were collected are not cited. Similarly, we can not distribute
collected raw data. But, the analysis can be distributed. For
this paper, we selected a representative trace of a mid-sized
data center embedding 50 physicals servers for about 1,000
VMs.

More precisely, from a read-only account on the VMwareV-
Center, the solution recovers static and dynamic infor-
mation. The static information collected is: the Datacen-



ter/Cluster/Server/VM architecture, static information of phys-
ical servers (server model, CPU model, CPU frequency, cores
number, RAM available, etc.), static virtual machine informa-
tion (vCPU (virtual CPU) number, allocated memory, reserved
memory, VMware Tools status, VMDK size, etc). Following
the recovery of this information, the probes dynamically mon-
itor physical servers and virtual machines in order to get their
consumption and virtual machines lifecycle. Various resources
are monitored: processor, memory, network and disk. This
monitoring is realized every 30 seconds, without impacting
VMwareVCenter performance. Data are stored in a classical
relational database (MySQL).

The selected trace represents six months of activity, for a
database of about 2GB. All of the results presented below are
based on these traces.

III. PREDICTION MODELS

In order to design a scheduling heuristic that aims at
optimizing resource utilization, we need to know in advance
the eventual distribution of the resource usage in time. To do
so, we need a workload prediction model based on historical
traces. This section presents two different approaches to build
such a model. The first approach makes use of constraint
programming while the second one uses a neural network.

A. Workload classification

As our dataset is consequent (six months, 50 physical
servers), it can present various behaviors. As a preliminary
step, we employ a clustering technique, widely used in data
analysis, to group the traces into subsets of similar traces.
K-means [16] is one of the simplest unsupervised learning
algorithm for data clustering.

Given a series (x1, x2, x3, ..., xn), the parameter k(k ≤ n)
is used for specifying the number of clusters to be created.
The K-means algorithm is following the three steps:

1) Determine k centroid coordinates corresponding k clus-
ters

2) Calculate the distance from each object to the k cen-
troids

3) Assign each object to a unique cluster and ensure the
sum of distance within a cluster is minimized.

The objective of K-means [14] can be expressed as:

arg min
s

k∑
i=1

∑
xj∈Si

||xj − µi||2 (1)

where, µi is the mean of object in Si. Once this preliminary
step has been done, one can start learning the characteristics
of the traces in each subset.

B. Constraint programming model.

In [4], we very briefly sketched a constraint programming
model to predict the workload of a data center. This Section
refines this model that will now be used both for prediction
and for generating new time series workload (in Section IV).
Given a set of real workload traces modeled as time series,
we proceed as follows:

• Clustering step: we first clusterize them into p clusters,
as already presented in Section III-A. This is motivated
by the fact that the workload of a data center may both
depend on the day (e.g. week, weekend) as well as of the
type of services it provides at specific time periods.

• Offline step: we extract from each cluster cl i, some key
properties that correspond to typical features of the time
series (e.g. its highest peak, its number of peaks). Using
these key features, we build a model m(cl i) for each
cluster cl i. This offline preprocessing is the learning step.
Finally, the prediction model is given by ∪p−1

i=0m(cl i), the
union of all the models m(cl i) of each cluster cl i.

• Online step: at any time t, the prediction model should be
able to foretell in real time the evolution of the workload
at time t+ ε, where ε is a time lapse to determine.

This rest of this section is structured in the following way:
(1) First we recall some background on time series, (2) then
we present the offline step (3), and finally we describe the
online step.

1) Background on time series: The references [3], [2]
describe a large set of time-series constraints, where a time
series constraint is characterized by the following concepts:
• Signature of a time series: the signature of a time series

is a sequence of comparison operators taking values
in the set {<,=, >}. Each element of the signature is
obtained by comparing two adjacent input values.

• Pattern: a pattern is a regular expression over the alphabet
{<,=, >}. To find a pattern occurrence in a time series,
its signature has to be computed first. A pattern occur-
rence is a maximal occurrence of a sequence of characters
from the signature that matches the regular expression of
the pattern. Table I gives examples of patterns that may
occur in a time series. Figure 1 provides a visual example
of the peak pattern.

pattern regular expression

increasing <
increasing sequence < (< | =)∗ < | <
increasing terrace <=+<
summit (< |(< (= | <)∗ <)) (> |(> (= | >)∗ >))
plateau <=∗>

proper plateau <=+>

strictly increasing sequence <+

peak < (= | <)∗ (> | =)∗ >
inflexion < (< | =)∗ > | > (> | =)∗ <
steady =

steady sequence =+

zigzag (<>)+(< | <>) | (><)+(> | ><)

TABLE I: Examples of patterns and their corresponding reg-
ular expressions.

• Feature: given a pattern occurrence, a feature is a quan-
tifiable property of the pattern.

• Aggregator: given one or more occurrence of a pattern
p and a feature f of p, an aggregator is a function (e.g.
min, max) applied to the different feature values of each
occurrence of pattern p.



peak

< (= | <)∗ (> | =)∗ >

Fig. 1: Example of a peak pattern.

• Footprint: given a time series ts of length n and a pattern
p, the footprint fpp(ts) of pattern p is a sequence of n
values that identifies all occurrences of pattern p in the
time series ts.

2) Offline step (learning step): Using constraint program-
ming techniques, we analyze input workload traces to extract
relevant features. For each cluster cl i a model m(cl i) is built
after a 3-step analysis of cl i. For each pattern p of interest
and for each input time series ts belonging to the cluster cl i
we proceed as follows:

(1) The number of occurrence of pattern p in the time series
ts is computed.

(2) The footprint fpp(ts) of the pattern p is computed.
(3) Different values for the aggregation of features of pattern

p are computed.

At the end, all the results for all patterns of interest are put
all together. They are analyzed to extract different ranges
of variation for each characteristic. Among these ranges,
we select a subset of relevant ones. Those relevant ranges
constitute the model m(cl i) of the cluster cl i.

Example III.1. Consider a cluster cl containing the three
following times series of length 15 each:

ts_1 = 5 5 4 4 6 3 7 8 9 6 3 3 1 1 1.
ts_2 = 4 3 1 1 4 2 8 5 6 2 6 5 9 8 9.
ts_3 = 3 4 5 6 6 5 6 3 4 4 2 2 7 6 9.

We consider the pattern peak , the feature width of the peak ,
and the aggregations sum and max .

From steps (1) and (2) we obtain the following:

(nb_peak,2,[0,0,0,0,1,0,2,2,2,2,2,2,0,0,0]).
(nb_peak,5,[0,0,0,0,1,0,2,0,3,0,4,0,5,0,0]).
(nb_peak,4,[0,1,1,1,1,0,2,0,3,3,0,0,4,0,0]).

Each line of the form (nb pat , val , fppat(tsi)). gives the
number val of occurrence of the pattern pat in the time series
tsi as well as the footprint fppat(tsi) of the time series tsi
for the pattern pat .

From step (3) we obtain the following set of facts of the
form (aggr feat pat , val , fppat(tsi)), where each fact gives
the value val of the aggregation aggr of different values of
the feature feat for each occurrence of the pattern pat in the
time series tsi .

(max_width_peak,6,[0,0,0,0,1,0,2,2,2,2,2,2,0,0,0]).
(max_width_peak,1,[0,0,0,0,1,0,2,0,3,0,4,0,5,0,0]).
(max_width_peak,4,[0,1,1,1,1,0,2,0,3,3,0,0,4,0,0]).
(sum_width_peak,7,[0,0,0,0,1,0,2,2,2,2,2,2,0,0,0]).
(sum_width_peak,5,[0,0,0,0,1,0,2,0,3,0,4,0,5,0,0]).
(sum_width_peak,8,[0,1,1,1,1,0,2,0,3,3,0,0,4,0,0]).

We next put these results together and we obtain
the following facts where each fact is of the form
range(r , pat , prop,min,max ), where prop is a feature of the
pattern pat . min (resp. max ) is the smallest (resp. largest)
value that the feature prop takes when evaluated wrt each
time series of the cluster cl . Finally r is the range obtained
by subtracting min from max .

range(3, peak,nb_peak,2,5).
range(5, peak,max_width_peak,1,6).
range(3, peak,sum_width_peak,5,8).

The range gives information on the amplitude of variation
of a feature. Thus we can restrict the features of interest for
the model of the cluster by setting a maximum allowed range.

Example III.2. If we set max range = 4 then the model
m(cl) of the cluster cl is:

m(cl) = {
range(3, peak,nb_peak,2,5),
range(3, peak,sum_width_peak,5,8).}

A time series ts is thus compatible with the model m(cl)
of the cluster cl if and only if :
• 2 ≤ nb peak(ts) ≤ 5
• 5 ≤ sum width peak(ts) ≤ 8

3) Online step, prediction step: This section presents how
we use the model built in the offline step to predicts the next
values of a time series at run time.

We first introduce the notion of prefix time series:

Prefix time series Given an index t < n (where n is the
length of a time series) the prefix time series induced by t
(pref (t)) is the time series x0x1 . . . xt which represents the
workload from time 0 to time t. At time t < n, each value xi
(i ∈ [0, t]) is already known.

The prediction is done in three steps. Given a prefix time
series (pref (t)), we first determine to which clusters it may
belong. The second step gives an interval for the potential
values of the prefix time series (pref (t)) at time t+ ε. Finally,
we refine the interval to make the prediction more precise.
(1) First we check the compatibility of the time series ts

with each cluster model m(cl). The time series ts is
compatible with cluster cl i if the value for each charac-
teristic of ts (e.g. number of occurrence of each pattern,
footprint of each pattern, aggregation values) falls in the
corresponding range of the model m(cl i) of cluster cl i.

(2) For each compatible cluster cl, we compute the interval
of potential values at time (t+ ε), and note this interval
by Icl(t + ε). We make the union over the different
compatible clusters and denote it by I(t+ ε).

(3) We reduce the size of the interval I(t + ε). To do this,
we consider the center time series of each compatible
cluster cli and compute the footprint of the patterns
strictly increasing sequence and
strictly decreasing sequence to identify locations
where these patterns occur. We use this information to
reduce the interval I(t+ ε).



4) Evaluation of the constraint programming based model :
For the evaluation of this model, we started from a data-set of
500 real world workload traces times series. We partitioned the
dataset into 5 clusters (using the method presented at Section
III-A) of respective cardinalities 142, 79, 142, 106, and 31. The
model was constructed by learning from 70% of the time series
of each cluster, and the prediction online step were done with
the 30% remaining time series, that we call the test time series.

Those traces are of length 1008 each, meaning that each
hour is represented by 42 time steps. To evaluate the cluster
compatibility part of the prediction and the quality of the
predicted interval, we reduced the resolution of the traces to
one value per hour, that is each hour is represented by one
timestep.

Each series is therefor of length 24 and is associated to a
cluster. For each prefix of length k (with k ∈ [3, 23]) of each
test time series we perform the following benchmarks.
(1) The first benchmark presented in Figure 2 evaluates the

percentage of cases were there is at least one cluster that
is compatible with the prefix time series.
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Fig. 2: Percentage of cases were there is at least one cluster
that is compatible with the prefix time series.

(2) The second benchmark presented in Figure 3 evaluates
the percentage of cases were the actual (k + ε)th value
of a test time series belongs to our predicted interval.
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Fig. 3: Percentage of cases were the actual (k+ ε)th value of
a test time series belongs to the interval I(t+ 1) predicted.

From the curves depicted in Figures 2 and 3, we observe
that the quality of the prediction depends on the cluster
compatibility part of the prediction as both curves have a
similar evolution.

We measure the quality of our prediction using a conven-
tional tool in data analysis, called RMSE that we now recall.

Definition The Root Mean Squared Error is a
standard measure used to evaluate the estimation of
an unknown value. Given a sample of k predictions
pred(1 ), pred(2 ) . . . , pred(k), and the a set of k observed
values val(1 ), val(2 ) . . . , val(k), the RMSE of the prediction
is estimated by :

RMSE =

√
1
k

∑k
i=1

(
pred(k)− val(k)

)2
To compute the RMSE of our prediction using the constraint

programming based model, we considered the center of the
predicted interval I(t + 1) to be the predicted value. Figure
4 presents the RMSE of the prediction for each prefix length
from 3 to 23.
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Fig. 4: Evaluating the RMSE of the prediction.

The average value of the RMSE for all prefix lengths is
about 2800. This is satisfactory since the values of the time
series used for these benchmarks range from 3000 to 29000.
However the quality of the prediction relies on the quality of
the classification of time series into clusters. Meaning that, the
results may go worse if new time series that we fit into the
system are not correctly classified. Since we are building a real
time system, we can not neglect this aspect as new time series
are also classified in real time and there is no new evaluation
of the classification.

To overcome these issues, we elaborated a new model based
on neural networks, the model is presented in Section III-C
and does not need a clustering phase.

C. Neural networks model

Before describing our neural networks model, we recall
some background on artificial neural networks.

1) Background on artificial neural network: An artificial
neural network is a structured and interconnected group of
nodes that reads an input in and computes an output. Figure
5 shows a simple neural network.

The Neural network of Figure 5 is structured as follows :
• One input layer having five nodes.
• One single hidden layer having three nodes.
• One output layer having a single node.
A neural network may have more than one hidden layer,

and the number of nodes of each layer may vary. Each arrow
of the neural network carries a weight w, and each node is
associated with a value b called bias. Further, a neural network
is associated with a function called the activate function.
Figure 6 shows parameters associated with a neural network.
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Fig. 5: A simple neural network.
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Fig. 6: Parameters of a neural network.

Using its weights, biases and activate function, a neu-
ral network computes the output y of a given input x =
(x1, x2 . . . xk) with the formula y = f(

∑k
i=1 wixi + bj),

where wi is the weight of the edge from input i to the node j
of the hidden layer, and bj is the bias of node j of the hidden
layer. This formula assumes that the neural network has one
single hidden layer, but can be adapted to more than one layer.

In general, we denote by W the k by m matrix of weights,
by B the m by 1 matrix of biases, and by X the input vector
of size k. This simplifies the expression to :
y = f(WX +B) (see [15]).
The commonly used activate function is the sigmoid func-

tion σ = 1
e−z where z = WX + B. In all what follows, we

set the activate function f of our network to be the sigmoid
function σ. The learning problem of our network consists in
using the training data to find values for the matrices W and
B in a way that minimizes the cost function C. To solve this
problem, we use the gradient descent algorithm. Next section
presents the gradient descent algorithm.

The gradient descent algorithm: We recall that in a neural
network, the learning problem is to find weights W and biases
B that minimizes a cost function of W and B. In our case
the cost function is the mean squared error function c(W,B).

To find W and B that minimizes the cost function, we use
the gradient descent algorithm [7]. In all what follows, we

consider c to be a function of w and b.
The gradient descent is a step by step algorithm. At the

beginning, w and b are initialized to some values. The initial
values may be chosen randomly. Lets denote w0 and b0 the
values of w and b at step 0. The next step is to update values
of w0 and b0 to w1 and b1 such that c(w1, b1) ≤ c(w0, b0).
The change from c(w0, b0) to c(w1, b1) is ∆c and is given by
the formula ∆c = ∆c

δw∆w + ∆c
δb ∆c.

Let ∆v = (∆w,∆c) and ∇c = (∆c
δw ,

∆c
δb ) be the gradient

of c, we have ∆c = ∇c.∆v.
We need to choose ∆v such that ∆c is negative i.e such

that c decreases.
Let ∆v = −η∇c where η is a positive number, then ∆c =

−η‖∇c‖2. Since‖∇c‖2 and η are positive, then ∆c is negative.
The value η determines how high (or how small) is ∆c, and
is called the learn rate.

Next section presents how we use such a neural network to
learn a model from a set of input time series.

2) Learning time series with a neural network : This
section presents the design of our neural network as well as
how it is trained to predict future values of time series.

The core idea behind the training of a neural network that
predicts future values of time series is to learn a mapping from
a prefix time series to its next value.

Given a set of real data called training inputs of the form
(X = pref (t), a(X)) where pref (t) is a time series of
length t and a(X) is the value of that time series at the
next time step t + 1, the trained network should be able to
predict a value y(X) that is close to a(X). Formally, this
is done by solving a minimization problem. Let C(W,B) =
1

2n

∑
X

∥∥y(X)− a(X)
∥∥2

be a cost function where :
• n is the number of training input.
• W is the weight matrix.
• B the bias matrix.
• y(X) = f(WX + B) is the output of the network with

activate function f given the input X .
The function C is the mean squared error, also known as the
quadratic error function. From its definition, we see that C
becomes small when y(X) tends to a(X). So the objective is
to find values of the matrices W and B that minimizes C.

Since the input to our neural network is a prefix time series,
we designed our network to be compatible with the maximum
length a prefix can take in our application. As we are dealing
with time series of length 24 that represents the daily workload
of a data center, we thus design our network with 24 input
neurons. When we want to feed the network with a prefix
time series of length t < 24, we append −1 to the prefix
to obtain a time series of length 24. Also since we want our
network to predict a single value, we design it to have a single
output neuron.

To compute the gradient ∇c we used the backpropagation
algorithm [1], a commonly used algorithm in machine learn-
ing.

The next section presents the evaluation of our neural
network based prediction model.



3) Evaluation of the neural network based model: For the
evaluation of this model, we used the same data as in the
case of the constraint programming model (Section III-B4).
To train the network, we extract prefixes of length 2 to 23
from each time series of the learning set, and feed the network
with couple comprising those prefixes together with the next
value of the time series. The number of training examples
is therefor increased, since for each time series of length 24,
from the learning set we extract 22 prefixes of length from 2 to
23. The neural network has 24 neurons in the input layer, one
neuron in the output layer and one single hidden layer. The
number of neurons in the hidden layer as well as the learning
rate η were experimentally set to 65 and 0.2 respectively.

0 5 10 15 20 25
Prefix length

1000

1500

2000

2500

3000

RM
SE

 v
al

ue

Fig. 7: Evaluating the RMSE of the prediction with the neural
network model.

Figure 7 presents the RMSE for each prefix length from
3 to 23. With this model, the quality of the prediction is
twice better than the results in the case of the constraint
programming model were the best case RMSE value is above
2000. While the neural network model performs better than
the constraint programming model, Figures 4 and 7, shows
that both prediction models follow the same patterns. The
explanation is that the neural network learns the patterns from
the learning time series. The peaks in the RMSE prediction
curve correspond to time points where there are many possi-
ble candidate patterns. The valleys in the RMSE prediction
curve correspond to time points where the current pattern
of the time series has been identified. When the pattern is
identified, the prediction is more accurate than when it is not
yet identified. This observation remains true for the peaks
and valleys observed in the RMSE prediction curve of the
constraint programming model in Figure 4, that is why both
curves follow the same patterns.

We recall that the purpose of this model is to predict at
real time the workload of the data center. Real time means
that the prediction should be fast enough to be exploited
by the resource optimization heuristic. The time is therefore
a very important parameter to take into consideration when
dealing with such model. We also want to show that our model
scales correctly. To evaluate the scalability of our model,
we increased the resolution of the workload traces, from 24
values per hour to 41 values per hour. These benchmarks were
performed on a computer running Mac OS 10.10.5 Yosemite,
with 16GB of memory and an Intel core i7 processor at 2.93
GHz.
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Fig. 8: Prediction time using the neural network.

From Figure 8, we can see that, with our model, the predic-
tion time is less than 1ms even for time series of 41 values
per hour, that is time series of length 984. This speed is due
to the linear complexity complexity of forward propagation
in a neural network. The number of multiplications needed to
compute the output of the activation function of each neuron
is linear with the number of neuron. The complexity is thus
O(k ∗ 65) = O(k) where k is the number of neuron of the
input layer, in our case, k is the length of the time series.
These result contrasts withe the time needed for the learning
of that same neural network.
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Fig. 9: Time needed to train a neural network

Figure 9 shows that the time needed to train the network
goes above one hour for time series of resolution greater than
35 value per hour, i.e. series of length greater than 875. The
complexity of the back propagation algorithm of our neural
network is linear in the number of training epoch, the number
of training example and the number of neurons. The fact that
the training time may go above an hour is not an issue, since
the training of the neural network is an offline process, where
the time is not constrained.

These results led to Section IV on the use of the constraint
programming model to generate new workload traces.

IV. WORKLOAD GENERATOR

Sections III-B and III-C presented and evaluated two predic-
tion models. On the one hand, the results established that the
model with neural network performs better than the constraint
programming model, and is also well adapted for real time
prediction as it requires no data classification.

On the other hand, the advantage of the constraint program-
ming model is that it learns a set of constraints that character-
izes the time series of each cluster. This very same model can



then be used to generate time series that are compatible with a
given cluster. Real data on server workload are in general not
available in large quantities. Such a generator is very useful
as it can generate as many data as needed. The generated data
have the same patterns as the real workload data from the
learning sets. The two models are thus complementary, as each
one has its strengths. This section describes how new workload
traces are generated in two steps from real workload data set.
The first step builds a constraint satisfaction problem out of
the available real workload traces, while the second step solves
the problem to generate new traces. Before detailing the two
steps, we recall some background on the notion of constraint
satisfaction problem.

A. Background on constraint satisfaction problems

Constraint satisfaction problem A constraint satisfaction
problem (CSP) [18] is a triple P = (X,D,C) where :
• X is an tuple of n > 0 variables, X = 〈x0, x1, . . . , xn〉.
• D is a tuple of n > 0 domains, D = 〈D0, D1, . . . , Dn〉

such that xi ∈ Di.
• C is a tuple of k > 0 constraints C = 〈C0, C1, ..., Ck〉.

We now define the notion of constraint.

Constrain Given a CSP P = (X,D,C), a constraint Ci ∈ C
is a pair 〈Ri, Si〉 where Si is a subset of X and Ri is a
relation over Si. The relation Ri specifies the tuples of values
forbidden among the Cartesian product of the domains of the
variables in Si.

Solution of a CSP Given a CSP P = (X,D,C), a solution
S of P is a tuple 〈v0, v1, ..., vn〉 such that vi ∈ Di and for
every constraint Ci = 〈Ri, Si〉 ∈ C, the relation Ri holds.

We now present how to construct a CSP to generate new
workload traces.

B. Building the constraint satisfaction problem, and generat-
ing new traces

Lets P = (X,D,C) be the CSP that we need to construct
in order to generate new workload traces. We define X,D and
C as follows:
• [The set of variables X] We set the number n of

variables of X to be the length of the real workload
time series from the learning set. In our case n = 24.
i.e X = 〈x0, x1, . . . , x23〉.

• [The set of domains D] Let m be the smallest value taken
by the real workload time series from the learning set, at
any time point; and let M be the largest value taken by
the real workload time series from the learning set, at any
time point. m and M are such that, for any time series ts
of any cluster, and for any index t ≤ 23, the tth value of
ts is included in [m,M ]. D = 〈D0, D1, . . . , D23〉 where
D0 = D1 = · · · = D23 = [m,M ].

• [The set of constraints C] In Section III-B we presented
the construction of a constraint programming model that
captures all the features of the workload traces. We recall
that a model m(cl) of a cluster cl is of the form:
m(cl_i) = {

range(3, peak,nb_peak,2,5),
range(3, peak,sum_width_peak,5,8).}

To facilitate the reading, this model example considers
only two characteristics of a single pattern. From the
model we have the following information:

– All the time series of cluster cl have at least 2 and
at most 5 peaks, thus the amplitude of the range of
variation of the number of peaks is 3.

– When summing the widths of all the peaks occurring
in each time series of cluster cl, we have a value
between 5 and 8.

We translate this information into constraints, our prob-
lem thus comprises two constraints on the whole set of
variables:

– C0 = 〈R0, X〉 with nb peak(R0, 〈x0, x1, . . . , x23〉)
and R0 ∈ [2, 5],

– C1 = 〈R1, X〉
with sum width peak(R1, 〈x0, x1, . . . , x23〉) and
R1 ∈ [5, 8].

Using a constraint programming solver, we find the solu-
tions Si = 〈vi,0, vi,0, ..., vi,23〉 of the CSP C. Each solution Si
is a time series of length 24 that has the same patterns learned
from the real workload traces. The next section presents the
evaluation of the quality of the time series generated by this
model.

C. Evaluation of the CSP-based workload generator

To evaluate the quality of the time series generated, we
ensure that it respects all the properties of the time series
from the learning set. Those properties consist of all the
features learned from the real workload traces. To solve the
CSP model and generate solutions, we use a CSP Solver. For
these benchmarks, we used Sicstus Prolog Solver [8], on a
computer running Mac OS 10.10.5 Yosemite, with 16G0 of
memory and an Intel core i7 processor at 2.93 GHz.

By construction of our CSP model from the learned features,
and by definition of a solution of a CSP, every solution
i.e. every generated time series respects all features that the
model learned from each cluster. We confirmed this theoretical
expectation by checking weather each generated time series of
length from 24 to 984 respects the properties extracted from
the respective learning sets. For each length of time series,
there are at least 40 learned properties, modeled as constraints.

Further, we evaluated the time needed by the CSP to
generate new time series according to the length of the time
series. Figure 10 shows that for any resolution from 1 to 41, the
time needed to generate a time series of corresponding length,
that is of length 24 up to 984 is less than one second. This
good performance is explained by the paradigm of propagation
constraint [6] that is used to solve the CSP model and generate
solutions.

D. Neural network-based workload generator

We also used the neural network to generate time series.
To do so, we start from a small prefix, i.e. a prefix of length
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Fig. 10: Time needed to generate times series from the CSP

3, from every time series from the set of test time series;
we predict the next value and repeat the process until we
obtain a series of desired length. The process is described
in Algorithm 1

Algorithm 1 Generate new time series with the neural network
Li ← Learning set
Ti ← Test set
ni ← Neural network
Si ← set of generated time series
Desired length is N . Each time series is of length N
ni.train(Li) . Train the neural network
for st ∈ Ti do

p← pref(st, 3) . p is the prefix of length 3 of st
while length(p) < N do

y ← n.predict(p) . Predict the next value
p← p

⊕
y . concatenate y to p

end while
Si ← p

end for

As expected, none of the time series generated with the
neural network respects all of the learned characteristics.
Another disadvantage in trying to generate a new time series
with the neural network is that the neural network needs to
start with a non-empty small prefix that it completed to create a
full time series. On the other hand, the CSP model can rapidly
generate full times series from scratch that verify all learned
constraints.

V. CONCLUSION

In this paper, we have proposed two original workload
prediction models for Cloud infrastructures. These two mod-
els, respectively based on constraint programming and neural
networks, focus on predicting the CPU usage of physical
servers in a Cloud data center. The predictions could then
be exploited for designing energy-efficient resource allocation
mechanisms like scheduling heuristics or over-commitment
policies. We also provide an efficient trace generator based on
constraint satisfaction problem and using a small amount of
real traces. Such a generator can overcome availability issues
of extensive real workload traces employed for optimization
heuristics validation. While neural networks exhibit higher
prediction capabilities, constraint programming techniques are

more suitable for trace generation, thus making both tech-
niques complementary. Our future work includes providing
a website to access on-demand datasets produced by our
generator using various real workloads that cannot be made
directly publicly available.
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