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In the transient-based leak detection methods in the time domain, the solution parameter set is determined by minimizing an objective function that fits the numerically modeled pressures to measured pressures. If the measurement is contaminated with noise, then the optimum decision parameters may be some fictitious leaks whose computed pressure head is best matched to the noise not the reflections from leaks. This issue is explained in detail and then a different merit function to decline it, is suggested. It is based on maximizing the signal-to-noise ratio (SNR) which in literature usually termed as Matched Field Processing. This function is then compared with the conventional least square objective function and its efficiency subject to noise is assessed. It was found that the efficiency of each method mostly depends on the variance of noise and the system properties which may change from case to case. More specifically, the proposed merit function is more robust when its optimal variance is smaller than that of the least square cost function.

INTRODUCTION

Intentional excitation of fluid flow in pipe networks and collection of transient pressure data at some points is widely established as a tool for leak detection in fluid-filled pipes [START_REF] Colombo | A selective literature review of transient-based leak detection methods[END_REF]. Many methodologies and tools, such as leak reflection method, inverse transient analysis (ITA), impulse response analysis, transient damping method and frequency domain response analysis have been developed for solving various types of leak detection problems in recent years [START_REF] Colombo | A selective literature review of transient-based leak detection methods[END_REF]. ITA aims at finding properties of the pipe system by means of a transient flow data in the system. In the implementation, the method assumes potential leaks with unknown discharge at computational sections and then minimizes the summation of absolute differences between the measured data and the computational results. First introduced by [START_REF] Liggett | Inverse transient analysis in pipe networks[END_REF], a MOC-based transient solver in conjunction with Levenberge-Marquardt optimization algorithm is employed to minimize the misfits. The methodology proposed in [START_REF] Liggett | Inverse transient analysis in pipe networks[END_REF] has been refined by numerous researchers over the years with particular attention focused on methods for optimization (e.g. [START_REF] Vítkovský | Leak detection and calibration using transients and genetic algorithms[END_REF][START_REF] Kapelan | A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks[END_REF]Jung and Karney 2008;[START_REF] Haghighi | Detection of Leakage Freshwater and Friction Factor Calibration in Drinking Networks Using Central Force Optimization[END_REF] and the hydraulic transient model (e.g. [START_REF] Vítkovský | Inverse analysis and modelling of unsteady pipe flow: Theory, applications, and experimental verification[END_REF][START_REF] Brunone | Detecting leaks in pressurized pipes by means of transients[END_REF][START_REF] Covas | Inverse transient analysis for leak detection and calibration of water pipe systems modelling special dynamic effects[END_REF]. Indeed, the so-called inverse transient analysis demands an accurate mathematical and numerical model which can favorably represent the system behavior. Otherwise, the residuals of the fit are wrongly estimated which finally results in fictitious optimum quantities. To this aim, many works have been conducted to improve the water hammer models so as to decrease modelling errors.

Studies on optimization aspects of the ITA often aim at suggesting efficient algorithms to evaluate gradients [START_REF] Nash | Efficient inverse transient analysis in series pipe systems[END_REF][START_REF] Vítkovský | Inverse analysis and modelling of unsteady pipe flow: Theory, applications, and experimental verification[END_REF]. There are also significant records to address optimal measurement site locations [START_REF] Vítkovský | Optimal measurement site, locations for inverse transient analysis in pipe networks[END_REF] or minimization algorithms [START_REF] Kapelan | A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks[END_REF][START_REF] Haghighi | Detection of Leakage Freshwater and Friction Factor Calibration in Drinking Networks Using Central Force Optimization[END_REF]. Despite that numerous researches have been carried out to improve the ITA for leak detection, still there are several drawbacks which demand more investigations. In fact, any inverse solution should be tested for the presence of data error such as random noise in measurements and uncertain input parameters. Studies dedicated to resolve this reason of possible failure of ITA for leak detection are indeed scanty.

In the leak detection based on ITA, usually there are too many decision parameters because all computational points are treated as potential leaks in the model. A large number of design parameters promote high correlation between the simulated pressures as well as the optimum parameters. As a result, in a noisy environment and when the optimization parameters are too many, the outputs of optimization are no longer unique thus leading to wrong localization. An effective solution to this problem is to limit the number of unknown leak candidates, based on which a penalty function is introduced in the merit function. It is known as model parsimony studied by Vítkovský et al. (2007). Another remedy should be applied to the collected signal to limit the noise effects in the localization. This issue is the purpose of this paper. Based on maximizing the energy of the signal to the energy of the noise, signal-to-noise ratio (SNR), a merit function different than the conventional least square function is applied for the optimization in ITA. In the signal processing literature, this approach is usually termed as matched filter or matched field processing [START_REF] Krim | Two decades of array signal processing research[END_REF]. It is widely used in acoustics for sound source localization [START_REF] Wang | Estimation of multiple sound sources with data and model uncertainties using the EM and evidential EM algorithms[END_REF][START_REF] Tolstoy | Detecting pipe changes via acoustic matched field processing[END_REF]), structural vibration (Turek and Kuperman, 1997;Tippmann and Lanza di Scalea, 2015) and ocean engineering [START_REF] Baggeroer | An overview of matched field methods in ocean acoustics[END_REF]) by matching the modeled and measured signals or blockage detection in sewer pipes by correlations between measurements [START_REF] Tolstoy | Waveguide monitoring (such as sewer pipes or ocean zones) via matched field processing[END_REF].

In this research, the merit function based on matched field processing is incorporated for localization in ITA. It is then compared with the least square norm to investigate its efficiency in detections when the measured signal is contaminated with noise. It is found that the two merit functions arrive at different results when the noise level is high (very low SNR). A criterion regarding the priority of each one for detection based on their optimal variance is provided and discussed. It was concluded that for high noise levels, an improved methodology regarding the choice of the two cost functions can lead to more reliable localizations.

MOTIVATION

In the time-domain based inverse transient analysis, all computational points are treated as potential leaks. An optimization tool is then applied to solve for effective leak areas. Traditionally, the least square fit between measurements and computed heads is utilized as the merit function to find the optimum leak sizes.

A noise-free signal contains a substantial amount of information which are manifested by the wave reflections from pipe system boundaries including anomalies. In the presence of noise, these reflections are contaminated so that the results of the model are not precisely matched to the measured data. It means that the misfit quantity coincides to the estimated variance of noise for the actual leak parameters. However, some issues can lead the detection procedure to wrong leak parameters and overfitting to measurements. In other words, the global minimum is displaced and it is no longer at the actual leak parameters or at least it is not the unique global extremum. These issues are basically driven by the misfit function variables being either the computed head or measure data. Adding too many parameters to the ITA promotes high correlations between computed signals and makes the inverse problem non-unique. This issue which stems from assuming all nodes as potential leaks (too many parameters) in ITA is more pronounced when the measurement contains noise.

The problem is more illustrated by Fig. 1 while a noisy signal (white noise) with SNR = 0 dB in Fig. 1 (a) is applied for leak localization. Typical result from an ITA are presented in Fig. 1 (b) in which the actual and predicted leak size and locations are represented by red and blue bars respectively. Fig. 1 (c) shows the optimization iterations when the starting point (initial guess) is the actual leak parameters. As seen, a set of wrong leak locations and sizes are detected. In this case, the averaged misfit square is less than the noise variance. In fact the method tries to find fictitious leaks to match to the white noise. As a result, the global minimum of the least square fit between measured and computed signal is displaced and it corresponds to another set of leaks which differ with the actual one both in location and size. Note that this is an example with no modeling error with only leak parameters (effective leak area at each node) as decision variables of optimization. When too many decision variables are incorporated (e.g. friction factor, viscoelastic and unsteady friction coefficients, etc.) the noise effect in the localization becomes more problematic and thus the detection gets remarkably inaccurate. The aim of this analysis is to find the properties of the pipe system, particularly leak parameters herein. The leak areas at each node are considered as decision variables of an objective function to be minimized subject to water hammer equations. In fact this leakage detection method is based on several forward and adjoint water hammer analyses which are directed by an optimization scheme. Firstly, the forward leakage problem in case of plain waterhammer waves is explained. Next, the optimization procedure and a new merit function for leak detection in a noisy environment is discussed. Finally, the approach of the adjoint problem is employed in the optimization procedure to efficiently find the gradients of the objective function with respect to the desired parameters.

Mathematical model and numerical solution

Two equations of mass and momentum conservation govern transient flows in pressurized pipes. The classical water hammer theory which assumes that pressure is constant over the flow cross section is used herein. Additionally, an averaged velocity is applied in the momentum and continuity equations, allowing for a one-dimensional representation of water hammer equations. The Method of Characteristics (MOC) is used to solve the governing equations. Using this method, the two equations are transformed to two algebraic equations which are valid on characteristic lines. These equations in conjunction with the leakage orifice relation are solved simultaneously for flow rate at either sides of each node as well as the pressure head. All significant effects including unsteady friction and viscoelasticity can efficiently be incorporated into the resulting characteristics equations [START_REF] Keramat | Waterhammer with column separation, fluid-structure interaction and unsteady friction in a viscoelastic pipe[END_REF]. This allows for the incorporation of a precise water hammer solver which in turn leads to reducing the modelling errors in the detection procedure. During transient flow, leaks are modelled using the orifice formula. The effective leak coefficient (Ae = Cd AL) is assumed to remain as that of steady state, though this is a controversial assumption and could be the source of significant flaw in the simulation. The orifice relation gives
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where Qi is the flow rate of leak i (see Fig. 2) and Q1i and Q2i stand for its upstream and downstream discharge respectively; superscript n stands for time steps and no-superscript indicates steady state.

Figure 2. Schematic of a reservoir-pipe-valve system with multi-leaks to be used for ITA.

Optimization

The nonlinear constrained optimization using a build-in MATLAB function called "fmincon" is carried out. Among several algorithms of this function, the Sequential Quadratic Programming (SQP) is employed. This method was also applied by [START_REF] Shamloo | Leak detection in pipelines by inverse backward transient analysis[END_REF] for the leak detection. It is demonstrated to be efficient in constrained optimization with nonlinear objective and constraint functions. SQP methods solve a sequence of optimization sub-problems, each of which optimizes a quadratic model. The solution involves major and minor iterations. Major iterations generate a sequence of iterations that satisfy linear constraints. Iterations converge to a point satisfying the first-order conditions for optimality. At each iteration, a Quadratic Programming (QP) subsystem is used to generate a search direction toward the next iteration. Solution of the QP subsystem is itself an iterative procedure, with minor iterations of a SQP method being iterations of the QP method [START_REF] Barcelay | SQP methods for large-scale optimization[END_REF]. This procedure is performed by existing MATLAB function. The required gradient vector of the objective functions is calculated using the adjoint solution of waterhammer equations and are fed to the optimizing solver.

Maximum Signal to Noise ratio

In the inverse transient analysis, the pipe parameters (leak area, friction factors, wave speeds, etc.) are fitted in the way that the model outputs h(t) become as close as possible to the measured pressures h m (t). The observed pressures are usually far from the corresponding model simulations due to either data error such as poor measurement instrumentations and calibration, or modelling errors such as inconsistent boundary conditions or incomplete mathematical modelling of the physical phenomena. As a result, the inverse transient analysis
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Reservoir Valve cannot precisely determine the system specifications unless appropriate mathematical or statistical operations are performed in conjunction with each nature of discrepancies.

The following objective function minimizes the difference between the model results and the measurements:
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that is in fact the integration of misfit quantities over all time sections in 0 tT  , where T represents the last collected time. This least square criterion is derived from maximum likelihood estimators. Another merit function can be defined using the measured and computed heads. It can be achieved by finding a filtering function based on computed heads such that it maximizes the energy of the signal. This filter in fact adjusts the measured heads by increasing the reflections from actual leaks and decreasing noise energy. The convolution integral of a unit weight function   Wt with the measured time series   m ht at the last time point T is calculated to this aim:
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where n(t) represents a zero mean white noise and W is assumed to be a unit vector, i.e. 1 W  , to obtain a non-trivial solution. To find the most efficient filtering function, the energy of the signal divided by the expected value of the noise energy, which is defined by signal-to-noise ratio (SNR), should be maximized. Considering Schwarz's inequality, the energy of the signal at each time t is upper bounded by
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Noise is random and assumed to be independent at different time steps so the denominator of SNR (energy of the noise) is simplified to
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in which  stands for the standard deviation of the noise. As a result, the SNR reduces to
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In this inequality as well as (4), the function h(s) is deterministic for the specified system properties (leaks specifically), so equality condition corresponds to the maximum value of the energy of the filtered signal. 
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This objective function should be maximized to find the best leak parameters which correspond to the highest filtered energy of the measured signal to the noise. It is called matched filter or Matched Field Processing (MFP) in the signal processing literature [START_REF] Krim | Two decades of array signal processing research[END_REF].

Discuss merit functions

Both objective functions (2) and ( 7) in a noise-free condition arrive at a known global extremum being zero and 2 h , respectively. In a noisy environment, the global extremum may be displaced thus leading to wrong localization. To study the robustness of the two merit functions, a statistical analysis is performed. The variance of the two random functions (2) and ( 7) is estimated to this aim. Assuming that the mean value of measured head is equal to the computed head, the variance of Eq. (2) becomes
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in which N is the number of time sections of computed head and m h  is the variance of measured head. For Eq. ( 7) it yields
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Basically, a smaller variance for the cost function corresponds to a better localization because it is then less sensitive to the random noise. As seen, both variances depend on numerical simulations (due to N and h ) and the noise properties. For a fair comparison between the two, these values should first be found and then appropriate cost function is chosen. In Eq. ( 9), the norm of the computed head corresponding to the actual leaks 2 h cannot be found in real experiments because it depends on leak parameters. As a result, general conclusion regarding the two merit functions cannot be made. However, it is demonstrated in this study that when the quantity of ( 9) is smaller than (8), on average, the detection based on matched field processing is more robust, and vice versa.

Adjoint method

It corresponds to define a different problem in which the misfit function has the same gradients with respect to the design parameters as the forward problem. It can be favourably illustrated in its discrete form where the governing equations are discretised and set to a matrix-form representation to solve for the state variables. Therefore, the simultaneous system of equations over the entire spatial and transient period is Mx = R (10) in which M, R and x are respectively coefficient matrix, right-hand-side vector and vector of state variables containing the unknown heads and flow rates at all time and space sections. The procedure of generating the matrix relation ( 10) from the characteristics equations is explained by [START_REF] Liggett | Inverse transient analysis in pipe networks[END_REF]. This matrixrepresentation of the compatibility equations can also be prepared at each time step, but for all computational nodes making analogous simultaneous equations to Eq. ( 10). This approach, termed as implicit method of characteristics, also explained by [START_REF] Afshar | Water hammer simulation by implicit method of characteristic[END_REF], [START_REF] Rohani | Simulation of transient flow caused by pump failure: Point-Implicit Method of Characteristics[END_REF] and most recently, by [START_REF] Wang | Water Hammer Simulation Using Explicit-Implicit Coupling Methods[END_REF]. As in general, the equations are nonlinear, this matrix relation (10) shows the linearized form so matrix M and vector R contain terms of state variables which are updated through iterations. As a result, the transient solver iterates (three to five times) to converge to the solution. The derivative of the objective function with respect to the decision parameters j b (lumped leak coefficients or friction factors) is called gradient vector. Each elements of this vector is represented by
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The direct calculation of / j b  x by the divided difference method is inefficient because it requires calling the solver for each j b derivative computation. Eq. ( 10) can be used to find each column of the Jacobian matrix   /  xb analytically, as follows: 11) results in:
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The desired adjoint matrix equation ( 14) is made with regard to the coefficient of the second bracket in Eq. ( 13):
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where ψ contains the adjont variables to state variables x and remains identical when calculating all elements of the gradient vector. It therefore needs to be calculated only once for all bj parameters. Having found the adjoint vector and considering Eq. ( 13), each elements of the gradient vector is given from Eq. ( 15):
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Another approach based on Lagrange multiplier to find this adjoint equations can be found which leads to the same relations. To find the Hessian matrix, the Jacobian matrix is needed. The elements of this matrix can be found using the same procedure as presented above but now, the objective function E is defined as one variable at one specific time point (Vitkovsky 2001;[START_REF] Liggett | Inverse transient analysis in pipe networks[END_REF].

NUMERICAL RESULTS

A reservoir-pipe-valve system is considered to investigate the leak detection method using the explained inverse transient analysis. In order to verify the primary results, the system characteristics of the experimental apparatus in the Robin Hydraulics Laboratory in the School of Civil and Environmental Engineering at the University of Adelaide [START_REF] Bergant | Water hammer and column separation measurements in an experimental apparatus[END_REF]) are adopted to run the numerical tests. Details of this system are provided in Table 1. Considering Eqs. ( 8) and ( 9), two leak cases according to Table 2 are defined to see the robustness of the two merit functions in each case. The two cases are discriminated by their variance given by Eqs. ( 8) and ( 9). In the leak case 1, merit function E1 has lower variance and for the leak case 2, cost function E2 has less variance.

General specification of the reservoir-pipe-valve system Details of leaks used for the ITA and corresponding leak-induced pressure head reflection and variances of each merit function.

Cd AL (m 2 ) 1 2 2 4 4 2 (m ), SNR=-5,0,5 m E h N    2 2 2 4 2 4 2 4 (m ), SNR=-5,0,5 m m E h h     h Leak case 1 7 2 10   2×10 4 , 2×10 3 , 2×10 2 1×10 5 , 4×10 4 , 1×10 4
Leak case 2 6 3 10   5×10 8 , 5×10 7 , 5×10 6 8×10 6 , 2×10 6 , 8×10 5

Based on the data provided in Tables 1 and2, the forward problem is solved to find the pressure head at the valve h(t). A Gaussian white noise with zero-mean unit variance represented by a random variable n(t) was used to hypothetically generate the "measured" data indicated by superscript "m"
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In this relation, SNR (dB) is a given number which depends on the system instrumentation and collected experimental data and  is the variance of the noise. One can deduce that this pressure reduction is almost proportional to the leak size using the provided analytical formula by [START_REF] Vítkovský | Inverse analysis and modelling of unsteady pipe flow: Theory, applications, and experimental verification[END_REF]. This way of numerically generating noisy pressure signal allows for having higher noise corresponding to higher leakage size, therefore it roughly makes the noise-level investigations independent from the leakage size.

In order to estimate the efficiency of each merit function subject to noise, an error estimation criteria may be defined:

1 ˆLL XX L    (17)
in which L is the pipe length, L X is the leak location, ˆL X is the estimated leak location which corresponds to the node with maximum effective area obtained from optimization. This criterion does not take the detected leakage size into account because usually it is less critical for clients. Another criterion as follows may be used which takes both leak size and location into account in order to theoretically compare the two merit functions.
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In this relation, Ae is the actual leak size and Aei, i =1 ... N, is the detected efficient area for each computational point and N is the number of MOC nodes.

Leak case 1

Considering the problem stated in section 2, the proposed and the conventional merit functions are compared. To this aim, a number of 0-SNR signals are used for localization with the two cost functions in ITA. To make a general conclusion, the detection procedure was repeated for 10 different measurements at the valve contaminated by white noise. The result is then averaged and presented in Fig. 3 for the two merit functions. The results of this figure show that the two cost function behave almost similar. In fact according to Eq. ( 18 To further investigate the two cost functions, the detection is repeated for 60 times and the error of each run is evaluated according to Eq. ( 17). Fig. 5 shows the results for four different SNR. It demonstrates that the two merit functions differ only at low values of SNR and they behave in the same manner for SNR higher than 5. These results are in agreement with the theoretical conclusion which was made based on the variance of the two cost functions. Since the least square function have lower variance, the localization using this cost function is better off. 17) for 60 simulations with different SNR.

Leak case 2

A similar investigation to the previous section but now with another leak is made. Fig. 5 is the averaged results of 10 runs for 0 dB signals and Fig. 6 is the averaged results of for -5 dB noisy signals. Errors evaluated using Eq. ( 18) for the matched field and least square merit functions, respectively are: for SNR=-5 dB (Fig. 6). The comparison reveals that for this leak case, the matched field cost function is definitely preferred since its ptimal variance is smaller than that of the least square function (Table 2). The error analysis based on Eq. ( 17) is carried out for 60 simulations in order to compare the two metrics in leak localization. The mean and 95% confidence interval of error for each SNR is presented in Fig. 7. The conclusion regarding the excellence of the proposed merit function for very low SNR is confirmed. For the reason that the variance of the matched field merit function is lower, the average error in localization is less and it is more robust than the least square function.

Figure 7. The mean and 95% confidence interval of localization error evaluated using Eq. ( 17) for 60 simulations with different SNR.

CONCLUSIONS

The leak detection based on the ITA in the time domain when measured data are contaminated with a white noise is addressed. The problem of non-uniqueness and overfitting which stems from having too many decision variables (MOC nodes as leak candidates) arises when measured signal is noisy. It is more significant under high levels of noise or equivalently in systems with very small leaks which have reflection amplitudes of the same order or smaller than noise standard deviation. The analysis based on maximizing signal-to-noise ratio which is largely stablished as a successful signal processing technique is carried out. The idea is equivalent to the matched filter or Matched Field Processing (MFP) which involve correlations between measured and modeled signals. It was led to a new merit function for the ITA leak detection method instead of the conventional least square criterion. The two possible merit functions are proved to have the same global extremum for localizations using noise-free measurements. The least square function has zero global minimum and the matched field function has global maximum equal to L 2 norm of the signal. These two extremum occur when the modeled and noise-free measured signals coincide. In a noisy environment when the non-uniqueness problem in the ITA becomes a significant issue, the two objective functions behave differently. It was found in this research that the optimal variances of the two cost functions are the distinguishing parameters to decide for the selection of each function for leakage detection.

The merit function with lower variance was more robust for localization. This finding is closely investigated by calculating the variances of the two merit functions for two case problems. The numerical examples are solved and on the basis of a detection-error criterion, the preference of each one to the other is demonstrated.

The incorporation of the matched field merit function in the ITA can lead to an improved localization procedure in a noisy environment. The two merit functions are used for localization with a given measured signal (probably the average of several measurements at a location). If then they arrive at different solution, that of the cost function with lower optimal variance is supposed to be more reliable. Note that a classical solution for the raised non-uniqueness or overfitting problem is to use model parsimony, which favors a lower number of leak candidates. The proposed matched field cost function can still be used with model parsimony. The two cost functions can be applied to enumerate the domain and achieve a more reliable result. Under high noise levels, they may reach to different solutions. Discussions regarding the preferred localization can be valid herein.
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 1 Figure 1. (a): noisy pressure head with 0-SNR (blue) and best computed fit (red). (b) the actual (red) and detected (blue) leak parameters (location and size). (c): The convergence curve of optimization iterations.

  the first reflection in pressure due to the leak (a step pressure drop) and m h

  equal to -5 but now the average of 30 runs are shown in Fig. 4. Then the evaluated errors according to Eq. (18it demonstrates similar localization though with slightly different sizes.

Figure 3 .

 3 Figure 3. The actual (red) and detected (blue) leak parameters (location and size) for the two merit functions. The results are the average of 10 measurements, each with SNR=0 dB.
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 4 Figure 4. The actual (red) and averaged detected (blue) leak parameters (location and size) for the two merit functions. The results are the average of 30 measurements, each with SNR=-5 dB.
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 4 Figure4. The mean and 95% confidence interval of localization error evaluated using Eq. (17) for 60 simulations with different SNR.
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 5 Figure 5. The actual (red) and detected (blue) leak parameters (location and size) for the two merit functions. The results are the average of 10 measurements, each with SNR=0 dB.
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 6 Figure6. The actual (red) and averaged detected (blue) leak parameters (location and size) for the two merit functions. The results are the average of 30 measurements, each with SNR=-5 dB.