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Robust real time constrained estimation of
respiratory motion for interventional MRI on
mobile organs.

Sébastien Roujol*, Jenny Benois-Pineau, Member, IEEE, Baudouin Denis de Senneville, Mario Ries,
Bruno Quesson, Chrit Moonen

Abstract—Real time magnetic resonance (MR) imaging is a
promising tool for image-guided interventions. For applications
such as thermotherapy on moving organs, a fine image-based
compensation of motion is required in real time to allow
quantitative analysis, retro-control of the interventional device,
or determination of the therapy endpoint. Since interventional
procedures are usually restricted to a part of the organ/tissue
under study, reduced FOV imaging represents a promising way
to improve spatial and / or temporal resolution. However, it
introduces new challenges for the target motion estimation since
structures near the target may appear transiently due to the
respiratory motion and the limited spatial coverage.

In this paper, a new image based motion estimation method
is proposed combining a global motion estimation with a novel
optical flow approach extending the initial Horn & Schunck
(H&S) method by an additional regularization term. This term
integrates the displacement of physiological landmarks, which
are obtained in a preparation step by pattern matching into the
variational formulation of the optical flow problem. A smooth
regulation of the constraint point influences is achieved using
a spatial weighting function. The method was compared to
the same registration pipeline employing the H&S approach. A
first evaluation was performed on synthetic dataset where the
accuracy of the motion estimated with the H&S method was
improved by a factor of 2 using the proposed approach. An in
vivo study was then realized on both the heart and the kidney of
twelve volunteers. Compared to the H&S approach, a significant
improvement (p<0.05) of the DICE similarity criterion computed
between the reference and the registered organ positions was
achieved.

Index Terms—Image registration, Motion analysis, Biomedical
image processing, Magnetic resonance imaging.

I. INTRODUCTION

EAL time MR imaging proved to be a promising candi-
date for guiding non- and mini-invasive surgical interven-
tions [1]. The additional use of quantitative MR-measurements
of tissue specific properties such as MR-relaxation times,
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or the local temperature, allows monitoring of the thera-
peutic progress and helps to determine the endpoint of the
intervention. However, quantitative measurements require a
motion correction to enable a direct comparison on a voxel-
by-voxel basis between the dynamically acquired images. In
the particular case of MR-guided thermal ablations, real time
MR-thermometry is used to compute temperature maps inside
the human body [2]. The temperature evolution can be used
as an accurate and immediate prediction of tissue necrosis [3]
and thus requires all temperature maps registered to a common
position. Moreover, the whole registration process has to be
realized within the interval of two MR-acquisitions to ensure
the real time condition.

Typically, interventional procedures are usually restricted to
a part of the organ/tissue under study making reduced field of
view (FOV) imaging desirable. This would allow improvement
of the spatial and / or temporal resolution in order to decrease
partial volume effects (undesirable for quantitative analysis)
and to increase imaging framerate (required to observe rapid
phenomena). Several strategies have been proposed toward this
direction by using saturation slabs [4], outer volume suppres-
sion [5] or interactive reduced FOV imaging [6]. However,
a reduced FOV may introduce new challenges for the target
motion estimation since structures may appear transiently due
to the respiratory motion and the limited spatial coverage.

A variety of motion estimation algorithms [7], [8] have
been suggested in the field of medical imaging. Optical flow
algorithms [9] have been proposed for motion estimation on
abdominal organs for MR-guided laser ablation [10]. Recently,
an approach using an initial global motion estimation followed
by an optical flow algorithm was developed for real time
MR-thermometry in abdominal organs [11]. Optical flow algo-
rithms allow estimating a velocity field assuming an intensity
conservation during displacement, mathematically expressed
by the optical flow equation (OFE):
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Here u and v are the displacement vector components, and
I, ¢ are the spatio-temporal partial derivatives of the image
pixel intensity. However, a direct estimation by minimizing
the deviation from OFE (equation 1) is an under-determined
problem and an additional constraint is required. The method
proposed by Horn and Schunck (referred to as H&S in this
paper) introduces additional physical constraints enforcing the
smoothness of the motion field [12]. They seek wu(z,y) and
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where a“ is a weighting factor designed to link both intensity
variation and motion field regularity and Vu and Vv are the
spatial gradients of u(z,y) and v(z,y), respectively.
However, when reduced FOV imaging is employed, the
assumption of energy conservation may be violated due to the
potential presence of transient structures. In such conditions,
the Horn & Schunck algorithm is expected to fail locally (near
the transient structure) to recover the correct motion. This is
known as one of the ill-posed problems in motion estimation,
namely the occlusion problem [12]. In detail, if a structure is
only present in the reference image, the algorithm might try to
match the signal from this structure (in the reference image)
with a different structure (in the image to be registered). To
improve the robustness of the algorithm against this effect,
one can increase the value of a? to increase the smoothness
constraint of the motion field. However, this will reduce at
the same time the ability of the algorithm to provide reliable
motion estimation in presence of complex deformation.
Therefore, the first step of this study was to hypothesize
that a combination of intensity and landmark registration
could then be used to improve the robustness of the regis-
tration against transient structures. Such combinations have
been proposed in the past such as in [13] where a large
number of landmarks were employed for brain registration.
This method was further extended to deal with a smaller
number of points (manually defined) for interactive registration
of medical images [14]. In these approaches, both intensity
and landmark metrics were minimized sequentially inside an
iterative minimization process. Several unified minimization
framework were also proposed. In [15] the algorithm was
designed to obtain a final motion field fitting each pre esti-
mated landmark motion. In the presented application, due to
the low SNR, a non negligible uncertainty of the landmark
correspondence may be expected and would thus strongly
affect such registration approach. Another solution proposed
by Becciu et al. [16], attempt to use tags obtained from MR-
tagged sequence in their registration framework for cardiac
contraction assessment. Unfortunately, this sequence is gen-
erally unsuitable for interventional MRI, since images are
tagged by regular lines where the signal has been removed.
Recently, a variational approach, integrating segmented region
motion, was proposed for large displacement estimation [17].
This method uses a linearized OFE deviation together with
regularization terms which include the correspondence of
region displacements in the image plane. Despite the interest
of such an approach in general purpose video sequences, its
application to MRI sequences is not straightforward due to the
inherent difficulties of segmentation of frames into spatially
coherent regions. Recently, a grid-based deformation model
was proposed [18], but was also shown to be sensitive/limited
by the landmark extraction process according to the authors.
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In this paper, we propose a new real-time motion estimation
method for MRI sequences which can operate in the case of
reduced FOV imaging. Preliminary results of this approach can
be found in [19]. The contribution of the paper is twofold.
We first define the two stage interventional protocol for a
robust choice of constraint points and then formulate the con-
strained optical flow estimation by introducing an additional
regularization term in the H&S method. In our formulation,
the introduction of a smooth weighting function allows for a
local control of the influence of constraint points. Furthermore,
in order to ensure the real-time requirement together with a
short latency, all computationally intensive calculations were
off-loaded to a dedicated graphics processing unit (GPU).
The proposed algorithm is referred to as constrained motion
estimation (CME) in the scope of this paper. It was compared
with the same registration pipeline employing the H&S optical
flow approach. Algorithm evaluations were conducted on both
synthetic data and cardiac & kidney MR-images of healthy
volunteers under free breathing conditions.

II. MATERIAL AND METHODS

The proposed CME algorithm is a two-step procedure (see
Fig. 1). The first step consists in selecting the constraint points
along the boundary of the organ in the reference image of
the time series. The contour is then subsampled and refined
based on the position of extracted feature points. In a second
step the motion is estimated for each image as follows: a
global translational motion estimation is performed and used to
initialize a local estimation of the displacement of constraint
points. Non-physiological constraint point displacements are
automatically identified and corresponding constraint points
are discarded. The displacements of the constraint points are
then integrated into the constrained optical flow algorithm
(using the global estimated motion as preconditioning) to
obtain the final motion field. A detailed description of each
algorithm step is now presented in the next sections.
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Fig. 1: General scheme of the algorithm. Prior to the in-
tervention, constraint points are automatically extracted from
a reference image (step 1). Then, during the procedure, the
motion field is estimated for each frame (step 2).

A. Step 1: Constraint point selection

Anatomical points are localized and tracked over the time
in order to guide and to constrain the motion estimation



of the target. To select them, anatomical structures such as
organ boundaries, which remain present during the acquisition
and follow the target, are suitable. For this, a region of
interest (ROI) was manually set around the target of the
reference image. The contour of the ROI was first extracted
and then regularly sampled in space to obtain a set of N
points surrounding the target. To allow a certain degree of
freedom on the ROI drawing a refinement of the location of
the N points was then performed by moving them a near
feature point computed on the reference image. Due to the
abundance of works in stereo matching and image retrieval,
a large amount of feature point detectors has been tested and
reported in literature [20]. The critical point is the stability
of these methods with respect to affine transformations of
image plane, lightening, scale variations and noise. In the
case of MR images, the noise and deformable motion are the
main factors. According to the evaluation in [20], the Harris-
Stephens detector [21] appeared to provide a good compromise
between robustness and computation time. The feature point
detection is based on the following response function:

R(z,y) = Det(M,,,) — k‘.Tr(Mw,y)Q, 3)
with )
2 LI
Moy = D wig (Ix 3 Igy)_ )
i,jes Y /g

where (z,y) denotes the spatial coordinates, Det denotes
the determinant of a matrix, T'r is the trace of a matrix,
w is a weighting factor (Gaussian kernel over the region
S centered on (z,y)) and k is a sensitivity parameter. The
value of k is generally chosen in the [0.04-0.15] interval. In
our case, a value of 0.04 was empirically found suitable for
our application. The response is positive in a corner region.
Therefore, the feature point with the higher response in a
small neighborhood (e.g. 3x3 pixels) of the contour point was
selected as landmark point. The small neighborhood search
was designed to prevent positioning a landmark on a different
structure/organ that may depict a different motion from the
targeted organ. If no feature point was present, the initial
contour point was then selected.

B. Step 2: motion estimation algorithm

An optical flow based algorithm is more efficient when it is
initialized near the global optimum. Therefore, to initialize it,
a global motion estimation is first performed with a simple
translational model. The translation parameters (horizontal
and vertical) are estimated using a sign-gradient-descent with
fixed step inspired by the Netravali-Robbins method [22]. The
estimation is restricted to the ROI defined in section II-A.

Then, constraint point displacements are individually esti-
mated (two translation parameters) using the global estimated
displacement as initial estimate. This estimation is restricted
to a small patch centered on each constraint point intersected
with the initial ROI to allow a local refinement of the global
displacement. We experimentally found that a patch size of
10x 10 pixels was satisfactory using a given voxel size of 2-3
mm obtained with the employed MR-acquisitions.

To remove occasional non-physiological estimates, the fol-
lowing outliers rejection was added. The displacement vector
(ds,dy) of a constraint point was supposed to follow a
bivariate Gaussian distribution with independence of d, and
d, coordinates. A constraint point was automatically rejected
if at least one of its displacement components violated the
marginal 3-sigma rule.

The idea of the presented approach is to constrain the H&S
formulation by locally estimated displacements of feature
points. Hence, we propose the following extension of the Horn
& Schunck formulation with an additional regularization term:

E.(u,v) = // ([Izu + Lo+ L) +a? [IVull3 + V]3]
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where (u;,v;) are the horizontal and vertical components of
the displacement estimated for the i'" constraint point. \?
is the regularization parameter that allows balancing between
the initial behavior of the H&S algorithm and the constraint
influence. p is a distance function, defined as

p(d, R) = exp (—d*/R?) (6)

where d represents the Euclidean distance between the pixel
of coordinates (z,y) and the i'" constraint point, R is a
bandwidth parameter. To minimize E.(u,v), we used the
calculus of variation and obtained the following system:

Pu+ LIy = a®V2u— L1+ A2 SN (p(di, R)u;)
LIyu+ 20 = V2 — LI + X2 Y10, (p(dy, R)vi)
(7)
Then, we used the approximation of the Laplacian, as sug-
gested by Horn and Schunck, where V2u = u — u, with @
the mean value of u in the neighborhood (3x3 pixels) of the
estimated point [12]. Therefore, the system can be rewritten
as:

a11u + appv = by )
a21U + a2V = b2
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Finally, based on the Jacobi method, the system can be solved
with the following iterative scheme:
unJrl _ b?agg — algbg a11b72’ — aglb?

vn+1 — (10)
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C. Implementation

A registration to a reference frame has been preferred to a
concatenation of frame to frame estimations since the latter
generally lead to error accumulations, especially when high
framerate is applied such as in abdominal imaging (10-15
Hz). In cardiac application, since the imaging framerate is
generally limited to the cardiac frequency, the respiratory
motion between two successive images generally depicts a
large amplitude, devaluating the benefit of a frame to frame
motion estimation. For both the H&S and the CME imple-
mentation, the multi-resolution approach from [23] was used,
which refines the motion estimation algorithm from the 3¢
level of sub-resolution to the full resolution. We off-loaded the
most time consuming task, i.e. the iterative numerical scheme
of the optical flow, to a dedicated GPU.

In-vivo calibration of the employed algorithms is not an
easy task since it depends on the criterion to be optimized.
The calibration of the H&S method (a2 value) has to deal with
contradictory effects. A small regularization of the motion field
smoothness is required to enable the estimation of complex
motion and to have a globally reliable estimated motion.
On the other hand, a high constraint on the motion field
smoothness would reduce the registration artifact induced by
intrusive structures but will at the same time limit the ability
of the algorithm to estimate complex motion. This may thus
deteriorate the registration in the entire organ and thus the
value of such estimated motion in the perspective of quantita-
tive analysis and clinical application. Therefore, we decided to
calibrate the employed algorithms in a way to maintain optimal
performance in the general case of full FOV imaging (without
the presence of intrusive structures). As recently shown [24], a
reliable in-vivo calibration of the H&S algorithm was obtained
for a range of o values between 0.1-0.5. A plateau was
generally observed for these ranges of values and its lower
bound was suggested as a good way to cope with variations
of the breathing pattern (such as an amplitude variation or
drift of the respiration pattern). Therefore, a o® value of 0.1
was employed for the H&S algorithm. We empirically found
a near-optimal solution for the CME calibration by employing
the following parameters: a?=0.1, A\?>=0.1, N=20 and R>=5.
Note that a similar optimal configuration was obtained for the
synthetic dataset experiment (see result part) except for the
a? values that was higher due the lowest complexity of the
synthesized motion.

The overall algorithm was implemented in C++ and evalu-
ated on a dual processor (INTEL 3.1 GHz Penryn, two cores).
The GPU implementation was based on the Compute Unified
Device Architecture (CUDA) framework [25] using a NVIDIA
GTX280 card.

D. Experimental setup

The proposed algorithm was evaluated on both synthetic
and in vivo datasets:

1) Synthetic dataset experiment:

Data creation: A sequence of T(= 30) images was cre-
ated. To simulate respiratory motion typically encoun-
tered on mobile organs, a periodical (period=6 frames)
geometric transformation composed by a 2D translation
(T, T,) and scaling (5;,5,) was synthesized (I, =
{0,0.5,1,1.5,1,0.5} pixels,T,, = {0,2.5,5,7.5,5,2.5} pix-
els, S, =5, = {1,1.03,1.06,1.09,1.06,1.03}). A signal-to-
noise ratio (SN Ryp) of 1.3 was chosen to simulate a realistic
acquisition (typically between 0.7 and 1.3). A structure appear-
ing transiently in the lower part of the image was added in half
of the images to simulate the effect potentially encountered
with reduced FOV imaging.

Quality assessment of the motion estimation: Since the
real motion (Dy; = (ugr,ver)) and the estimated motion
(D = (u,v)) are available for each pixel in such synthetic
dataset experiment, the measures commonly reported in the
optical flow community such as the endpoint error (EE) and
the angular error (AE) of the flow [9], [26] were computed,
with:

EE = \/(u—ugr)? + (v —var)?, (11)
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In addition, to provide additional information about the
smoothness of the estimated motion field, the harmonic energy
of the estimated flow [27] was reported.

2) in vivo experiments:

In vivo experiments were conducted on the heart and the
kidney of a total of 12 healthy volunteers. The MRI scans were
performed under free breathing conditions using a 1.5 Tesla
scanner (Philips Achieva/Intera, Best, The Netherlands). The
volunteers were positioned head first in supine position. The
MR sequences employed saturation slabs to obtain structures
appearing transiently in the FOV as typically encountered
when zoom imaging is used (these conditions are then referred
to as “zoom imaging conditions” in the scope of this paper).

In-vivo study on the heart under zoom imaging con-
ditions: Dynamic MRI was performed on the heart of six
healthy volunteers. The acquisition sequence was ECG-gated
(to observe the heart in the same cardiac phase) using a five
element phased array cardiac coil. Five contiguous adjacent
slices were acquired per cycle (200 cycles per scan), in short
axis view, at end diastolic phase. A slice tracking technique
[28] was used to compensate for respiratory motion in the
third dimension. Blood signal reduction was obtained using
saturation slabs positioned on each side of the imaging stack.
The single shot EPI sequence employed the following param-
eters: FOV=260 x 260 mm?2, voxel size=2.7 x 2.7 x 7 mm?,
echo time=20 ms, repetition time=40 ms, SENSE acceleration
factor=1.6 [29]. A saturation slab was positioned underneath
the extreme position of the heart (corresponding to the posi-
tion at maximum respiratory displacement) to simulate zoom
imaging conditions.

In-vivo study on the kidney under zoom imaging condi-
tions: 200 frames (single slice) in coronal orientation were
acquired using a four element phased array body coil. A
dual shot EPI sequence employed the following parameters:

AFE = cos™* (12)




FOV=200 x 400 mm?2, voxel size=2.3 x 2.3 x 6 mm?®, echo
time=26 ms, repetition time=52 ms, flip angle=35°. Zoom
imaging conditions were achieved using a saturation slab
positioned on the top of the extreme position of the kidney.
Quality assessment of the motion estimation: In such con-
ditions, the typical amplitude of both heart and kidney motions
is about 8 pixels in imaging plane between two extreme images
in the respiratory cycle. Since the true motion is unknown
the quality assessment of the registration was analyzed by
computing the DICE similarity coefficient (DSC) [30] between
the position of the organ (ROI;) in each registered frame (t)
and its position in the reference frame (ROI,.y), as follows:

(ROI,..; N ROI,)
ROI,.; + ROI, '

Each ROI was obtained by manual segmentation. A value of 1
for DSC indicates an ideal registration (perfect ROI matching).
The harmonic energy has been also computed and reported for
all tested cases to assess the energy of the deformation fields.

DSC(t) = 2 (13)

III. RESULTS

A. Synthetic dataset experiment
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Fig. 2: Registration example obtained on the synthetic dataset
experiment. The reference image (a) and the image to be
registered (b) are displayed together with the registered images
obtained with the CME (c) and the H&S approach using a
value of o? of 0.5 (d), 2 (e) and 6.5 (f). The time evolution
of the average endpoint error (EE) inside the target (between
both dashed red ellipses) is reported in (g).

Example of synthetic images is shown in Fig. 2 where
the reference image (2a, containing the underneath transient
structure) and an image corresponding the maximum synthe-
sized motion (2b, 4" image of the cycle) are displayed. The
contours (interior and exterior) of the target obtained from the
reference image are reported in dashed red curves. The H&S
approach was employed to register the image in (2b) using
different o? values. When using a small value (o = 0.5), the
registration is strongly influence by the underneath structure
leading to a severe registration artifact (yellow arrows in 2d).
By using an optimally calibrated value (a® = 2.5, see Fig. 3a),
the registration artifact was reduced but still present (yellow
arrows in 2e). A higher value of (= 10) is then reported in
2f where the registration artifact introduced by the transient
structure appeared substantially reduced due to higher weight
on the smoothness of the motion field. However, in this case a
different registration artifact was observed due to the inability
of the method to handle complex motion (here the scaling
effect) as shown by the yellow arrows. The CME approach
provided a reliable registration where the registered target
perfectly matched the reference target contour. These results
were confirmed in the plot of the averaged EE values over
time (computed inside the target, between the two red dashed
curves) in 2g. While the H&S approach periodically failed to
recover the correction motion, the CME offered more robust
performances over time.

In order to better characterize the potential gain and limi-
tations of the compared methods, their performance in term
of averaged error endpoint, harmonic energy and averaged
angular error were precisely investigated in function of the
employed parameters (Fig. 3). As previously observed in Fig.
2d, low o2 values (3a, 3e and 3i) provided poor performance
since the methods became very sensitive to the presence of
the intrusive structure. On the contrary, high values limited
the ability of the algorithm to estimate complex motion and
also deteriorated the motion estimates as confirmed by the
convergence of the harmonic energy toward a very small
value. The averaged EE values obtained with an optimal o>
calibration were 0.42 for the H&S approach (a? = 2.5) and
0.21 for the CME method (a?=6.5) showing a reduction of
the averaged EE by a factor of 2. The A2 value influence
was then investigated ((3b, 3f and 3j). As expected, small \?
values tends to the H&S performance and high values tends
to the extrapolation of the constraint point motions (and their
associated uncertainty) leading in both cases to a deterioration
of the registration. A good calibration of A\?(=0.1, blue curve)
provided a significant improvement of the motion estimation
(3b, 3j). The influence of the constraint point number (/N) was
then evaluated (3¢, 3g and 3k). Although an optimal value was
reached around 20 points (3¢, 3k, blue curve), the sensitivity of
the CME to this parameter was limited. Finally the influence
of the bandwidth (R?) provided an optimal calibration for a
value of 5 ((3d, (3h, (3i, blue curve).

B. in vivo experiments

Similar results were obtained in in vivo experiments in both
the heart and the kidney of healthy volunteers. Registration
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Fig. 3: Influence of the free parameter tuning on the H&S and the CME methods. The averaged error endpoint (EE), the
harmonic energy (HE) and the average angular error (AE) are reported in the first, second and third lines of the figure
respectively. Note that the averaged EE and AE computation were restricted to the target area (defined between the two red
dashed ellipses in Fig. 2a). The influence of the motion field weighting (a?) on both the H&S and the CME approaches are
displayed in the first column. Then, other CME parameters were analyzed: the constraint point term weighting (A2, second
column), the number of constraint points (N, third column) and the ray influence of the constraint point (R?, forth column).

examples are shown for both organs in Fig. 4. By comparing
the reference images (4a, 41) with images acquired at different
positions in the respiratory cycle (4b, 4j), one can observe
some structures appearing transiently (see yellow arrows) due
to the signal cancellation obtained from the saturation bands.
In the cardiac images, the area with low signal intensity in the
lower part corresponds to a saturation band that may allow for
the reduction of the FOV without additional fold-over artifacts.
The signal of the liver (below the heart) almost disappeared,
due to the displacement induced by the respiration. In the
abdominal images, two perturbations were observed in the
top part of the kidney: the liver, above the kidney, partially
disappeared in 4j and the intensity of the upper part of the
kidney depicted a high variation. In both examples, while the
registration obtained with the H&S approach (4c, 4k) was
severely deteriorated in the regions near the transient structures
(see red arrows), a reliable registration was obtained in the
totality of the organs using the CME (4d,41).

These findings were typical for the entire sequences as
confirmed by the time evolutions of the DICE similarity
coefficient and the harmonic energy, respectively shown in
(4e,4m) and (4f,4n). Due to the respiratory cycle, the transient

structures appeared periodically in the time series and the
H&S approach periodically failed to recover a reliable motion
estimate leading to low Dice similarity coefficient and elevated
harmonic energy values. The CME clearly outperformed the
H&S approach by providing a better overall registration and
more stable performance.

Over the 12 volunteers, the averaged DICE similarity coef-
ficient (central point inside the box) obtained with the H&S
method has been significantly improved (p<0.05) using the
proposed CME as shown in (4g and 40. The minimal DICE
similarity coefficient values were typically very low for certain
frames using the H&S method, whereas the proposed CME
allowed maintaining a better performance for all the frames
(around 0.92 and 0.96 for the heart dataset and the kidney
dataset, respectively)). As expected, higher harmonic energy
values were obtained with the H&S method since the method
periodically failed to recover the motion and also because a
relative lower weight of the smoothness constraint term was
employed since the same a? value (=0.1) was employed for
both algorithms.

Constraint point filtering allowed the rejection of constraint
points with non-physiological estimated displacement. In av-
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Fig. 4: Registration result obtained in vivo in the heart and the kidney of free breathing volunteers. Registration examples in
the heart (volunteer #5) and in the kidney (volunteer #6) are given where the reference images (a,i), the images to be registered
(b,j) and the registered image obtained with the H&S (c,k) and the CME (d,]) methods are displayed. The time evolution of
both the DICE similarity coefficient (DSC) and the harmonic energy (HE) are shown for each registration example in (e,m)
and (f,n), respectively. Finally, the DSC (g,0) and HE (h,p) are reported for each volunteer over time as Box and Whisker plot
where the minimum (lower point), maximum (upper point), average (point inside the box) and standard deviation (box height)
values are shown. While the H&S method was disturbed by the presence of transient structures, the CME provided robust and
reliable registration performance for all the frames.

erage over the volunteers, less than 0.37 % and 2.67 % of the
constraint points were rejected for the heart and the kidney
dataset registration, respectively (with a maximum of two
constraint points for a frame.

C. Real time benchmarking

Benchmarking was realized for each processing step for an
image sequence of spatial resolution 128 x 128. The GPU
based implementation allowed a significant reduction of the
whole computation time. The total computation time of the
proposed approach was evaluated to 22 ms (against 87.5 ms

using a CPU only implementation) and was composed by:
global motion estimation (5 ms), otion estimation of constraint
points (10 ms), optical flow iterative scheme (7 ms) and
image registration (0.01 ms). An acceleration factor of 10 was
achieved for the computation time of the iterative numerical
scheme of the optical flow algorithm (equation 10).

IV. DISCUSSION
A. Performance of the proposed method

On the synthetic dataset, the proposed CME outperformed
the H&S approach that failed to estimate the real motion in



presence of structures appearing transiently. The endpoint error
of flow obtained with the optimal H&S calibration has been
reduced by a factor of 2 using the proposed CME as shown
in Fig. 3a.

Furthermore, the volunteer studies confirmed the in vivo
feasibility of the CME in both the heart and the kidney. A
reliable registration was obtained in the totality of the organ
in all frames. Using the H&S method, similar performance
were also achieved in frames with similar structures as in
the reference image. However, a severe degradation of its
performance was observed in presence of additional intrusive
structures. Although this artifact could have been reduced by
increasing the regularization of the motion field smoothness,
this would have in the same time decrease its ability to
estimate complex motion (as can be observed in Fig. 2f and
3a using a high value of a?). As recently shown [24], such
effect is generally observed with the H&S method by using o
values above the interval [0.1-0.5] with the employed in-vivo
images.

B. Real time feasibility of the method

MR-guidance of interventional procedures relies on the
instantaneous availability of the processed images. Therefore,
this limits the available computation time. In addition, Denis
de Senneville et al. demonstrated in [31] that large latencies
have to be compensated with the help of accurate motion
prediction. However, the performance of the prediction al-
gorithm increases greatly with short latencies. Recently, in
the particular case of a HIFU ablation on mobile organs,
it was demonstrated that a latency inferior to 100 ms was
required for the adjustment of the beam position in order
to ensure an energy deposition similar to a static experiment
[32]. Here, the GPU implementation offered an acceleration
factor of 10 for the computation of the constrained optical
flow which is in agreement with the published work [11],
[33]. Significant higher acceleration factor would be expected
using higher resolution as shown in [33] since it would benefit
from a larger amount of data to process (higher occupations
of each processor) and a lower relative overhead. Overall,
the demonstrated CPU/GPU implementation allows the accel-
eration of the required processing time by a factor of four
and thus ensures the real time conditions with a short low
latency. Further reduction of the latency may be obtained by
investigating the use of more complex optimization scheme
aiming to improve the convergence speed of the algorithm.

C. Calibration of the CME

Contrary to the previous works using constraint points, a
comprehensive formulation of the minimization problem was
proposed. In the proposed approach, the confidence into the
predetermined displacement of the selected constraint points
can be freely adjusted with the regularization parameter \2.
The quality of the obtained optical flow depends on the quality
of the initial constraint point vectors, the number of constraints
(N) and the bandwidth (R) of the p function parameters:

o For the motion estimation of the constraint points, only
a translational model was considered as it was the most

robust for small patch sizes surrounding constraint points.
The optimal patch size in 128128 MRI sequences was
found to be 10x 10 for our images.

e In order to control optical flow, the constraint points
have to be placed near eventual occlusion (or problematic
area). The manual choice of constraint points is not
realistic during an interventional procedure, and we can
only encourage the staff physician to approximately trace
the contour of the ROI. Hence, the subsampling has to be
sufficient in order to get a good coverage of problematic
area. On the other hand, a too large number of constraint
points will slow down the computational process and may
degrade the registration performance by leading to a quasi
interpolation of the constraint displacements and their
associated uncertainties. Therefore, for the demonstrated
application, N=20 was found to be near-optimal.

o The bandwidth R of the p function regulates the influence
of remote points. The large bandwidth yields a quasi
interpolation of constraint point displacements over the
whole image. An optimal experimental value was R=v/5.

o Outlier rejection for constraint point vectors was found
particularly useful for small patch sizes where the esti-
mation is more sensitive to out-of-plane motion, noise,
etc.

D. Limitations, clinical perspectives and future works

Due to technical limitations of fast MR acquisition se-
quences, extensive 3D volume imaging on mobile organs
is hard to achieve. The proposed technique has thus been
evaluated in the 2D case. An extension of the method toward
3D motion correction may also be considered in future works
and may contribute to better correct the motion in the third
dimension by reducing out-of-plane motion artifacts. However,
although the proposed algorithm can be easily extended to
3D, the main challenge would likely remain in the design
of a reliable 3D MR-sequence. In such acquisition, the scan
time increase would render the sequence more sensitive to
intra-scan motion and fat/blood signal regrowth. Echo volumar
imaging [34] may help to decrease the scan time of such
3D acquisition, however, its associated low resolution and
its robustness against the latter artifacts should be carefully
investigated.

A robust formulation of equation 5 using robust metrics
such as Humber function or Lagrangian [35], especially in the
first two terms of equation 5 should be investigated in order to
account for both brightness variation and smoothness violation
(motion discontinuities). Also, the integration of a median
filter at each iteration step of the iterative minimization scheme
has to be carefully investigated since significant improve-
ments have been achieved in this direction [36]. In addition,
the integration of additional regularization terms such as in
[17] should be investigated. Although these approaches may
improve the motion estimation quality, the balance between
robustness, simplicity (with regard to the number of free
parameters) and performance has to be carefully investigated
in the perspective of a clinical use. The presented framework
also opens great perspectives for integration of other motion
information such as navigator or ultrasonic echoes.



The method shows a promising potential for clinical in-
tegration for two reasons. First, from its simplicity it only
requires a small intervention of the staff physician (only for
the mask drawing that only requires few seconds ~5s) and
few free parameters to be tuned a priori. Then, the employed
values of these parameters were always identical for both
heart and kidney studies demonstrating the non-necessity of
a re-calibration of the parameters for each sequence and the
robustness against the choice of the parameters.

Finally, although the feasibility of the method has been
shown on healthy volunteers, its feasibility on other organs
such as the liver or on patients with, for example, irregular
cardiac motion remains to be investigated. In addition, the
method has been tested in conditions of a non invasive
procedure, its feasibility in the presence of invasive devices,
such as a catheter, will have to be evaluated in future studies.

V. CONCLUSION

In this paper a new regularization constraint of the energy
functional of the H&S method was presented. This approach
represents a flexible solution to integrate constraint point
displacements into the optical flow estimation. This extension
has been demonstrated to render optical flow methods well
suited to accurately estimate the motion for interventional
MRI on mobile organs in presence of intrusive structures.
Significant improvements were achieved compared to the Horn
& Schunck approach. Finally, the use of parallel processing
on affordable commodity graphics hardware demonstrates the
feasibility of the algorithm in real time with very short latency
required for interventional procedures.
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