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In this work, we make some Python simulations of the modular properties of associated Stirling numbers in order to illustrate our previous results and to make new conjectures.

Introduction

The associated Stirling numbers of first and second kind at order r, respectively noted {d r (n, k)} n,k∈N and {s r (n, k)} n,k∈N , verify the following relations [START_REF] Comtet | Analyse combinatoire[END_REF] :

d r (n, k) = (n -1)d r (n -1, k) + (n -1) r-1 d r (n -r, k -1) s r (n, k) = k.s r (n -1, k) + n -1 r -1 s r (n -r, k -1)
In [START_REF] Ben Letaïef | All Associated Stirling Numbers are Arithmetical Triangles[END_REF], we defined σ r and π r as the arithmetical triangles, respectively {D r (m, k)} m,k∈N and {S r (m, k)} m,k∈N , obtained from the application (r -1) times of the following linear geometrical transformation R (defined in the space of numerical sequences s with two integer variables n et k) to the associated Stirling numbers of first and second kind at order r :

R : s(n, k) → R(s(n, k)) = s(n + k -1, k)
Then, by definition :

D r (m, k) = R r-1 (d r )(n -(r -1)(k -1), k) = d r (n, k) S r (m, k) = R r-1 (s r )(n -(r -1)(k -1), k) = s r (n, k) with m = n -(r -1)(k -1).
This elastic transformation R was assimilated to a 'rotation', compacting the associated Stirling numbers from their usual 'dilated' staircase structures into arithmetical triangles t verifying the general relation :

t(i, j) = g(i, j)t(i -1, j -1) + h(i, j)t(i -1, j)
Then, in [START_REF] Ben Letaïef | Two Types of Rotations in Associated Stirling Numbers[END_REF] [3], modular properties in geometrical form have been obtained for σ r and π r and their corresponding associated Stirling numbers. In the current work, our purpose will be more experimental as we are going to numerically simulate some of those interesting and fundamentally visual properties but also try to infer new ones.

The computer program in Python

Here, we use a Python code written by us for the simulation of π r modulo n for different values of r and n. It will show the modular behaviour we already proved in [START_REF] Ben Letaïef | All Associated Stirling Numbers are Arithmetical Triangles[END_REF] [2] [3] when r varies. As for the notations, the '0' are the elements of π r divisible by n, whereas the '1' (or sometimes '*') are non divisible by n. The main geometrical lines defined in our theorems are put in red colour. Those examples visually show the modular rotations with increasing r. We have privileged Python language in our programming because of its power to handle very large integers. The following code, which provides LaTeX files of π r , was implemented under Cygwin. It can be easily generalized to the simulation of σ r . 

[i].append(prod//fact * T[i-1][j-1] + (j+1) * T[i-1][j]) T[i].append(0) # initialization for T[i][i+1]=0
# one can use this program for calculating sigma_r: # just do not calculate fact=r! and replace the top line # with: T

[i].append(prod * T[i-1][j-1] + (j+1) * T[i-1][j]).
# Computation in loop modulo n of the terms of the triangle # the '0' are the terms divisible by n # the '1' are the others for i in range(0,h):

for j in range(0,i+1): if T[i][j]%n==0: # terms divisible by n are represented in blue "0" (red "0" on the diagonal):

if i+(r-1) * j==n-r: # diagonal associated with n T[i][j]='\\textcolor{'+ str('red') + '}{'+ str('0') + '}' else:

T[i][j]='\\textcolor{'+ str('blue') + '}{'+ str('0') + '}' else: # terms non divisible by n symbolized by green "1" (red "1" on the diagonal):

T[i][j]='\\textcolor{' + str('green') + '}{'+ str('1') + '}'

# red asymptote associated with n while its terms are not divisible by n: if i-j==n-r and T[i][j]=='\\textcolor{'+str('green')+'}{'+str('1')+'}':

T[i][j]='\\textcolor{' + str('red') + '}{' + str('1') + '}'
# the centre of rotation of the line associated with n may be noted " * ": T[n-r][0]='\\textcolor{' + str('red') + '}{'+ str(' * ') + '}' f=open('r='+str(r)+','+'n='+str(n)+'.tex','w') # opening of the recording file of the results: f.write("$") # writing of the text in LaTeX and of the computation constants: f.write("\pi") f.write("_") f.write("{") f.write(str(r)) f.write("}") f.write("$") f.write("\n") f.write("modulo ") f.write("$") f.write(str(n)) f.write("$") f.write('\\\\\n') f.write('\\\\\n') for i in range(0,h): # display of the triangle ch="" for j in range(0,i+1):

ch+="" + str(T[i][j]) ch=ch+ "\\\\\n" f.write(ch) f.close() # closing of the file 2 Variation of n at r fixed Here, we fix r = 2 and make n vary to study π 2 modulo n. First, let's remind that if n is a prime number, we proved in [START_REF] Ben Letaïef | Two Types of Rotations in Associated Stirling Numbers[END_REF] that :

S r (m, k) ≡ 0 [n]
for all S r (m, k) belonging to the modular angle associated to n, A r (n), which is the whole of the elements of π r ranging in the area between δ r (n) and ρ r (n), except δ r (n) (see Figure 0 below for the case r = 3). As a reminder, ρ r (n) is the line in π r associated with a natural integer n -such that the coordinates (m, k) of each term in this line verify m = n -(r -1)(k -1) -and δ r (n) the line which forms an angle of -π 4 with the horizontal. The algebraic value of the modular angle is :

α = π 4 + arctan(r -1) [2]. Figure 0 : r=3 ρ r (n) α A r (n) δ r (n)
This property was shown invertible in [START_REF] Ben Letaïef | A Disturbing Combination of Geometrical and Modular Rotations in the World of Arithmetic[END_REF], provided that n ∧ (r -1)! = 1, and generalizable to σ r with a few properties. Let's move on to the simulations. The triangles show different patterns according to whether n is prime (Figures 1,3) or not (Figures 2,4). Zeros regions are much denser for n prime. Besides, the associated lines to n contain very few or none 'zeros' if n is not prime, and all 'zeros' (excepted the 'centre of rotation') otherwise. This is confirmed in Figures 5,6,7.

We see clearly in such examples the arithmetical behaviour of π 2 according to whether n is a prime or not : in the affirmative case, patterns are very different from those of the so-called Pascal triangle or the Stirling triangles of first and second kind. Indeed, for r ≥ 2, modular properties of π r and σ r are no longer concentrated on the horizontal lines like in the last triangles but make modular rotations of angle arctan(r -1) ( [START_REF] Ben Letaïef | A Disturbing Combination of Geometrical and Modular Rotations in the World of Arithmetic[END_REF]).

Then, one observes in the figures above new modular properties compared to our previous results in [START_REF] Ben Letaïef | All Associated Stirling Numbers are Arithmetical Triangles[END_REF] [2] [3] : for n prime only, the geometrical patterns of π 2 , or modular angles, seem to be repeated every n lines by shifting one column to the right. This phenomenon is also observable in π r and σ r for r > 2 (see below).

Variation of r at n fixed

Here, we fix n = 17. The initial case r = 1 is similar to the "Pascal's triangle" modulo n prime (the associated line to n is simply horizontal). Then, Figures 8 to 11 show again the expected rotation of the line associated with n as a function of r and its modular "scanning" of the triangle π r . Let's make here some "zooms" for π r modulo 17 when r varies : As clearly remarkable in those magnifications (Figures 16 to 23), the line (and a fortiori the modular angle) associated to n prime tends to disappear with r increasing, which can be understood in a combinatorial way : as r increases, one can find less and less k-partitions with classes of more than r elements in a set of cardinal n, which implies the limit towards zero with r of each term of π r . This property looks interesting given that the number and size of the required π r terms to characterize their associated prime number n (see theorem above) is decreasing with r.

Besides, we observe like a "cyclical" behaviour in terms of r of the congruence properties of π r modulo n : in Figure 12, for n = r = 17, the appearance of π 17 is very singular in that most "zeros" disappear. On the other hand, in Figures 13, 14, 15, one notes that π 18 modulo 17 suddenly 'finds' its zeros (although in a quite different way from π 1 modulo 17) and a modular sweep resumes when r increases, here for r = 18 to 20. Anyway, even isolated zeros seem to adopt this cyclical behaviour in general.

The same phenomenon recurs for other n, according to the following Figures 24, 25, 26, 27 : 

Conclusion

Thanks to those simulations, new phenomena in associated Stirling numbers have been observed, in particular cyclical behaviours of π r and σ r modulo n for r ≥ n and repeated modular patterns (or angles) along with n. Once proved, such results should be transferred, like we did in [START_REF] Ben Letaïef | A Disturbing Combination of Geometrical and Modular Rotations in the World of Arithmetic[END_REF], to the associated Stirling numbers in the classical 'staircase' form as we find them in the whole literature, i.e. s r (n, k) and d r (n, k), ∀n, k ∈ N.

Besides, there remain some exciting open questions inspired by this work. For example :

-Could we find new arithmetical structures with more varied modular angles than defined above, that is to say for any rational, non-positive or even real values of r ? -To which extent would it be possible to describe the modular properties of π r and σ r (or other similar triangles) in terms of "geometrical" properties only : rotations, translations, asymptotic limits ?

-Are there other arithmetical triangles than π r and σ r or any general structure which have the same kind of modular properties distinct from their geometrical transformations ?

#

  Program of calculation modulo n of the triangle pi_r (or sigma_r) r=input('order r= ') n=input('modulo n= ') h = input('number of lines of the triangle= ') # initialization of the triangle T=[[1,0]] # Loop for calculating the triangle as a list for i in range(1,h): T.append([1]) # initialization for T[i][0]=1 for j in range(1,i+1): prod=1 fact=1 for k in range(1,r): prod=(i+(r-1) * j+ k) * prod fact=k * fact # calculating the factorial of r # use of the recurrence relation of the triangle: T
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This would be the object of future papers.
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