
HAL Id: hal-01578301
https://hal.science/hal-01578301v1

Submitted on 29 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some Computational Limits of Trellis Automata
Véronique Terrier

To cite this version:
Véronique Terrier. Some Computational Limits of Trellis Automata. 23th International Workshop on
Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2017, Milan, Italy. pp.176-186,
�10.1007/978-3-319-58631-1_14�. �hal-01578301�

https://hal.science/hal-01578301v1
https://hal.archives-ouvertes.fr

Some computational limits of trellis automata

Véronique Terrier

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC
14000 Caen, France

veronique.terrier@unicaen.fr

Abstract. We investigate some computational limits of trellis automata.
Reusing a counting argument introduced in [4], we show that:

{x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb} for i = 1, . . . , n}

is not a trellis language.

1 Introduction

Trellis automata are one of the simplest parallel language recognizer. Introduced
by Dyer [3], as real-time one-way bounded cellular automata, they represent
a significant class of formal languages with low complexity. Notably, they are
equivalent to the linear conjunctive grammars [5]. In spite of their simplicity,
they have a rich computational ability and recognize various languages. In this
regard, the linear context free, the visible pushdown, the poly-slender context
free languages are known to be all recognized by trellis automata [2, 6, 8, 1, 11].

On the other side, some limits are known. Trellis automata are not closed
under concatenation and do not contain all (and even deterministic) context-free
languages. To support these claims, several languages have been shown not to
be trellis languages [9, 10, 8]:

– the context free language L1L1 square of L1 = {1k0u10k : k > 0, u ∈ {0, 1}∗}
– the language {uvu : u, v ∈ {0, 1}∗, |u| > 1},
– the deterministic context free (and LL(1)) language
{cmal0bal1b · · · almb · · · alzbdn : m,n, li ≥ 0, z ≥ 1, lm = n}.

The proofs rely on counting arguments which set conditions on the structure of
trellis languages.

Here we will reuse another counting argument introduced in [4] in the context
of functional computation, which demonstrated that the reverse operation is not
realizable in minimal time on cellular automata. This argument will allow to
exhibit some new prerequisite for a language to be recognized by trellis automata.
As an application, we will prove that the language

{x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb} for i = 1, . . . , n}

is not a trellis language.

The paper is organized as follow. Section 2 recalls the basic definitions about
trellis automata. Section 3 describes the notion of language factors diagram
which can be interpreted as the language counterpart of trellis computation.
Section 4 considers the patterns which may occur in the trellis computation
and the ones which may occur in the factors diagrams, and also their correla-
tion. Section 5 states a necessary condition regarding the patterns for a lan-
guage to be recognizable by trellis automata. Section 6 shows that the language
{x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb} for i = 1, . . . , n} does not fulfill such a
condition.

2 Trellis automaton

A trellis automaton is one of the simplest parallel language recognizer. Its un-
derlying structure is a triangular array with sites arranged in staggered rows, as
shown below.

x1 x2 x3 x4 x5 x6

the result is read on the topmost site

the input is fed to the bottom row

A trellis automaton on an input of size 6

Formally, a trellis automaton is specified by a tuple (Q,Σ,Qacc, δ) where

– Q is the finite set of states
– Σ ⊂ Q is the input alphabet
– Qacc ⊂ Q is the set of accepting states
– δ : Q2 → Q is the transition function

If n is the length of w, the trellis has height n and contains on its i-th row, the
n+ 1− i values

δ(x1 . . . xi), δ(x2 . . . x1+i), . . . , δ(xn+1−i . . . xn)

A trellis automaton is said to accept (resp. reject) a word w ∈ Σ∗, if on input
w the topmost cell enters an accepting (resp. non-accepting) state.

Definition 1 (Trellis language). A language L over an alphabet Σ is a trel-
lis language if there exists some trellis automaton (Q,Σ,Qacc, δ) which accepts
exactly the words w ∈ L.

Example 1. The trellis automaton ({a, b, c}, {a, b}, {a}, δ) accepts the set of strings
of odd length whose middle symbol is a: Mia = {uav : u, v ∈ {a, b}∗ and |u| =
|v|}

a a b a b b a b a a b b
c b c b b c b c c b b
a b a b b a b a a b

b c b b c b c c b
b a b b a b a a
c b b c b c c
a b b a b a

b b c b c
b b a b
b c b
b a
c

Computation on input w = aababbabaababb

The transition function δ:

a b c

a c b
b c b b
c a a

The accepting state a marks the topmost cell of every triangle whose basis is a
factor in Mia.

Example 2. The trellis automaton ({a, b, d, r}, {a, b}, {d}, δ) recognizes the set
of Dyck words over {a, b}

a a b a b b a b a a b b
a d r d b r d r a d b
a a b b r b a r a b
a d b r b r a r d
a b r b r r a b
d r b r r r d
a b r r r b
d r r r b
a r r b
a r b
a b
d

Computation on input w = aababbabaababb

The transition function δ:

a b d r

a a d a a
b r b r
d b a
r r b b r

The accepting state d marks the Dyck words, a marks the proper prefixes of
Dyck words, b marks the proper suffixes of Dyck words, r marks all the other
words.

A fundamental feature of trellis automata has been noticed by Čuĺık:

Property 1 (Outside-context independance [1]). The computation of any word
contains the computations of all its factors.

As it can be seen in Example 1 or 2, the automaton which tests the input w
processes together all its factors.

3 Factors diagram for a language

As a matter of fact, Property 1 has strong implications on the structure of
languages recognized by trellis automata. To make them explicit, let us first
introduce the language counterpart of trellis computation.

Definition 2 (Factors diagram). Let L be a language on an alphabet Σ.

The indicator function of L, noted 1L, is defined by

1L : Σ∗ → {0, 1}

w →
{

1 if w ∈ L
0 if w /∈ L

Let w = x1 . . . xn be a word. The factors diagram of w for the language L,
denoted ΓL(w), is a triangular array which records the values of all slices of w.
If n is the length of w, the factors diagram has height n and contains on its i-th
row, the n+ 1− i values

1L(x1 . . . xi),1L(x2 . . . x1+i), . . . ,1L(xn+1−i . . . xn)

a a b a b b a b a a b b

1 1 0 1 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1
0 0 0 0 0 0 0
1 0 0 1 0 1
0 0 0 0 0
0 0 1 0
0 0 0
0 1
0

(a) ΓMia(w) for Mia, the language of words
with a in the middle

a a b a b b a b a a b b

0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
1 0 0 0 0 0 1
0 0 0 0 0 0
1 0 0 0 0
0 0 0 0
0 0 0
0 0
1

(b) ΓDyck(w) for the Dyck language

Fig. 1: Factors diagram ΓL(w) on word w = aababbabaababb for the language L

Example 3. Looking at Examples 1 and 2 where the automata evolutions on the
same string are drawn, we observe that the above factors diagrams are simply
projections of these automata computations. Indeed, a trellis automaton which
recognizes a language L, must enter accepting states exactly on the factors be-
longing to L.

a a b a b b a b a a b b
a d r d b r d r a d b
a a b b r b a r a b
a d b r b r a r d
a b r b r r a b
d r b r r r d
a b r r r b
d r r r b
a r r b
a r b
a b
d

(a) The automaton computation CA(w)

a a b a b b a b a a b b

0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
1 0 0 0 0 0 1
0 0 0 0 0 0
1 0 0 0 0
0 0 0 0
0 0 0
0 0
1

(b) the factors diagram ΓDyck(w) for the
Dyck language

Fig. 2: The factors diagram is the projection of the automaton computation

The following proposition formally describes the relationship between au-
tomaton evolutions and factors diagrams.

Proposition 1. Let A = (Q,Σ,Qacc, δ) be any trellis automaton, L be the lan-
guage accepted by A and 1acc be the indicator function of the set of accepting
states:

1acc : Q→ {0, 1}

q →
{

1 if q ∈ Qacc
0 if q /∈ Qacc

For any word w ∈ Σ∗, given its automaton computation CA(w) and its factors
diagram ΓL(w), we have:

1acc(CA(w)) = ΓL(w)

4 Trellis automaton patterns and language patterns

Therefore, a prerequisite for a language to be a trellis one, is the following. All
patterns which occur in the factors diagrams of such a language, must arise in the
evolutions of some trellis automaton. Let us focus at the patterns of triangular
shape.

Definition 3 (Characteristic pattern). Let L be a language. A characteristic
pattern of height h is any triangle of height h extracted from a factors diagram
of L.
PL(h) will refer to the set of all distinct characteristic patterns of height h.

Example 4. Consider Mia the language of strings with a in the middle. The
factors diagrams of Mia consist of vertical stripes of only 0 or only 1.

By instance,
0 0
0 0
1

1
is a characteristic pattern of height 3, but not

0 0

0
0 0
1

.

We may describe the automaton patterns in the same way:

Definition 4 (Automaton patterns). Let A = (Q,Σ,Qacc, δ) be a trellis au-
tomaton. An automaton pattern of height h is any triangle of height h extracted
from a computation of A.
PA(h) will refer to the set of all distinct automaton patterns of height h.

However, trellis automata are deterministic local devices. So, for an automata
pattern, the bottom row completely determines the subsequent rows. In other
words, an automata pattern of height h can be viewed as a row pattern of length
h complemented with its consequences.

Example 5. The automaton pattern
d r d b
a b b
d b
b

extracted from the computa-

tion of Example 2, is entirely defined by its bottom row d r d b (and, of
course, by the automaton rules).

As shown earlier in [9], it entails a necessary condition for a language to be
recognizable by a trellis automaton, regarding to the number of its characteristic
patterns:

Lemma 1. If L is a trellis language then the number of characteristic patterns
of height h, |PL(h)|, is in 2O(h).

Proof. Assume that L is a language accepted by some trellis automaton A =
(Q,Σ,Qacc, δ). According to Proposition 1, the characteristic patterns match
the projection of the automaton patterns: PL(h) = 1acc(PA(h)). In terms of
cardinal, it means that |PL(h)| ≤ |PA(h)|. Moreover, the number of automaton
patterns of height h is bounded by the number of distinct rows of length h where
values range in Q: |PA(h)| ≤ |Q|h.

Now, as the area of a characteristic pattern of height h is in Θ(h2) and its
values are 0 or 1, we can find languages whose set of characteristic patterns
grows larger than 2O(h). Using this counting argument, it has been shown that
the following languages are not trellis ones:

– The context-free language L1L1, square of the linear language L1 = {1k0u10k :

k > 0, u ∈ {0, 1}∗}, since |PL1L1
(h)| ∈ 2Θ(h2). See [9].

– The deterministic context-free language (and even LL(1) language) L =
{cmal0bal1b · · · almb · · · alzbdn : m,n, z ≥ 1, li ≥ 0, lm = n}, since |PL(h)| ∈
Ω(h!). See [8].

Of course, this criterion is only a necessary condition and not a sufficient
one. Another drawback of this approach is that to estimate the growth rate of
the characteristic patterns number of height h as h grows large, is not usually
an easy task. By the way, the previous witness languages are ad hoc languages
to fulfill the counting requirement. And the status of more common languages
remains as yet unknown. Two candidates are currently mentioned:

– The balanced language over {a, b} defined as the set of strings with the same
number of symbols a and b:

Eq = {w ∈ {a, b}∗ :]a(w) =]b(w)}
– The copy language defined as the set of words repeated twice:

Copy = {ww : w ∈ {a, b}∗}
Here we will look at the language Mia Mia and the variant Mia Mib where Mia
(resp. Mib) stands for the set of odd length words with a (resp. b) in the middle:

Mia = {xay ∈ {a, b}∗ : |x| = |y|}

Making use of an approach introduced in [4], we will show that Mia Mia and
Mia Mib are not trellis languages. But although they are closely related to the
Copy language and its negative variant:

Copy = (Mia Mib)
{ ∩ (Mib Mia){ ∩ {aa, ab, ba, bb}∗

{ww : w ∈ {a, b}∗} = (Mia Mia){ ∩ (Mib Mia){ ∩ {aa, ab, ba, bb}∗ = Eq∩(Mia Mia){

it will not allow us to determine whether they are trellis languages or not.

5 Counting argument

Here we will focus on a subfamily of the characteristic patterns composed of
horizontal stripes.

Definition 5 (Stripes patterns). A stripes pattern is a characteristic pattern
such that all the values within each row are equal. The characteristic string of a
stripes pattern of height h is the binary string c = c1 · · · ch of length h where ci
is the 0 or 1 value of the i-th row of the stripes pattern.

An automaton pattern π would be said to have a characteristic string c if its
projection 1acc(π) is a stripes pattern of characteristic c.

Note that the characteristic string completely characterizes the stripes pat-
tern. And so, whatever the language, the number of its stripes patterns of height
h is bounded by 2h. Regardless of the fact that the subfamily of stripes patterns
is not so large and even within the bound defined in Lemma 1, it has been proved
that any trellis automaton could not display all of them:

Proposition 2 (Grandjean, Richard, Terrier [4]). For any trellis automa-
ton A, there exist some stripes patterns which never occur in the space-time
diagrams of A.

Along the same lines, Proposition 2 could be refined to deal with languages
exhibiting not necessarily all stripes patterns.

Definition 6. For any language L, CL will refer to the set of characteristic
strings whose corresponding stripes patterns occur in L.
Give, any subset F ⊂ CL, the integer αFh will refer to the minimal number of
double length extensions of every string of length 2h within F :

αFh = min
c∈F,|c|=2h

(|{d ∈ F : c is a prefix of d and |d| = 2|c|}|)

Proposition 3. If L is a language which admits a subset F of characteristic
strings such that the sequence (αFh) is monotonic and divergent, then L is not a
trellis language.

The counting argument used to prove the proposition is based on the next
technical fact.

Fact 1. Let (αh) be any monotonic sequence of positive integers which is diver-
gent: αh+1 ≥ αh for all h, and lim

h→∞
αh →∞. Let C be any positive constant.

Then the sequence (uh) defined recursively by:

u0 = C and uh+1 =
u2h
αh

converges to 0.

Proof. First, observe that

uh = C2h /

h−1∏
i=0

α2h−i−1

i

Second, by assumption, there exists an index H such that αh ≥ C + 1, for all
h ≥ H. Then for h ≥ H,

uh ≤ C2h/

h−1∏
i=H

(C + 1)2
h−i−1

= C2h/(C + 1)2
h−H

So the sequence (uh) converges to 0.

Proof (Proposition 3). Assume that L is a language accepted by some trellis
automaton A = (Q,Σ,Qacc, δ). We will construct a sequence of strings wi of
length 2i belonging to F such that the number of automaton patterns with
characteristic wi is bounded by ui. Then, according to Fact 1, we will have
uI < 1 for I large enough. That means there will be no automaton pattern with
characteristic uI and hence wI would not be a characteristic string of L. Thus
the assumption that L is a trellis language, would lead to a contradiction.

The construction of the sequence of strings wi is done by recurrence:

The base case. For i = 0, the automaton patterns of height 1 are reduced to
one site and their number is bounded by the cardinal of Q. So there are at most
C = |Q| automaton patterns with characteristic string 0 or 1. Let set w0 be a
string of length 1 belonging to F and u0 be |Q|.

X Y

Z

T

c1
c2
c3

c2i
c2i+1

c2i+1

wi

Fig. 3: Subdivision of an automaton pattern in four patterns X, Y , Z and T

The inductive step. Consider all automaton patterns of height 2i+1 having
a characteristic string whithin F which is a double length extension of wi. As
depicted in Figure 3, we can divide such a kind of pattern in four sub-patterns X,

Y , Z and T where X, Y and Z are of height 2i and also where X and Y share the
characteristic wi. By recurrence assumption, the number of automaton patterns
of characteristic wi is bounded by ui and so the number of couples (X,Y) is
at most u2i . Furthermore the sub-patterns Z and T depend only on X and Y .
That is to say the number of automaton patterns whose characteristic strings are
extensions of wi is bounded by u2i . Now, since the minimal number of extensions
of wi whithin F is αi, the average number of automaton patterns per extension
is bounded by ui+1 = u2i /αi. In other words, there is one extension wi+1 of
wi with length 2i+1 and belonging to F such that the number of automaton
patterns with characteristic wi+1 is bounded by ui+1.

6 Some non trellis language

Now we will apply the previous criterion to show that the language NOaa =
{x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb} for i = 1, . . . , n} ∪ {w ∈ {a, b}∗ :
w is of odd length} is not a trellis language. As an aside, notice that NOaa is
not a context-free language although its complement Mia Mia is a context-free
one.

As preliminary, let us look at an example. Figure 4 depicts the factors dia-
gram on the input word ωbab12abbbabaaabbabω. The dark sites mark the 0 values
(i.e., the factors not in NOaa), the light sites mark the 1 values. We observe that
the black horizontal stripes in the upper part match the symbols a of the input.

a

a

b

b

b

b

b

b

a

a

b

b

a

a

a

a

a

a

b

b

b

b

a

a

a

Fig. 4: The factors diagram on ωbab12abbbabaaabbabω for the language NOaa

More generally, the NOaa factors diagrams exhibit the following stripes pat-
terns:

Fact 2. For any binary string c1c2 . . . ck, there exists a stripes pattern of NOaa
with characteristic string c11c21 . . . 1ck1.

Proof. Given any binary string c1c2 . . . ck of length k, we consider the word
w = bm+k−1abmx1 · · ·xkbm+k−1 where m is any integer greater than k and, the
symbols xi are a if ci = 0 and b otherwise. As it is defined, each symbol xi decides
whether the m+ i factors with length 2(m+ i) of bm+i−1abmx1 · · ·xkbm+2i−k−1

are all in NOaa (in case of xi = b) or are all outside of NOaa (in case of xi = a).
Therefore the factors diagram of w contains on its 2(m + i)-row a sequence of
m + i consecutive values ci and that for all i = 1, · · · , k. Besides, all values of
the odd rows are 1 since any odd length factor is in NOaa. At last, choosing m
large enough, we can extract from the factors diagram of w a stripes pattern of
characteristic c11c21 . . . 1ck1.

Proposition 4. The language NOaa = {x1 . . . xny1 . . . yn : xiyi ∈ {ab, ba, bb}
for i = 1, . . . , n} ∪ {w ∈ {a, b}∗ : w is of odd length} is not a trellis language.

Proof. According to Fact 2, every string of F = {01, 11}∗ is a characteristic
string of NOaa. Besides, within F , every string c11 . . . c2h−11 of length 2h is the
prefix of 2h−1 strings of double length: {c11 . . . c2h−11e11 . . . e2h−11 : e1, . . . , e2h−1

∈ {0, 1}} ⊂ F . Hence αFh = 2h−1 and so the sequence (αFh) is monotonic and
divergent. Then it follows from Proposition 3 that NOaa is not a trellis language.

As a matter of fact, it can be shown in the same way that the language
NOab = {x1 . . . xny1 . . . yn : xiyi ∈ {aa, ba, bb} for i = 1, . . . , n} ∪ {w ∈ {a, b}∗ :
w is of odd length} is not a trellis language. At the same time, neither Mia Mia
nor Mia Mib are trellis languages.

7 Conclusion

As illustrated in this paper, to make explicit limitations on the computational
ability of trellis automata, the analysis of the characteristic patterns associated
to trellis languages, is a significant approach. But we are still far from having
fully exploited such tools.

The language Mia Mia and its derived forms have been shown not to be trellis
ones. Despite the fact it gives us good reason to believe that the Copy language,
coinciding with (Mia Mib)

{ ∩ (Mib Mia){ ∩ {aa, ab, ba, bb}∗, is not recognizable by
trellis automata, the question remains still open. Regarding the Okhotin’s gram-
mars hierarchy, another challenge would be to determine whether the language
(Mia Mia){ is representable by a conjunctive grammar or not [7].

References

1. Karel Čuĺık II. Variations of the firing squad problem and applications. Information
Processing Letters, 30(3):152 – 157, 1989.

2. Karel Čuĺık II, Jozef Gruska, and Arto Salomaa. Systolic trellis automata. II.
International Journal Computer Mathematics, 16:3–22, 1984.

3. Charles R. Dyer. One-way bounded cellular automata. Information and Control,
44(3):261–281, 1980.

4. Anaël Grandjean, Gaétan Richard, and Véronique Terrier. Linear functional classes
over cellular automata. In Enrico Formenti, editor, Proceedings AUTOMATA &
JAC 2012, pages 177–193, 2012.

5. Alexander Okhotin. Automaton representation of linear conjunctive languages. In
International Conference on Developments in Language Theory, LNCS, volume 6,
pages 393–404, 2002.

6. Alexander Okhotin. On the equivalence of linear conjunctive grammars and trellis
automata. RAIRO Informatique Théorique et Applications, 38(1):69–88, 2004.

7. Alexander Okhotin. Conjunctive and boolean grammars: The true general case of
the context-free grammars. Computer Science Review, 9:27–59, 2013.

8. Alexander Okhotin. Input-driven languages are linear conjunctive. Theoretical
Computer Science., 618:52–71, 2016.

9. Véronique Terrier. On real time one-way cellular array. Theoretical Computer
Science, 141(1–2):331–335, 1995.

10. Véronique Terrier. Language not recognizable in real time by one-way cellular
automata. Theoretical Computer Science, 156(1–2):281–287, 1996.

11. Véronique Terrier. Recognition of poly-slender context-free languages by trellis
automata. submitted to Theoretical Computer Science, 2017.

