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The deformation and flow of disordered solids, such as metallic glasses and concentrated
emulsions, involves swift localized rearrangements of particles that induce a long-range
deformation field. To describe these heterogeneous processes, elastoplastic models han-
dle the material as a collection of ‘mesoscopic’ blocks alternating between an elastic
behavior and plastic relaxation, when they are too loaded. Plastic relaxation events
redistribute stresses in the system in a very anisotropic way. We review not only the
physical insight provided by these models into practical issues such as strain localization,
creep and steady-state rheology, but also the fundamental questions that they address
with respect to criticality at the yielding point and the statistics of avalanches of plastic
events. Furthermore, we discuss connections with concurrent mean-field approaches and
with related problems such as the plasticity of crystals and the depinning of an elastic
line.
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FREQUENTLY USED NOTATIONS

Σ Macroscopic shear stress
Σy Macroscopic yield stress
σ Local shear stress
σy Local yield stress
γ Shear strain
γ̇ Shear rate

EPM Elastoplastic model
MD Molecular dynamics

rhs (lhs) right-hand side (left-hand side)
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FIG. 1 Overview of amorphous solids. From left to right, top row : cellular phone case made of metallic glass (1); toothpaste
(2); mayonnaise (3); coffee foam (4); soya beans (5). Second row : a transmission electron microscopy (TEM) image of a
fractured bulk metallic glass (Cu50Zr45Ti5) by X. Tong et. al (Shanghai University, China); TEM image of blend (PLLA/PS)
nanoparticles obtained by miniemulsion polymerization, from L. Becker Peres et al. (UFSC, Brazil); emulsion of water droplets
in silicon oil observed with an optical microscope by N. Bremond (ESPCI Paris); a soap foam filmed in the lab by M. van
Hecke (Leiden University, Netherlands); thin nylon cylinders of different diameters pictured with a camera, from T. Miller et al.
(University of Sydney, Australia). The white scale bars are approximate. Just below, a chart of different amorphous materials,
classified by the size and the damping regime of their elementary particles. At the bottom: some popular modeling approaches,
arranged according to the length scales of the materials for which they were originally developed. STZ stands for the shear
transformation zone theory of Langer (2008), and SGR for the soft glassy rheology theory of Sollich et al. (1997).

INTRODUCTION

19th-century French Chef Marie-Antoine Carême (1842) claims that ‘mayonnaise’ comes from the French verb
‘manier ’ (‘to handle’), because of the continuous whipping that is required to make the mixture of egg yolk, oil, and
vinegar thicken. This etymology may be erroneous, but what is certain is that the vigorous whipping of these liquid
ingredients can produce a viscous substance, an emulsion consisting of oil droplets dispersed in a water-based phase.
At high volume fraction of oil, mayonnaise even acquires some resistance to changes of shape, like a solid; it no longer
yields to small forces, such as its own weight. Similar materials, sharing solid and liquid properties, pervade our
kitchens and fridges: Chantilly cream, heaps of soya grains or rice are but a couple of examples. They also abound on
our bathroom shelves (shaving foam, tooth paste, hair gel), and in the outside world (sand heaps, clay, wet concrete),
see Fig. 1 for further examples. All these materials will deform, and may flow, if they are pushed hard enough, but
will preserve their shape otherwise. Generically known as amorphous (or disordered) solids, they have no more in
common than what the etymology implies: their structure is disordered, that is to say, deprived of regular pattern at
“any” scale, as liquids, but they are nonetheless solid. So heterogeneous a categorization may make one frown, but
has proven useful in framing a unified theoretical description (Barrat and de Pablo, 2007). In fact, the absence of long
range order or of a perceptible microstructure makes the steady-state flow of amorphous solids simpler, and much less
dependent on the preparation and previous deformation history, than that of their crystalline counterparts. A flowing
amorphous material is therefore a relatively simple realization of a state of matter driven far from equilibrium by an
external action, a topic of current interest in statistical physics.

A matter of clear industrial interest, the prediction of the mechanical response of such materials under exter-
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nal/applied stresses or deformations is a challenge for Mechanical Engineering, too. This problem naturally brings
in its wake many questions of fundamental physics. Obviously, it is not exactly solvable in closed form, since it
involves the coupled mechanics equations of the N≫ 1 elementary constituents of the macroscopic material; this is
a many-body problem with intrinsic disorder and very few symmetries. Two paths can be considered as alternatives:
(i) searching for empirical laws in the laboratory, and/or (ii) proposing approximate, coarse-grained mathematical
models for the materials. The present review is a pedagogical journey along the second path.

Along this route, substantial assumptions are made to simplify the problem. The prediction capability of models
hinges on the accuracy of these assumptions. Following their distinct interests and objectives, different scientific
communities have adopted different modeling approaches. Material scientists tend to include a large number of
parameters, equations and rules, in order to reproduce simultaneously different aspects of the material behavior.
Statistical physicists aspire for generality and favor minimal models, or even toy models, in which the parameter
space is narrowed down to a few variables. The distinctive family of “elasto-plastic” models (EPM) is located more
or less at the interface (or in a region of overlap) between the foregoing approaches: as simple models, they aim
to describe a general phenomenology for all amorphous materials, but they may also include enough meaningful
physical parameters to address material particularities, in view of potential applications. To do so, they operate
at a mesoscopic scale and rely on simple assumptions to connect the microsopic phenomenology to the macroscopic
behavior, therefore occupying a central position in the endeavor to bridge scales in the field (Rodney et al., 2011).
An appropriate comparison could be made with classical lattice models of magnetic systems, which permit the
exploration of a number of fundamental and practical issues, by retaining a few key features such as local exchange
and long range dipolar interactions, spin dynamics, local symmetries, etc., without incorporating directly the more
microscopic ingredients about the electronic structure.

FIG. 2 Scientific position of elastoplastic modeling.

In this review, we shall describe the current status of
these EPM, starting in Sec. I with the microscopic observa-
tions that guided the coarse-graining efforts. We will dis-
cuss several possible practical implementations of coarse-
grained systems of interacting elastoplastic elements, consid-
ering the possible attributes of the building blocks (Sec. II)
and the more technical description of their mutual inter-
actions (Sec. III). Section IV is then concerned with the
widespread approximations of the effect of the stress fluc-
tuations resulting from these interactions. In Sec. V and VI,
we describe the understanding of the macroscopic response of
amorphous solids to a shear deformation that can be gained
from the study of EPM. Section VII focuses on more micro-
scopic and statistical features, notably the temporal and spa-
tial organization of stress fluctuations in ‘avalanches’, while
Sec. VIII gives a short perspective on the much less stud-
ied phenomena of creep and aging. The review ends on a
discussion of the relation between EPM and several other
descriptions of mechanical response in disordered systems,
in Sec. IX, and some final outlooks.

I. GENERAL PHENOMENOLOGY

A. What are amorphous solids?

From a mechanical perspective, amorphous solids are nei-
ther perfect solids nor simple liquids.

Albeit solid, some of these materials are made of liquid to a large extent and appear soft. Nevertheless, at rest
they preserve a solid structure, for example, challenging gravity, or offering elastic resistance to deformations, and will
flow meekly only if a sufficient load is applied to them. Accordingly, in the rheology of complex fluids (Bonn et al.,
2017), they are often referred to as “yield stress materials”. Foams and emulsions, that is, densely packed bubbles
or droplets dispersed in a continuous liquid phase, owe their solidity to the action of surface tension, which strives
to restore the equilibrium shape of their constituent bubbles or droplets upon deformation. Their elastic moduli are
then approximately given by the surface tension divided by the bubble or droplet size, which may range from tens
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FIG. 3 Schematic macroscopic response of amorphous solids to deformation. (Left) evolution of the shear stress Σ with
the imposed shear strain γ, with a stress overshoot Σmax. In the event of fracture, the stress dramatically drops down.
(Right) Steady-state flow curve, i.e., dependence of the steady-state shear stress Σss on the shear rate γ̇ , represented with
semi-logarithmic axes. If the material shear bands, a stress plateau is generally observed.

of microns to several millimeters; a few hundred Pascal would be a good order of magnitude. Colloidal glasses, on
the other hand, are dense suspension of solid particles of less than a micron in size, which makes them light enough
for Brownian agitation to impede sedimentation. They rely on entropic forces to maintain their reference structure;
values between 10 and 100 Pa are often encountered for their shear moduli.

Poles apart from these soft solids, “hard” amorphous solids comprise oxyde or metallic glasses, as well as glassy
polymers. They are typically made of much smaller particles than their soft counterparts. Indeed, very roughly
speaking, the elastic moduli are inversely proportional to the size of the constituents. (Granular media, in which the
elastic moduli depend on the material composing the grains and the applied pressure, are obviously an exception to
this rule of thumb.) For instance, the atoms that compose the metallic or silica glasses live in the Angström scale,
and these materials have very large Young moduli, of order 100 GPa (somewhat below for silicate glasses, sometimes
above for metallic glasses). These atomic glasses are obtained from liquids when temperature is lowered below the
glass transition temperature while crystallization is avoided. To do so, high cooling rates of typically 105− 106K · s−1

are required for metallic glasses (Greer, 1995; Greer and Ma, 2007), whereas values below 1K · s−1 may be used for
oxide glasses. After a certain amount of deformation, brittle materials will break without incurring significant plastic
(irretrievable) deformation (the typical example would be silica glasses, although this has been questioned (Lacroix
et al., 2012)), whereas ductile materials will deform plastically before breaking.

B. What controls the dynamics of amorphous solids?

Another distinction regards the nature of the excitations that can alter the structural configuration of the system.

1. Athermal systems

When the elementary constituent sizes are large enough (& 1µm) to neglect Brownian effects (thermal fluctuations),
the materials are said to be athermal. Dry granular packings, dense granular suspensions, foams, and emulsions (see
Fig. 1) belong in this category. An external force is required to activate their dynamics and generate configurational
changes. Typical protocols for externally driving the system include: shearing it by rotating the wall of a rheome-
ter (Barnes et al., 1989), deforming it by applying pressure in a given direction, or simply making use of gravity if
the material lies on a tilted plane (Coussot and Boyer, 1995). Rheometers control either the applied torque T or
the angular velocity Ω of the rotating part. In the former case, the applied macroscopic shear stress is kept fixed,
at a value Σ = T

2πhR2 on a rotating cylinder of radius R and height h (Fardin et al., 2014), while one monitors the
resulting shear strain γ or shear rate γ̇ if the material flows steadily. Conversely, strain-controlled experiments consist
in imposing γ(t) or γ̇ and monitoring the stress response Σ(t).

Now, how do amorphous solids respond to such external forces? For small applied stresses Σ, the deformation
is elastic, i.e., mostly reversible (see Fig.3[left]). Submitted to larger stresses, the material shows signs of plastic
(irreversible) deformation; but the latter ceases rapidly, unless Σ overcomes a critical threshold Σy known as yield



7

stress. For Σ > Σy, the material yields. This process can culminate in macroscopic fracture; for brittle materials like
silica glass, it always does so. Contrariwise, most soft amorphous solids will finally undergo a stationary plastic flow.
The ensuing flow curve Σ = f (γ̇) in the steady state is often fitted by a Herschel-Bulkley law

Σ = Σy +Aγ̇n, (1)

with n > 0 (see Fig. 3[right]).

The transition between the solid-like elastic response and the irreversible plastic deformation is known as yielding
transition. Statistical physicists often regard it as an example of a dynamical phase transition, an out-of-equilibrium
phenomenon with characteristics similar to equilibrium phase transitions (Jaiswal et al., 2016; Lin et al., 2015, 2014b).

2. Thermal systems

On the other hand, thermal fluctuations may play a role in materials with small enough (. 1µm) elementary
constituents, such as colloidal and polymeric glasses, colloidal gels, silicate and metallic glasses. Still, these materials
are out of thermodynamic equilibrium and they do not sample the whole configuration space under the influence
of thermal fluctuations. It follows that different preparation routes (and in particular different cooling rates) tend
to produce systems with different mechanical properties. Even the waiting time between the preparation and the
experiment matters, because the system’s configuration evolves meanwhile, through activated events: this is the aging
phenomenon. In particular, the high cooling rates used for quenching generate a highly heterogeneous internal stress
field in the material (Ballauff et al., 2013). In some regions, particles manage to rearrange geometrically, minimizing
in part the interaction forces among them, but many other regions are frozen in a highly strained configuration. Slow
rearrangements will take place at finite temperature and tend to relax locally strained configurations (“particles break
out of the cages made by their neighbors”), along with the stress accumulated in them.

That being said, the elastic moduli are usually only weakly affected by the preparation route, i.e., the cooling
rate (Ashwin et al., 2013) and the waiting time (Divoux et al., 2011b), while other key features of the transient
response to the applied shear are often found to depend on it. This sensitivity to preparation particularly affects
the overshoot in the stress vs. strain curve, depicted in Fig. 3 and used to define the static yield stress Σmax, and
is observed in experiments (Divoux et al., 2011b) as well as numerical simulations (Patinet et al., 2016; Rottler
and Robbins, 2005). In soft materials that can undergo stationary flow, this issue may be deemed secondary; the
flow creates a nonequilibrium stationary state, and the memory of the initial preparation state is erased after a finite
deformation. On the other hand, in systems that break at finite deformation, the amount of deformation before failure
is of paramount importance, and so is its possible sensitivity to the preparation scheme, due to different abilities of
the system to localize deformations (see Sec. V).

3. Potential Energy Landscape

The Potential Energy Landscape (PEL) picture offers an illuminating perspective to understand the changes as-
sociated with aging in thermal systems (Doliwa and Heuer, 2003a,b; Goldstein, 1969). The whole configuration of
the system (particle coordinates and, possibly, velocities) is considered as a “state point” Γ that evolves on top of a
hypersurface V (Γ) representing the total potential energy. Despite the high dimension of such a surface (proportional
to the number N of particles), it can be viewed as a rugged landscape, with hills and nested valleys; the number of
local minima generally grows exponentially with N (Wales and Bogdan, 2006). Contrary to crystals, glassy (disor-
dered) states do not minimize the free energy of the system; aging thus consists in an evolution towards lower-energy
states (on average) through random, thermally activated jumps over energy barriers, or more precisely saddle points
of the PEL. As the state point reaches deeper valleys, the jumps become rarer and rarer; the structure stabilizes, even
though some plasticity is still observed locally (Ruta et al., 2012).

Under external loading, the system responds on much shorter time scales than for aging. Accordingly, some thermal
systems may be treated as athermal, for all practical purposes. Nonetheless, interesting physical behavior emerges
when these two time scales compete (either because the temperature is high enough, or because the system is driven
very slowly) (Chattoraj et al., 2010; Johnson and Samwer, 2005; Rottler and Robbins, 2005; Shi and Falk, 2005;
Vandembroucq and Roux, 2011).
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C. Jagged stress-strain curves and localized rearrangements

The contrasting inelastic material responses to shear, ranging from failure to flow, may give the impression that
there is a chasm between “hard” and “soft” materials. They are indeed often seen as different fields, plasticity for
hard solids versus rheology for soft materials. Nevertheless, the gap is not so wide as it looks. Indeed, some hard
solids may flow plastically to some extent without breaking, while soft solids retain prominent solid-like features under
flow at low enough shear rates, unlike simple liquids.

To start with, consider the macroscopic response to a constant stress Σ (or shear rate γ̇) of a foam (Lauridsen et al.,
2002) or a metallic glass (Wang et al., 2009): Instead of a smooth deformation, the strain evolution with time γ(t)
(or stress evolution Σ(t), respectively) is often found to be jagged. The deeper the material lies in its solid phase, the
more “serrated” the curves (Dalla Torre et al., 2010; Sun et al., 2012). Serrated curves are not specific features of the
deformation of amorphous solids; they are observed in all “stick-slip” phenomena. Indeed, the system is repetitively
loaded until a breaking point, where an abrupt discharge (energy release) occurs. Interestingly, this forms the basis of
the elastic rebound theory proposed by Reid (1910) after the 1906 Californian earthquake. Other elementary examples
include pulling a particle with a spring of finite stiffness in a periodic potential, a picture often used in crystalline
solids to describe the motion of dislocations - the elementary mechanism of plasticity. In the plastic flow of amorphous
solids, potential energy is accumulated in the material in the form of elastic strain, until some rupture threshold is
passed. At this point, a plastic event occurs, with a release of the stored energy and a corresponding stress drop.
The precise nature of the plastic event that gives rise to the stress drop, however, will strongly depend on the scale
of observation.

Once again, the PEL perspective is enlightening: in this perspective, the external driving imposes a (usually time-
dependent) constraint on the regions that the state point can visit. Mathematically, this is enforced by means of a
Lagrange multiplier, which effectively tilts the potential V (Γ) into

Ṽ (Γ, γ) ≡ V (Γ)− Ω0Σγ, (2)

where Ω0 is the volume of the system and Σ the macroscopic stress. As the imposed macroscopic strain γ increases,
some of the barriers surrounding the state point subside, until one of them flattens so much that the system can slide
into another valley without energy cost. This marks the onset of a plastic event; for smooth potentials, close to the
topological change at γ = γc, Gagnon et al. (2001); Maloney and Lacks (2006) demonstrated that the barrier height
scales as

∆V ∼ (γc − γ)
3/2
. (3)

Note that this instability can be anticipated if thermal fluctuations are present. In summary, in the PEL, deformation
is a succession of barrier-climbing phases (elastic loading) and descents. (For a discussion on the properties of the
PEL of a model glass, see, e.g., (Doliwa and Heuer, 2003a)) . The first step in building a microscopic understanding
of the flow process is to identify the nature of these plastic events.

But what can be said about the microscopic deformation of atomic or molecular glasses when the motion of atoms
or molecules remains virtually invisible to direct experimental techniques? In the 1970s, inspiration was brought by
the better known realm of crystals. As early as 1934, with the works of Orowan, Polanyi and G. I. Taylor, it was
known that the motion of crystalline defects (dislocations) is the main lever of their (jerky) deformation. Could similar
static structural defects be identified in the absence of a regular structure? The question has been vivid to the present
day, so that it is fair to say that, at least, they are are much more elusive than in crystals. But the main inspiration
drawn from research on crystals was in fact of more pragmatic nature: Bragg and Nye (1947) showed that “bubble
rafts”, i.e., monolayers of bubbles, could serve as upscaled models of crystalline metals and provide insight into the
structure of the latter. The lesson was simple: If particles in crystals are too small to be seen, let us make them
larger. Some thirty years later, the idea was translated to disordered systems by Argon and Kuo (1979), who used
bidisperse bubble rafts as models for metallic glasses. Most importantly, they observed the prominence of singularities
in the deformation, more precisely, rapid rearrangements involving a few bubbles. Princen and Kiss (1986) suggested
that the elementary rearrangement in such systems was a local topological change of the foam structure known as T1
event and involving four bubbles (see Fig. 4a).

Evidence

Since then, evidence for such swift localized rearrangements has been amassed in very diverse systems, both exper-
imentally and numerically. Here, we shall simply list some of the works that followed Argon and Kuo (1979)’s and
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FIG. 4 Localized rearrangements. (a) T1 event in a strained bubble cluster. From (Biance et al., 2009). (b) Sketch of
a rearrangement. From (Bocquet et al., 2009). (c) Instantaneous changes of neighbors in a slowly sheared colloidal glass.
Adapted from (Schall et al., 2007). Particles are magnified and colored according to the number of nearest neighbors that they
lose.

early investigations on foams and emulsions (Princen, 1983, 1985; Princen and Kiss, 1986, 1989):
- simple numerical glass models like Lennard-Jones glasses (Falk and Langer, 1998; Maloney and Lemâıtre, 2004;

Maloney and Lemâıtre, 2006; Tanguy et al., 2006) and other systems (Gartner and Lerner, 2016),
- numerical models of metallic glasses (Rodney and Schuh, 2009; Srolovitz et al., 1983),
- numerical models of silicon glasses (amorphous silicon) (Albaret et al., 2016; Fusco et al., 2014),
- numerical models of polymer glasses (Papakonstantopoulos et al., 2008; Smessaert and Rottler, 2013)
- dense colloidal suspensions (Chikkadi and Schall, 2012; Jensen et al., 2014; Schall et al., 2007),
- dense emulsions (Desmond and Weeks, 2015),
- dry and wet foams (Biance et al., 2009, 2011; Debregeas et al., 2001; Kabla and Debrégeas, 2003),
- granular matter (Amon et al., 2012, 2013; Denisov et al., 2016; Le Bouil et al., 2014).
Admittedly, the details of these rearrangements do vary between the systems (see below). But, in all cases, they

are the essential events whereby the macroscopic deformation is transcribed into the material structure, beyond the
elastic response; their essential characteristic - as compared to the crystalline case - is their strong spatial localization.
In the following, we shall refer to these events, which are the building bricks of EPM, as “plastic events”1. Since
these rearrangements must contribute to the deformation, they will retain part of the symmetry of the externally
imposed shear and can thus be modeled as localized shear deformations (or “shear transformations”), if variations
are overlooked, whether correctly or not.

Quantitative description

Although these rearrangements can sometimes be spotted visually, a more objective and quantitative criterion for
their detection is desirable. Making use of the inelastic nature of these transformations, Falk and Langer (1998)
pioneered the use of D2

min, a quantity that measures how non-affine the local displacements around a particle are.
More precisely, the relative displacement of neighboring particles between successive configurations is computed, and
compared to the one that would result from a locally affine deformation; D2

min is the deviation obtained by optimizing
the parameters of the local affine deformation to minimize the deviation. This quantity has been used heavily since
then (Chikkadi and Schall, 2012; Chikkadi et al., 2011; Jensen et al., 2014; Schall et al., 2007), Generally speaking, a
very strong localization of events is observed, with spatial maps of D2

min that consist of a few active regions of limited
spatial extension, separated by regions of (locally) affine and elastic deformation.

Other indicators of nonaffine transformations have also been used. For instance, different observables, including
the strain component along a neutral direction (say, εyz if the applied strain is along εxy in a 3D system) (Schall
et al., 2007), the field of deviations from the uniform transformation of particle positions, the count of nearest-
neighbor losses (Chikkadi and Schall, 2012) or the identification of regions with large (marginal) particle velocities,
are also good options to detect rearrangements. Up to differences in their intensities, these methods were shown to
provide similar information about shear transformations in slow flows of colloidal suspensions (Chikkadi and Schall,
2012). Alternative methods take advantage of the irreversibility of plastic rearrangements, by reverting every strain
increment δγ imposed on the system (γ → γ + δγ → γ) in a quasistatic shear protocol and comparing the reverted
configuration with the original one (Albaret et al., 2016). Differences will be seen in the rearrangement cores (which
underwent plasticity) and their surroundings (which were elastically deformed by the former). To specifically target

1 The reader should however be warned that the expression was also used in the literature to refer to cascades of such localized rearrange-
ments (Fusco et al., 2014; Maloney and Lemâıtre, 2006; Tanguy et al., 2006).
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the anharmonic forces active in the core, shear can be reverted partially, to harmonic order, by following the Hessian
upstream instead of performing a full nonlinear shear reversal (Lemâıtre, 2015).

Some reservations should now be made with respect to the picture of clearly separated localized transformations.
First, the validity of the binary picture distinguishing elastic and plastic regions has been challenged for hard particles,
such as grains (Bouzid et al., 2015a). More generally, near the jamming transition, the complexity of particle motion
and the spatial extent of low-energy vibration modes may jeopardize the accuracy of this vision (Andreotti et al.,
2012). It is also clear that as the temperature or the shear rate are increased and the material departs from solidity,
thermal or mechanical noise may wash out the picture of well isolated, localized events. Nevertheless, it has recently
been argued that localized rearrangements can still be identified at relatively high temperatures. For instance, these
rearrangements leave an elastic imprint in supercooled liquids via the elastic field that each of them induce; this
imprint is revealed when one studies suitable stress or strain correlation functions (Chattoraj and Lemâıtre, 2013;
Illing et al., 2016; Lemâıtre, 2014).

Variations

These quantitative indicators of microscale plasticity have brought to light substantial variations and differences
between actual rearrangements and idealized shear transformations. Even though EPM will generally turn a blind
eye to this variability, let us shortly mention some of its salient features:

First, the size of plastically rearranging regions varies from a handful of particles in foams, emulsions and colloidal
suspensions (for instance, about 4 particles in a sheared colloidal glass, according to Schall et al. (2007)) to a couple
of dozens or hundreds in metallic glasses (10 to 30 in the numerical simulations of Fan et al. (2015), 25 for the as-cast
glass and 34 for its annealed counterpart in the indentation experiment of Choi et al. (2012), 200 to 700 in the shearing
experiments of Pan et al. (2008)). Note that, for metallic glasses, the indicated sizes are not backed out by direct
experimental evidence, but are based on activation energy calculations.

Albaret et al. (2016) proposed a detailed numerical characterization of plastic rearrangements in their amorphous
silicon model by fitting the particle displacements during plastic events with the expected (Eshelby) elastic fields
around ellipsoidal transformations zones with spontaneous deformation ε? (where the tensor ε? was fitted). Although

rearrangements seem to have a typical linear size, around 3
◦
A, they found that the most robust quantity is actually the

product of ε? with the inclusion volume Vin. Furthermore, the diagonal components of ε?Vin (dilation or compression)
only represent about 5% of the deviatoric components (shear), which confirms the prevalent shear nature of the
transformation. It should also be mentioned that the diagonal components were either of positive or negative, i.e.,
either of dilational or of compressional nature depending on the specificities of the implemented potential: Plastic
rearrangements are not always dilational. Finally, the authors of the study were able to reproduce the stress vs.
strain curve on the basis of the (strain-dependent) shear modulus and the fitted local elastic strain releases ε?. This
confirms that localized plastic rearrangements emitting an Eshelby field are the unique elementary blocks of the plastic
response.

Secondly, the shape of the rearrangements is also subject to variations. In quiescent systems rearrangements through
string-like motion of particles seem to be more accessible (Keys et al., 2011), even though shear transformations have
also been claimed to be at the core of structural relaxation in deeply supercooled liquids (Lemâıtre, 2014). The
application of a macroscopic shear clearly favors the latter type of rearrangements. Albeit facilitated by the driving,
these transformations may nonetheless be predominantly activated by thermal fluctuations in thermal systems (Schall
et al., 2007). There is some (limited) indication that the characteristics of the rearranging regions change as one
transits from mechanically triggered events to thermally activated ones, for instance with a visible increase in the size
of the region in metallic glass models (Cao et al., 2013).

Thirdly, owing to the granularity of the rearranging region (which is not a continuum!), the displacements of the
individual particles in the region do not strictly coincide with a shear transformation, i.e., r → r+ ε · (r − rc) (where
r generically refers to a particle position); incidentally, this is the major reason why the observable D2

min detects
plastic rearrangements.

Structural origins of rearrangements

What determines a region’s propensity to undergo a rearrangement? Microstructural properties underpinning the
weakness of a region (i.e., how prone to rearranging it is) have long been searched. In the first half of the 20th century
efforts were made to connect viscosity with the available free volume per particle, notably by using (contested)
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(a) (b) (c)

FIG. 5 Local structural determinants for the onset of a rearrangement. (a) Contour maps of the particle-based participation
ratio in the 1% softest vibrational modes for two numerical samples of Cu64Zr36 metallic glass (Ding et al., 2014). (b) Correlation
between the locations of future plastic rearrangements and diverse local properties in an instantaneously quenched binary glass
model. The following properties have been considered: local yield stress (τy), participation in the soft vibrational modes (PF),
lowest shear modulus (2µI), local potential energy (PE), short-range order (SRO), local density (ρ). From (Patinet et al.,
2016). (c) Snapshot of the configuration of a compressed granular pillar, with particles colored from gray to red according to
their D2

min value. Particles identified as soft by the SVM have thick black contours. From (Cubuk et al., 2015).

experimental evidence from polymeric materials (Batschinski, 1913; Doolittle, 1951; Fox Jr and Flory, 1950; Williams
et al., 1955). The idea that local variations of free volume Vf control the local weakness have then been applied
widely to systems of hard particles (metallic glasses, colloidal suspensions, granular materials) (Spaepen, 1977). Falk
and Langer (1998)’s Shear Transformation Zone theory originally proposed to distinguish weak zones prone to shear
transformations on the basis of this criterion. Hassani et al. (2016) have invalidated criteria based on the strictly local
free volume but showed that a nonlocal definition distinctly correlates with the deformation field, as do potential-
energy based criteria (Shi et al., 2007). Paying closer attention to the microstructure, Ding et al. (2014) proved the
existence of correlations between rearrangements and geometrically unfavored local configurations (whose Voronoi cell
strongly differs from an icosahedra) in model binary alloys.

Linear properties have also been considered, with the hope that regions that are soft in terms of their linear
response would also be weak in their nonlinear response. Regions with low elastic shear moduli were indeed shown to
concentrate most of the plastic activity (Tsamados et al., 2009), even though no yielding criterion based on the local
stress or strain is valid uniformly throughout the material (Tsamados et al., 2008). Focusing on vibrational properties,
Widmer-Cooper et al. (2008) provided evidence that in supercooled liquids the particles that vibrate most in the M
lowest energy modes (i.e., those with a high participation fraction in the M softest modes, where M is arbitrarily
fine-tuned), are more likely to rearrange. This holds true at zero temperature (Manning and Liu, 2011) and also for
metallic and polymer glasses (Smessaert and Rottler, 2015) (see Fig. 5). Note that this enhanced likelihood should
be understood as a statistical correlation, beating random guesses by a factor of 2 or 3 or up to 7 in some cases,
rather than as a systematic criterion. However, in the cases where the rearrangement spot is correctly predicted,
the soft-mode-based prediction for the direction of motion during the rearrangement is fairly reliable (Rottler et al.,
2014).

If one is allowed to probe nonlinear local properties, then Patinet et al. (2016) showed that predictions based on
the local yield stress, numerically measured by deforming the outer medium affinely, outperform criteria relying on
the microstructure and the linear properties, as indicated in Fig. 5c.

Leaving behind traditional approaches, a couple of recent papers showed that it is possible to train an algorithm
to recognize the atomic-scale patterns characteristic of a glassy state and spot its ”soft” regions (Cubuk et al.,
2015, 2016; Schoenholz et al., 2016). In this Machine Learning approach, rather than focusing on typical structure
indicators, a large number of ‘features’ quantified for each particle is used, concretely M=166 ‘structure functions’,
indicating e.g. the radial and angular correlations between an atom and its neighbors (Behler and Parrinello, 2007).
Adopting both an experimental frictional granular packing and a bidisperse glass model, the authors focused on the
identification of local softness and its relation with the dynamics of the glass transition. First, with computationally
costly shear simulations and measurements of nonaffine displacements via D2

min, the particles that ‘move’ (i.e., break
out of the cages formed by their neighbors) are identified as participating in a plastic rearrangement and used to
train a Support Vector Machine (SVM) algorithm. Each particle’s environment is handled as a point in the high-
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dimensional vector space parameterized by the structure functions and the algorithm identifies the hyperplane that
best separates environments associated with ‘moving’ particles and those associated with ‘stuck ones’ in the training
set. Once trained, the algorithm is able to predict with high accuracy if a particle will ‘move’ or not when the material
is strained, depending on its environment in the quiescent configuration, prior to shear.

D. Nonlocal effects

Once a rearrangement is triggered, it will deform the medium over long distances, in the same way as an earthquake
is felt a large distance away from its epicenter. This may trigger other rearrangements at a distance, which rationalizes
the presence of nonlocal effects in the flow of disordered solids. Importantly, this mechanism relies on the solidity of
the medium, which is key to the transmission of elastic waves.

These long-range interactions and the avalanches that they may generate justify the somewhat hasty connection
sketched above between the serrated macroscopic stress curves and the abrupt localized events at the microscale.
The problem is that in the thermodynamic limit any one of these micro-events should go unnoticed macroscopically.
For sure, the thermodynamic limit is not reached in some materials, notably those with large constituents, such as
foams and grains, but also in nanoscale experiments on metallic glasses and numerical simulations. On the other
hand, in the bulk, without collective effects and avalanches involving a large number of plastic events, the impact of
microscopic events on the macroscopic response could not be explained. Since mesoscale plasticity models intend to
capture these collective effects, a description of the interactions at play is required.

Idealized elastic propagator

Let us start by focusing on the consequence of a single shear transformation. Its rotational part can be overlooked
because its effect is negligible in the far field, as compared to deformation, represented by the linear strain tensor

ε = ∇u+∇u>

2 , where u stands for the displacement. Recall that a shear deformation, say ε (r ≈ 0) =

(
0 1
1 0

)
in

two dimensions, consists of a stretch along the direction θ = π
4 [π], in polar coordinates, and a contraction along the

perpendicular direction. The induced displacement field u simply mirrors this symmetry, with displacements that
point outwards along θ = π

4 [π] and inwards along θ = 3π
4 [π]. This leads to a dipolar azimuthal dependence for u and

a four-fold (‘quadrupolar’) one for its symmetrized gradient ε. More precisely, by imposing mechanical equilibrium
on the stress Σ, viz.,

∇ ·Σ = 0

in an incompressible medium (∇ · u = 0) with a linear elastic law, Σdev ∝ εdev (where the superscript denotes the
deviatoric part), Picard et al. (2004) derived the induced strain field in two dimensions,

εxy(r, θ) ∝ cos (4θ)

r2
. (4)

Here, only one of the strain components is expressed, but the derivation is straightforwardly extended to a tensorial
form (Budrikis et al., 2017; Nicolas and Barrat, 2013a). Experiments on colloidal suspensions (Jensen et al., 2014;
Schall et al., 2007) and emulsions (Desmond and Weeks, 2015) as well as numerical works (Kabla and Debrégeas,
2003; Maloney and Lemâıtre, 2006; Tanguy et al., 2006) have confirmed the relevance of Eq. 4, as illustrated in Fig. 6.

Exact induced field and variations

The strain field of Eq. 4 is valid in the far field, or for a strictly pointwise shear transformation. Yet, the response
can be calculated in the near field following Eshelby (1957)’s works, by modeling the shear transformation as an
elastic inclusion bearing an eigenstrain ε?, i.e., spontaneously evolving towards the deformed configuration ε?. This
handling adds near-field corrections to Eq. 4.

Describing a plastic rearrangement with an elastic eigenstrain is imperfect in principle, but the difference mostly
affects the dynamics of stress relaxation (Nicolas and Barrat, 2013a). In fact, Eshelby’s expression perfectly reproduces
the average displacement field induced by an ideal circular shear transformation in a 2D binary Lennard-Jones glass
(Puosi et al., 2014), although significant fluctuations around this mean response arise because of elastic heterogeneities.
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FIG. 6 Average stress redistribution around a shear transformation. (a) Experimental measurement in very dense emulsions.
Adapted from (Desmond and Weeks, 2015). (b) Average response to an imposed shear transformation obtained in atomistic
simulations with the binary Lennard-Jones glass used by Puosi et al. (2014). (c) Simplified theoretical form, given by Eq. 4.
From (Martens et al., 2012). Note that the absolute values are not directly comparable between the graphs and that, in
subfigures b and c, the central block is artificially colored.

The numerical study was extended to the deformation of a spherical inclusion in 3D, and to the nonlinear regime, by
Priezjev (2015).

Besides elastic heterogeneity, further deviations from the Eshelby response result from the difference between an
actual plastic rearrangement and the idealized shear transformation considered here. For instance, Cao et al. (2013)
report differences between the medium or far-field response to rearrangements in the shear-driven regime as opposed
to the thermal regime and that only the former quantitatively obey Eshelby’s formula. It might be that the dilationnal
component of the rearrangement, discarded in the ideal shear transformation, is important in the thermal regime.

The salient points discussed above in the rheology of amorphous solids seem to build a coherent scenario, consisting
of periods of elastic loading interspersed with swift localized rearrangements of particles. These plastic events may
interact via the long-range anisotropic elastic deformations that they induce. These elements are the phenomenological
cornerstones of the EPM described in the following section.

II. THE BUILDING BLOCKS OF ELASTOPLASTIC MODELS (EPM)

A. General philosophy of the models

The simplicity and genericity of the basic flow scenario described above has led to the emergence of multiple, largely
phenomenological, coarse-grained models. These models are generally described as “elasto-plastic” or sometimes
“discrete automaton” or “mesoscopic” models for amorphous plasticity. They incorporate the basic flow scenario by
decomposing the system into “mesoscopic” blocks (presumably of the typical size of a rearrangement) in which the
elastic behavior is interrupted by plastic events. With a few exceptions, they are implemented on a regular lattice,
so they are effectively a subclass of discrete automata evolving according to predefined rules. Schematically, a model
can be specified by the following set of rules (Rodney et al., 2011):

R1.: a (default) linear elastic response of each mesoscopic block,

R2.: a local yield criterion that determines the onset of a plastic event (n : 0→ 1),

R3.: a redistribution of the stress during plasticity that gives rise to long range interactions among blocks,

R4.: a recovery criterion that fixes the end of a plastic event (n : 1→ 0),

where the activity n is defined as n = 0 if the block is purely elastic, and n = 1 otherwise.
Rules R2 and R4 determine the dynamical rules controlling the manner in which a region switches from elastic to

plastic and conversely, for instance by specifying the rates associated with the transitions

n : 0↔ 1,

whereas R1 and R3 define the mechanical response of the material for a given set of plastically active regions (ongoing
plastic events). This is specified by an equation of evolution of the stress σi carried by block i (where i is a d -
dimensional vector denoting the lattice coordinates of the block); to fix ideas, if the sample is subjected to simple
shear at a rate γ̇, this equation might read, in scalar version,
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σ̇i = µγ̇︸︷︷︸
driving

− |Gii|ni
σi
τ︸ ︷︷ ︸

local relaxation

+
∑
j 6=i

Gijnj
σj
τ︸ ︷︷ ︸

nonlocal contributions

. (5)

Here, the stress increment σ̇i per unit time is the sum of an elastic contribution from the external driving, obeying
Hooke’s law (viz., σ̇ = µγ̇ with µ the shear modulus), a local plastic relaxation if the site is currently plastic (i.e.,
if ni = 1), and a redistribution of the stress released by nonlocal plastic events (at positions j ), mediated by the
propagator Gij . Locally, the plastic deformation of an active block (ni = 1) is constrained by the elastic deformation
of the embedding medium, hence a relaxation efficiency 0 < |Gii| < 1. Note that, in translationally invariant geometry,
the propagator becomes independent of space, viz., Gji → Gi−j and Gii → G0.

In essence, EPM aspire to follow in the footsteps of the successes of simplified lattice models in describing complex
collective phenomena in condensed matter and statistical physics. The assumption is that most microscopic details
are irrelevant with respect to the main rheological properties and that the physics can be condensed into a few
relevant parameters or processes. Several reasons could be put forward to favor their use over more realistic modeling
approaches, e.g.,

1. to assess the validity of a proposed theoretical scenario and, in particular, to identify the key physical processes
in the rheology,

2. to provide an efficient simulation tool giving access to (otherwise inacessible) large statistics or long-time runs,

3. to provide a simple route towards the derivation of macroscopic equations and to bridge the gap between
rheological models (constitutive laws) and statistical physics models (sandpile models, depinning models, Ising-
like models).

The substantial variations in the physical ingredients incorporated in distinct EPM, notably with respect to R2 (yield
criterion) and R4 (plastic event duration), seem to be a strong blow to the first objective. But one should bear in
mind that these materials are so diverse that a given process (e.g., thermal activation) may be negligible in some
of them, and paramount in others. Perhaps less intuitive is the role played by the experimental conditions and the
observables under consideration in determining the physical ingredients that need to be retained in an EPM. Let us
bolster this statement with a couple of examples. Keeping track of previous configurations (e.g., past yield stresses)
might be vital in order to describe oscillatory shear experiments in which the system performs a cycle between a few
configurations (Fiocco et al., 2014), whereas it is irrelevant for steady shear. Also, potentially universal aspects of the
yielding transition are expected to be relatively insensitive to the precise rules, while the details of the flow pattern will
obviously be more affected. Thus, as noted in (Bonn et al., 2017), one should not only select the relevant ingredients in
a model only in light of the intrinsic importance of these effects (as quantified for instance by dimensionless numbers),
but also depending on their bearing on the investigated properties.

In the following, we list the physical processes that are put in the limelight in the diverse EPM and indicate for
what type of materials and in what conditions they are of primary importance.

B. Thermal fluctuations

How relevant are thermal fluctuations and their effect on the motion of particles in the description? This question
boils down to the distinction between thermal materials and athermal ones exposed in Section I.B.

It is widely believed that thermal fluctuations largely contribute to the activation of plastic events in metallic and
molecular glasses, as well as in colloidal systems made of small enough colloids. In the latter systems, Schall et al.
(2007)’s estimation of the activation energy indicates that transformations are mostly thermally activated, but with a
stress-induced bias towards one direction. This will impact the choice of the yield criterion (R2 above). EPM focusing
on thermal materials (Bulatov and Argon, 1994a; Ferrero et al., 2014) will set a yield rate based on a stress-biased
Arrhenius law for thermal activation, viz.,

ν (σ) = ν0 e
−Ṽ (σ)
kBT , (6)

where ν0 is an attempt frequency, Ṽ (σ) represents the height of the (smallest) potential barrier impeding the rear-
rangement, tilted by the application of an external stress σ. Recalling Eq. 2, Ṽ (σ) = V − Ω0σγ, one immediately
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recovers the expression of ν (σ) used by Eyring (1935) to calculate the viscosity of liquids if σ and γ are treated as
independent parameters, whereas locally imposing a Hookean relation between stress and elastic strain, viz., σ ∝ γ,
leads to the γ2-scaling of the tilt used, e.g., in Sollich et al. (1997)’s Soft Glassy Rheology model.

On the other hand, thermal activation plays virtually no role in foams (Ikeda et al., 2013) and granular materials.
Consequently, EPM designed for athermal materials (Chen et al., 1991; Hébraud and Lequeux, 1998) will favor a pure
threshold-based yield criterion, viz.,

ν (σ) = ν0Θ(−Ṽ (σ)) or equivalently ν (σ) = ν0Θ(σ − σy),

where σy is the local stress threshold for yielding; a deterministic yield criterion is recovered in the limit ν0 → ∞.
Incidentally, note that, in this one-dimensional tilt vision, directional considerations in the PEL are handled somewhat
light-heartedly; in theory, there is no reason why the loading should push the system towards the saddle point.

As far as rheology is concerned, the athermal approximation is conditioned by the possibility to neglect the activation
rate with respect to the driving rate. If we consider a sample sheared at rate γ̇, schematically this condition reads

ν (σ)� γ̇

γy
, (7)

which in essence is similar to the limit of large Péclet number Pe ≡ γ̇a2/D, where a is the particle size and D is the
single-particle diffusivity in the dilute limit (Ikeda et al., 2013). The latter condition is however more (and, possibly,
excessively) stringent because in the dense system the diffusivity is much smaller than in the dilute limit.

Now, some subtleties ought to be mentioned. An athermal system may very well be sensitive to temperature
variations, through changes in their material properties (e.g., dilation): For example, the fact that Divoux et al.
(2008) reported creep motion for a granular heap submitted to cyclic temperature variations does not mean that
thermal activation is important, but rather points to dilational effects. Secondly, as already stressed, the relevance
of thermal fluctuations may depend on the considered level of detail: It has been argued that they may precipitate
the emergence of avalanches by breaking nano-contacts between grains in very slowly sheared systems (Zaitsev et al.,
2014), but it is very dubious that this may impact steady-shear granular rheology.

C. Driving

Suppose that the material deforms under the action of some external driving; how important are the specificities
of the driving conditions?

1. Stress or strain driven

As reported in Section I.B, the driving may be stress (fixed σ) or strain-controlled (fixed γ̇). Numerical simulations
have mostly considered strain-driven situations. In EPM, this affects R1(elastic response) and R3(stress redistribu-
tion), i.e., the mechanical response for a fixed set of plastic blocks. In a strain-driven protocol, the elastic response
(R1) is generally obtained by converting the macroscopic driving into local stress increments µγ̇(t)dt, where dt is
the time step and γ̇(t) is the current macroscopic strain rate, and the stress redistribution operated by the elastic
propagator Gr→r′ keeps the macroscopic strain fixed. Stress-controlled setups have been somewhat less studied in
the framework of EPM but examples can be found in (Homer and Schuh, 2009; Lin et al., 2015, 2014b; Picard et al.,
2004). In this case, the propagator should keep the macroscopic stress constant. In practice, this often comes down
to changing its 0-Fourier mode, which controls the mean value.

2. Time-dependence

EPM often focus on steady shear situations, in which case γ̇(t) = cst. But time-dependent driving protocols
γ̇ = f(t) (or σ = f(t)) are also encountered, in particular step shear γ̇(t) = γ0δ(t), oscillatory shear γ̇(t) = γ0 cos (ωt),
which gives access to linear rheology for small γ0. In creeping flows subjected to σ(t) = cst < σy, the shear rate
γ̇(t) eventually decays to zero, often as a power law (Leocmach et al., 2014). For further discussions on creep, see
Sec. VIII.
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3. Symmetry of the driving

Plastic events are biased towards the direction of the external loading. If the latter acts uniformly on the material,
it is convenient to focus on only one stress component, thus reducing the stress and strain tensors to scalars. In

particular, for simple shear conditions, with a displacement gradient ∇u =

(
0 γ(t)
0 0

)
(in the linear approximation

in two dimensions), one may settle with the εxy component. It differs from pure shear, ∇u =

(
0 γ(t)/2

γ(t)/2 0

)
in

that the latter is rotationless, whereas the former involves a rotational part ω =

(
0 γ(t)/2

−γ(t)/2 0

)
, but has the same

principal strains (eigenvalues) ±γ(t)/2. These deformations are encountered locally whenever volume changes can be
neglected; the cone-and-plate, plate-plate, and Taylor-Couette rheometers (Larson, 1999) used to probe the flow of
yield-stress fluids fall in this category. For metallic glasses and other hard materials, uniaxial compression tests (i.e.,

σ(t) = σ(t)

(
1 0
0 0

)
in the bulk, with σ(t) < 0) and tension (σ(t) > 0) are often performed.

Even though in several of these situations the macroscopic is more or less uniform and acts mostly on one component
of the (suitably defined) stress tensor, the other components reach finite values because of stress redistribution. Full
tensorial approaches may then be justified (Bulatov and Argon, 1994a; Homer and Schuh, 2009; Sandfeld and Zaiser,
2014). Recently, the influence of a tensorial, rather than scalar, description on the flow and avalanche properties in
these cases was evaluated; it was found to be insignificant overall (Budrikis et al., 2017; Nicolas et al., 2014b), and the
effect of dimensionality to be weak (Liu et al., 2016). The reader is referred to Sec. VII for more details. However,
there exist a wide range of experimental setups in which the loading is intrinsically heterogeneous, in particular the
bending, torsion, and indentation tests on hard glasses (see (Budrikis et al., 2017) for an implementation of these
tests in a finite-element-based EPM) or the microchannel flows of dense emulsions (Nicolas and Barrat, 2013a). The
exploitation of EPM in heterogeneous driving conditions appears to be a promising new avenue.

4. Driving rate

To resolve the flow temporally, the simplest approach is a Eulerian method, which computes the strain increments
on all blocks at each time step from Eq. 5. Kinetic Monte-Carlo methods have also been employed and are particularly
efficient in stress-controlled slow flows, insofar as the long elastic loading phases without plastic events are bypassed:
Activation rates νi are calculated for all the blocks i using a refined version of Eq. 6 and the time lapse before the
next plastic event is deduced from the cumulative rate ν =

∑
i νi (Homer and Schuh, 2009). If the flow is even slower,

rate effects may deliberately be overlooked. Indeed, a number of models consider the limit of vanishing shear rate
γ̇ → 0, where the material is essentially a quiescent solid undergoing intermittent plastic events due of the loading
(Baret et al., 2002; Lin et al., 2014b; Talamali et al., 2012). In these extremal models, the algorithm identifies the
least stable site at each step and increases the applied stress enough to destabilize it. From this single destabilization
an avalanche of plastic events may ensue. Connection to real time is lost. Extremal models are the lattice-based
counterpart of quasistatic atomistic simulations, in which a small strain increment is applied at each step and the
system then relaxes athermally to the local energy minimum (Maloney and Lemâıtre, 2004).

D. Rearrangement duration and material time scales

In experiments as well as atomistic simulations, rearrangements are seen to occur very rapidly, so much so that they
are considered instantaneous in several rheological models, i.e., τ → 0 in Eq. 5. On the contrary, in various models
the finite duration of plastic events plays a major role in the γ̇-dependence of the rheology (Liu et al., 2016; Martens
et al., 2012; Nicolas et al., 2014a; Picard et al., 2005) or in the intrinsic relaxation of the system (Ferrero et al., 2014).

Suppose that, under slow driving, a rearrangement takes a typical time τpl. For overdamped dynamics, one expects
this time scale to be the ratio between an effective microscopic viscosity ηeff and the elastic shear modulus µ (Nicolas
and Barrat, 2013a), viz.,

τpl ∼ ηeff/µ,

while for underdamped systems τpl is associated with the persistence time of localized vibrations. If the time scale τpl

competes with the driving time scale τγ̇ ≡ γy
γ̇ , where γy is the local yield strain, then plastic events will be disrupted by
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(a) (b) (c)

FIG. 7 Spatial variations of the mechanical and configurational properties of glasses. (a) Maps of the weaker local shear
modulus in a 2D Lennard-Jones glass. Black (white) represents values larger (smaller) than the mean value. Distances are in
particle size (Lennard-Jones) units. From (Tsamados et al., 2009). (b) and (c) Maps of the local contact-resonance frequency,
which is related to the indentation modulus, measured by atomic force acoustic microscopy in (b) a bulk metallic glass PdCuSi
and in (c) a crystalline sample of SrTiO3. The latter clearly appears more homogeneous in terms of mechanical properties.
The radius of contact is of order 10 nm. From (Wagner et al., 2011).

the driving. The rate dependence of the macroscopic stress may then stem from this disruption (Nicolas et al., 2014a).
On the contrary, if the driving is too slow to allow such competition, viz., τpl � τγ̇ , then individual rearrangements
can be considered instantaneous as far as the rheology is concerned, but the avalanches of rearrangements (i.e., the
series of plastic events that would still be triggered by an initial event, were the driving turned off) might still take a
finite time, controlled by the signal propagation time τpr within the avalanche. Since the size of avalanches is expected
to diverge as γ̇ → 0 in the athermal limit, they may be affected by the driving when γ̇ → 0. While the delays due to
shear wave propagation are generally left aside in EPM, some works have bestowed them a central role in the finite
shear-rate rheology (Lemâıtre and Caroli, 2009; Lin et al., 2014b) and endeavored to represent this propagation in a
more realistic way (Karimi and Barrat, 2016; Nicolas et al., 2015). Sec. VI and VII will provide more details on these
aspects. Note that the true quasistatic limit is reached when

τpl

τγ̇
→ 0 and

τpr

τγ̇
→ 0

and the athermal criterion of Eq. 7 is satisfied, i.e., the Pclet number is very large. In that case, the material remains
in mechanical equilibrium at all times and its trajectory in the PEL is rate-independent.

E. Spatial disorder in the mechanical properties

Glasses, and more generally amorphous solids, are known to display heterogeneous mechanical properties. Indeed,
there have been both experimental and numerical reports on the heterogeneity of the local elastic moduli (see Fig. 7)
and the energy barriers (Tsamados et al., 2008; Zargar et al., 2013) on the mesoscale. Yet, the extent to which this
disorder impacts the rheology remains unclear. This uncertainty is reflected in EPM. Some models feature no such
heterogeneity (Hébraud and Lequeux, 1998; Picard et al., 2005), while it is central in others (Langer, 2008). In the
latter case, heterogeneity is generally implemented in the form of a disorder on the yield stresses or energy barriers.
Let us mention a couple of examples. In Sollich et al. (1997)’s Soft Glassy Rheology model, energy barriers are
exponentially distributed and the exponential dependence of activation rates on the energy barrier (Eq. 6) leads to
a transition from Newtonian to non-Newtonian rheology for broader energy distributions (see Sec. IV.D.1 for more
details on the model). In their EPM centered on metallic glasses, Li et al. (2013) modify the free energy required for the
activation of an event depending on the free volume created during previous rearrangements. Amorphous composite
materials, i.e., materials featuring meso/macro-inclusions of another material, can be described as a patchwork of
regions of high and low yield stresses (Tyukodi et al., 2016a) or high and low elastic moduli (Chen and Schuh, 2015).
In the latter case, macroscopic effective shear and bulk moduli can be derived.

More generally, for single phase materials, the survey of the above results gives the impression that disorder has
bearing on the rheology when thermal activation plays an important role. On the other hand, the impact of a yield
stress disorder may be less important in athermal systems In fact, using the Hbraud-Lequeux model as a paradigm,
Agoritsas et al. (2015) showed that disorder is irrelevant in the mean-field description of athermal plasticity originally
proposed by Hébraud and Lequeux (1998), in the low shear rate limit; more precisely, it only affects the coefficients
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in the rheological law.

TABLE I Classification of some of the main EPM in the literature.

Yielding Reference Features Remarks Proposed for

Activated

Bulatov and Argon (1994a) et seq.
Propagator computed on
hexagonal lattice

amorphous solids, in
particular glasses and
glass-forming liquids

Homer and Schuh (2009) et seq.
Stress redistribution computed
with Finite Elements

metallic glasses

Ferrero et al. (2014) Pl. events of finite duration amorphous solids

Sollich et al. (1997)
Effective activation temperature
accounts for mechanical noise

soft materials (foams,
emulsions, etc.)

Threshold

Chen et al. (1991)
Propagator computed on square
spring network

earthquakes

Baret et al. (2002); Budrikis et al.
(2017); Vandembroucq and Roux
(2011)

Uniform distribution of barriers;
extremal dynamics

amorphous solids,
notably metallic glasses

Dahmen et al. (2011)
‘Narrow’ distribution of thresholds;
static and dynamic thresholds
differ; mean-field approach

granular matter and akin

Hébraud and Lequeux (1998)
Finite yield rate above threshold;
stress redistributed as white noise

soft materials (dense
suspensions)

Martens et al. (2012); Picard et al.
(2005)

Finite yield rate above threshold;
pl. events of finite duration

amorphous solids

Nicolas et al. (2014a) et seq Pl. events end after finite strain
soft athermal amorphous
solids

Lin et al. (2014b) Stress-controlled soft amorphous solids

‘Continuous’
approaches

Onuki (2003b)
Dynamical evolution on a periodic
potential; dipolar propagator due
to opposite dislocations

2D crystalline and glassy
solids

Jagla (2007)
Dynamical evolution on random
potential; propagator computed
via compatibility condition

amorphous solids

Marmottant and Graner (2013)
overdamped evolution in a periodic
potential; Pl. events of finite
duration; no stress redistribution

foams

Legend – Barrier distribution: Single value. Distributed (exponentially, unless otherwise specified).

Instantaneous plastic events. Quadrupolar elastic propagator.

F. Spatial resolution of the model

On a related note, one may wonder how important it is to resolve spatially an EPM, or equivalently, in what cases
one may settle with a mean-field approach blind to spatial information. Clearly, there are situations in which mean
field makes a bad candidate, in particular when the driving or flow is macroscopically heterogeneous, when the focus
is on spatial correlations (Nicolas et al., 2014c) or on critical properties (Lin et al., 2014b; Liu et al., 2016). But a
mean field analysis could suffice in many other situations. Indeed, Martens et al. (2012) showed that the flow curve
obtained with their spatially resolved EPM can be predicted on the basis of mean-field reasoning. Thus, the details
of the spatial correlations only had limited effect on the macroscopic stress. Similarly, Ferrero et al. (2014)’s EPM-
based simulations confirmed mean-field predictions by Bouchaud and Pitard (2001) regarding thermal relaxation of
amorphous solids in some regimes; but not without finding discrepancies in others. In the latter regimes, spatial
correlations thus seemed to play a significant role.

The discussion about whether spatial resolution is required to describe global quantities is not settled yet. It has
been argued that, owing to the long range of the elastic propagator (which decays radially r−d in d dimensions),
mean-field arguments should generically hold in amorphous solids (Dahmen et al., 1998, 2009). However, it has been
realized that the non-convex nature of the propagator (alternatively positively and negatively along the azimuthal
direction) undermines this argument (Budrikis and Zapperi, 2013) and results in much larger fluctuations than the
ones produced by a uniform stress redistribution (Lin et al., 2014a; Nicolas et al., 2014b; Talamali et al., 2011). Mean-
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FIG. 8 (a) Sketch of the discrete 1D Burridge and Knopoff model. From (Carlson et al., 1994). (b) and (c) Chen et al. (1991)’s
spring network model. (b) Sketch of the effect of a bond rupture in the model. (c) Distribution of avalanche sizes, in terms of
number of broken bonds. Adapted from (Chen et al., 1991).

field predictions have been tested against the results of lattice-based models simulations of a sheared amorphous solid
close to (or in) the limit of vanishing driving, with a focus on the statistics of stress-drops or avalanches, and non-
mean-field exponents were found for the power-law distribution of avalanche sizes (Budrikis and Zapperi, 2013; Lin
et al., 2014b; Liu et al., 2016; Talamali et al., 2011). This question is addressed in greater depth in Sec. VII.

In this review, we will put the spotlight on spatially resolved models, which are not exactly solvable in general and
require a numerical treatment. When relevant, we will discuss how a mean-field treatment can be performed to obtain
analytical results.

G. Bird’s eye view of the various models

To conclude this section, some of the main EPM are classified in Table I.

III. ELASTIC COUPLINGS AND THE INTERACTION KERNEL

A key feature of EPM is to allow plastic events to interact via an elastic deformation field, which can generate
avalanches. In this respect, the choice of the elastic interaction kernel may significantly impact the results of the
simulations (Budrikis and Zapperi, 2013; Martens et al., 2012). This fairly technical section presents the various
idealizations of the interaction kernel that have been used in the literature on amorphous solids, by increasing order
of sophistication. We endeavor to relate this level of sophistication with the nature of the developments that were
sought.

A. Sandpile models and first-neighbor stress redistribution

The watershed between the models for earthquakes and general avalanches and the more recent EPM is often fuzzy.
In fact, the latter literally burgeoned on avalanche and earthquake-ridden scientific grounds.

As a paradigmatic earthquake model, consider the celebrated model by Burridge and Knopoff (1967), whose main
features are concisely reviewed in (Carlson et al., 1994). It focuses on the fault separating two slowly moving tectonic
plates. This region is structurally weak because of the gouge (crushed rock powder) it is made of; thus, failure tends
to localize along this fault. In the model, the contact points across the fault are represented by massive blocks and
the compressive and shear forces acting along it are modeled as springs, as sketched in Fig. 8a. Due to these forces,
the initially pinned (stuck) blocks may slide during avalanches. More precisely, in the continuous, nondimensional 1D
form, the displacement U(x, t) at time t of the material at position x reads

Ü = ξ2 ∂
2U

∂x2
+ vt− U − φ(U̇). (8)

Here, the left-hand side (lhs) is related to inertia, the second derivative on the right-hand side (rhs) is of compressive
origin, and the loading term vt due to the motion of the plate as well as the displacement −U contribute to a shear
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term. Finally, φ(U̇) is a velocity-dependent frictional term. Had Coulomb’s law of friction been used, it would have
been constant for |U̇ | 6= 0, but the original model assumed velocity weakening, i.e., a decrease of |φ(U̇)| with |U̇ |. At
U̇ = 0, the function φ is degenerate, which allows static friction to exactly cancel the sum of forces on the rhs of

Eq. (8), so the blocks remain pinned at a fixed position U until the destabilizing forces ξ2 ∂2U
∂x2 + vt exceed a certain

threshold. Phenomenologically, simulations of the model show frequent small events (with a power-law distribution
of cumulative slip) and rare events of large magnitude, in which the destabilization of a number of sites close to
instability results in a perturbation of large amplitude (Carlson et al., 1994; Otsuka, 1972).

Important in the above model is the effect of the pinning force φ at U̇ = 0. It entails that the destabilizing action
caused by the depinning of a site (via the diffusive term in Eq. 8) is fully screened by its neighbors, unless they yield
too. Such first-neighbor redistribution of strain is readily simulated using cellular automata, which can be interpreted
as sandpile models: Whenever a column of sand, labelled (i, j), gets too high with respect to its neighbors (say, for
convenience, whenever σi,j > 4), some grains at its top are transferred to the neighboring columns, with the following
discharge rules in two dimensions:

σi,j > 4 : σi,j → σi,j − 4

σi±1,j → σi±1,j + 1 (9)

σi,j±1 → σi,j±1 + 1

where σ is the height difference between columns. The sandpile is loaded by randomly strewing grains over it in a
quasistatic manner. The study of these systems soared in the late 1980s and early 1990s, whence the overbearing
concept of self-organized criticality emerged (Bak et al., 1987). According to the latter, the avalanches naturally
drive the sandpiles toward marginally stable states, with no characteristic lengthscale for the regions on the verge of
instability, hence the observation of scale-free frequency distributions of avalanche sizes. As an aside, let us mention
that this approach has not been used only for earthquakes (Bak and Tang, 1989; Carlson and Langer, 1989; Ito and
Matsuzaki, 1990; Sornette and Sornette, 1989) and avalanches in sandpiles, it has also been transposed to the study
of integrate-and-fire cells (Corral et al., 1995) and forest fires (Chen et al., 1990), inter alia.

In seismology, these models have been fairly successful in reproducing the Gutenberg and Richter (1944) statistics
of earthquake. This empirical law states that the frequency of earthquakes of (energy) magnitude

Me =
2

3
log(E)− 2.9, (10)

where E is the energy release, in a given region obeys the power law relation, log P (m > m0) ' −bm0 + cst, where
b ' 0.88, or equivalently

p(E) ∼ E−τ , with τ = 1 +
2

3
b ≈ 1.5.

For the sake of accuracy, we ought to say that there exist several earthquake magnitude scales besides that of Eq. 10.
They roughly coincide at not too large values; in fact, Me is not the initial Richter scale. More importantly, the value
of the exponent b ∈ [0.8, 1.5] depends on the considered earthquake catalog, notably on the considered region. For
sandpile-like models, various exponents have been reported: τ ≈ 1 in 2D and τ ≈ 1.35 in 3D, with no effect of a
disorder on the yield stresses (Bak and Tang, 1989), whereas the exponent for the mean-field democratic fiber bundle
close to global failure is τ = 3/2 (see Section IX.C). More extensive numerical simulations have led to the values
τ ' 1.30 (Lübeck and Usadel, 1997), or τ ' 1.27 (Chessa et al., 1999), for the 2D Bak et al. (1987) sandpile model.

Olami et al. (1992) modified the model to make the redistribution rule of Eq. 9 non-conservative. In this sandpile
picture, this would correspond to a net loss of grains, which seems unphysical; but in Burridge and Knopoff (1967)’s
block-and-spring model the non-conservative parameter simply refers to the fraction of strain which is absorbed by
the driving plate during an event, instead of being transferred to the neighbors. Interestingly, as non-conservativeness
increases, criticality is maintained, insofar as the avalanche distribution p(E) remains scale-free, even though the
critical exponent τ gradually gets larger. Only when less than 20% of the strain is transferred to the neighbors does
a transition to an exponential distribution occur. The dynamics then become more and more local with increasing
dissipation, until the blocks completely stop interacting, when the redistribution is purely dissipative.

However, unlike the redistribution of grains in the sandpile model, elastic interactions are actually long-ranged, as
we wrote in Section I.D. In particular, in the deformation of amorphous solids, no pinning of the region surrounding
an event can be invoked to justify the restriction of the interaction to the first neighbors.
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B. Networks of springs

Accordingly, a more realistic account of the long-ranged elastic propagation is desirable. Unfortunately, the complex-
ity of the bona fide Eshelby propagator obtained from Continuum Mechanics hampers its numerical implementation
and use, so most studies have relied on simplified propagators, which share some similarities with Eshelby’s.

First, in the spirit of the classical description of a solid as an assembly of particles confined to their positions by the
interactions with their neighbors, the material was modeled as a system of blocks connected by “springs” of stiffness
κ and potential energy

1

2
κ (ui − uj)2

,

where ui is the displacement of block i. Note that this expression for the potential energy entails noncentral forces,
so that the “springs” can bear shear forces; some details about the difference with respect to networks of conventional
springs are presented in Section IX.C. The pioneering steps towards EPM followed from the application of such spring
network models to the study of rupture. For this purpose, each bond is endowed with a random threshold, above
which it yields and redistributes the force that it used to bear. In their study of a 2D triangular lattice with central
forces, Hansen et al. (1989) measured the evolution of the applied force F with the displacement u; this evolution
starts with a phase of linear increase, followed by a peak and a smooth decline until global failure. The F (u) curves
for different linear lattice sizes L roughly collapsed onto a master curve if F and u were rescaled by L−3/4. In addition,
just before failure, the distribution of forces in the system was “multifractal”, with no characteristic value.

Chen et al. (1991) considered a square lattice of blocks and “springs”, sketched in Fig. 8b. The rupture of a spring
triggers the release of a dipole of opposite point forces (generating vorticity) on neighboring blocks. This differs
somewhat from the force quadrupole corresponding to an (irrotational) local shear (see Section III.C), but also leads
to an anisotropic shape. Contrary to Hansen et al. (1989), they allowed broken springs to instantly regenerate to an
unloaded state, after the redistribution of their load. Physically, this discrepancy parallels a change of focus, from
brittle materials to earthquakes, for which the external loading due to tectonic movements is assumed to be by far
slower than the healing of bonds. For a quasistatic increase of the load, the model displays intermittent dynamics and
scale-free avalanches, and a power-law exponent τ = 1.4 was reported in 2D, in semi-quantitative agreement with the
Gutenberg-Richter earthquake statistics.

C. Pointwise idealization of the Eshelby propagator

1. Derivation

An alternative to block-and-spring models, rooted in Continuum Mechanics and popularized by Picard et al. (2004),
consists in simplifying Eshelby (1957)’s calculations of the elastic propagator by considering the pointwise circular
limit of a 2D shear transformation. The latter then contributes to the equation of mechanical equilibrium as a source
term f ′ (r), viz.,

∇ · σ (r) + f ′ (r) = 0. (11)

The surrounding medium is supposed to be linear elastic and uniform, so that its elastic stress reads

σ = −pI + 2µε, (12)

where p is the pressure and ε = ∇u+∇u>

2 is the linear strain tensor. For simplicity, incompressibity is assumed,
∇ · u = 0. The solution of Eq. 11 is then well known in hydrodynamics and involves the Oseen-Burgers tensor
O(r) = 1

8πµr

(
I + r⊗r

r2

)
, with I the identity matrix, viz.,

u (r) =

∫
O(r − r′)f ′ (r′) . (13)

Finally, to get the source term f ′ (r), one assumes that a shear transformation located at the origin locally shifts
the unstrained configuration by an amount εpl: the configuration that cancels the shear stress in r = 0 is no longer
ε (r) = 0, but ε (r) = εpladδ (r), in the limit of a rearrangement of vanishing volume ad → 0. In this sense, εpl can be
regarded as an eigenstrain that generates a source term f ′ (r) = −2µ∇ ·

[
εpladδ (r)

]
in Eq. 11. In the unbounded 2D
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plane, setting coordinates such that εpl =

(
0 ε0
ε0 0

)
, the response to f ′ (r) in terms of xy-component of the stress

reads

σxy (r) = 2µε0a
2G (r) with the propagator G∞ (r) ≡ cos (4θ)

πr2
, (14)

where (r, θ) are polar coordinates. This field is shown in Fig. 6c. Reassuringly, in the far field this coincides with the
response to a cylindrical Eshelby inclusion.

As a short aside, let us mention a variant to these calculations, which puts in the limelight the connection with
deformation processes in a crystal. This variant is reminiscent of Eshelby’s a cut-and-glue method, in which an
ellipsoid is cut out of the material, deformed, and then reinserted. Following earlier endeavors by Ben-Zion and Rice
(1993), Tüzes et al. (2017) carved out a square around the rearrangement, instead of an ellipsoid, displaced its edges
to mimick shear, and then glued it back. This is tantamount to inserting four edge dislocations in the region and also
yields an Eshelby-like quadrupolar field.

Rather than focusing on unbounded media, it is convenient to work in a bounded system with periodic boundary
conditions and with a general plastic strain field εpl(r). Switching to Fourier space (r ↔ q ≡ (qx, qy)), the counterpart
of Eq. 14 is then

σxy (q) = 2µG (q) εpl(q) where G (q) = −
4q2
xq

2
y

q4
. (15)

Note that the frame is sometimes defined such that εpl =

(
ε0 0
0 −ε0

)
; in this case, G (q) =

−(q2x−q
2
y)

2

q4 . In practice, the

system will generally be discretized into a (square) lattice, which allows one to use a Fast Fourier Transform routine
and restrict the considered wavenumbers to qx, qy = 2πn

L , n ∈
{⌈−L

2

⌉
, . . . ,

⌊
L
2

⌋}
.

Besides, because of dissipative forces, quantified by an effective viscosity ηeff , the plastic strain rate ε̇pl in the
shear transformation cannot be infinite and a rearrangement will last for a finite time τpl ∼ ηeff/µ (see Section II.D).
Therefore, in each numerical time step dt, the plastic strain εpl implemented in Eq. 15 will be the strain increment
δεpl ≡ ε̇pldt during that step. This amounts to saying that, locally, the rearrangement occurs gradually, even though
the redistribution of stress to the rest of the medium is instantaneous (because mechanical equilibrium was assumed,
so that there is no time dependence in the elastic propagator in Eq. 15).

2. Issues with this approximation and possible remediations

The idealized elastic propagator in Eq. 15 brings on some technical issues. First, its slow (∝ r−d) radial decay
in space raises convergence problems in periodic space. Indeed, the fields created by the periodic images of each
plastic event have to be summed, but the sum converges only conditionally in real space, i.e., depends on the order
of summation. This is reflected by the singularity of G (q) near q = 0. In polar crystals, such a difficulty also arises,
when computing the Madelung energy, but may be solved with the Ewald (1921) method. Here, we make use of the
conserved quantities to state that G (q = 0) = 0 in a stress-controlled system and G (q = 0) = −1 in a strain-controlled
system. Another possibility is to sum the images in an arbitrary order that is compatible with convergence. These
distinct implementations match in the far field, but differ in the near field, which leads to different organizations for
the flow (Budrikis and Zapperi, 2013).

Second, on a periodic lattice, one should in principle compute the periodic sum

Gsum (q) ≡
∑
n∈Zd

G (q + 2πn)

if, at the lattice nodes, one wishes the backward discrete Fourier transform of Gsum (q) to coincide with the solution
G∞(r) for an unbounded medium. However, the high-frequency components in G (q), due to the spurious singularity
of G∞(r) at r = 0 (Eq. 15), make the periodic sum diverge. In practice, wavenumbers outside the first Brillouin zone
] − π, π]d are plainly discarded, which comes down to solving Eqs. 11-12 on the periodic lattice, rather than in the
continuum. Nevertheless, spurious fluctuations in the response field are sometimes observed; the problem is mitigated
by using a finer grid and smoothing the obtained field (Nicolas et al., 2014b).
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FIG. 9 Average displacement field induced by a shear transformation in an underdamped elastic medium, computed with a
basic Finite Element routine. The plotted snapshots correspond to different delays after the transformation was (artificially)
triggered at the origin: (a) ∆t = 2, (b) ∆t = 10, (c) ∆t = 1000. Red hues indicate larger displacements. Adapted from (Nicolas
et al., 2015)

3. Variations: Soft modes and lattice symmetries; tensoriality; convection

All in all, many technical details of the implementation of the elastic propagator appear to affect the spatial
organization of the flow (Talamali et al., 2011), but leave the qualitative picture and (apparently) the scaling laws
unaltered. However, an aspect that seems to be crucial is the need to preserve the eigenmodes of the propagator G(q)
associated with eigenvalue (energy) zero. These so called soft modes are the fields εpl such that

∀q, G (q) εpl (q) = 0,

and, since they cost no elastic energy, their deployment is favored by the dynamics (Tyukodi et al., 2016b). Their
importance is further explained in Section IV.C. It turns out that the eigenmodes of G(q) in Eq. 15 are simply the
Fourier modes (plane waves); among these, the soft modes are those with wavevectors that make an angle ±π/4 with
respect to the principal direction of the plastic strain tensor εpl.

In particular, if the material is loaded under simple shear with velocity direction x and velocity gradient along y,
the emergence of a uniform shear band along x should produce no elastic stress in the medium, at least if such a band
emerges uniformly. However, misaligned lattice axes, not directed along x or y, would not be compatible with such
a shear band (which would then have sawtooth-like edges) and artificially suppress the soft modes (Tyukodi, 2016).
More generally, the use of a regular lattice in EPM may be questioned, as it may affect the quantitative correlations
in the flow (Budrikis et al., 2017), but the scalings of, e.g., avalanche sizes seem to be mostly insensitive to these
details.

On another note, the foregoing calculations focused on the xy-shear stress component, because of the macroscopic
stress symmetry, thus promoting a scalar description. It is straightforward to generalize the reasoning to a fully
tensorial form; but it turns out that, for the problems under consideration, the tensorial extension has virtually no
effect (Budrikis et al., 2017; Nicolas et al., 2014b). Similarly, moving from 2D to 3D does not introduce qualitative
changes and scaling relations are preserved (Budrikis et al., 2017; Liu et al., 2016). Also, the periodic boundary
conditions can be substituted by no slip boundary conditions at a wall, via the image method (Picard et al., 2004),
for instance to model flow in a microchannel (Nicolas and Barrat, 2013a). Translational invariance of the propagator
is then broken and plastic events relax stress faster, for a given eigenstrain, if they occur close to the walls. Finally,
despite the convenience of using a fixed lattice grid with static elasto-plastic blocks, physically these blocks should
be advected by the flow. In a bounded medium, a coarse version of advection can be implemented by incrementally
shifting the blocks along the streamlines without altering the global shape of the lattice (Nicolas and Barrat, 2013a).
On the other hand, with periodic boundary conditions, the deformation of the frame results in the shift of the periodic
images with respect to the simulation cell; advection thus requires to compute the elastic propagator afresh, in the
deformed frame (Nicolas et al., 2014b).

D. Finite-Element-based approaches

Albeit computationally more costly, Finite-Element (FE)-based computations of stress redistributions overcome
some limitations of the foregoing approaches and offer more flexibility. The FE method solves the continuum me-
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chanics equation within each element of a meshgrid by interpolating the local strain and stress from the values of the
displacements and point forces at the nodes of the element.

If mechanical equilibrium is maintained at all times, the stress redistributed by a shear transformation can be
computed by equilibrating the elastic stress Cε? generated by the eigenstrain ε? borne by a given element (where
C is the stiffness tensor). Using a triangular mesh refined around this eigenstrain-bearing element, Sandfeld et al.
(2015) demonstrated that the computed stress field coincides with the elastic propagator of Eq. 14 in the pointwise
rearrangement limit. But these researchers also found that a coarser mesh made of uniform square elements gives
results that are almost as good, except in a near-field region of a handful of sites’ radius. The flexibility of the method
was then exploited to study the quasistatic deformation of the system beyond the periodic boundary conditions,
e.g., in a bounded medium and with free surfaces, and with inhomogeneous loading conditions (indentation, bending,
etc.). Universal, but non-mean-field, statistics of avalanches of plastic events were reported in these diverse conditions
(Budrikis et al., 2017) (also see Section VII).

In an earlier endeavor (Homer et al., 2010; Homer and Schuh, 2009), each shear transformation zone consisted of
several elements of a triangular mesh which all bore an eigenstrain. As the size of this zone increases, the redistributed
stress field accurately converged to the theoretical Eshelby field. Zones made of 13 elements were deemed quite
satisfactory in this respect. Homer and Schuh (2010) later extended the approach to 3D. Dynamics were brought
into play via the implementation of an event-driven (Kinetic Monte Carlo) scheme determining the thermal activation
of shear transformations, in the wake of the pioneering works of Bulatov and Argon (1994a). The cooling of the
system, its thermal relaxation and its rheology under applied stress were then studied. Macroscopically homogeneous
flows were observed at low stresses and/or high temperatures, whereas the strain localized at low temperature for
initially unequilibrated (zero residual stress) systems, which was not necessarily supported by experimental data.
More systematic strain localization at low temperature was found by Li et al. (2013), who incorporated the processes
of free volume creation during plastic rearrangements and subsequent free volume annihilation (see Section V.C.2).

The capabilities of FE methods were further exploited by Nicolas et al. (2015) to go beyond the assumption of
elastic homogeneity of the material. For this purpose, the mesoscale elastic constants in regions of 5 particles in
diameter were measured in an atomistic glass model; the local shear moduli were found to be broadly distributed,
with relative fluctuations of around 30% and marked anisotropy (i.e., one direction of shear being much weaker than
the other one). Introducing this heterogeneity of shear moduli in the EPM sufficed to capture the sample-to-sample
fluctuations of the elastic response to an artificially triggered shear transformation observed in Molecular Dynamics
simulations (Puosi et al., 2014); accounting for anisotropy was less critical. Besides, inertial and viscous terms were
not omitted in the FE description, so that mechanical equilibration was not instantaneous and shear waves were
seen to propagate in the transient, as in the atomistic simulations. The natural inclusion of inertia in FE was also
exploited by Karimi et al. (2017) to analyze the effect of inertia on the universal avalanche statistics and compare with
atomistic simulations directly. (Note that the effect of a delay in signal propagation had already been contemplated
in an effective way by Lin et al. (2014a), while, for the same purpose, Papanikolaou (2016) introduced a pinning delay
in his EPM based on the depinning framework.) It was then possible to investigate the influence of the damping
strength on the rheology of the elastoplastic system, which was indeed done by Karimi and Barrat (2016). Using a
Maxwellian fluid description for blocks in the plastic regime and an unstructured mesh, these researchers found trends
qualitatively very similar to what is observed in Molecular Dynamics when the friction coefficient is varied.

E. Continuous approaches based on periodic potentials

Notwithstanding their variable sophistication, all above methods rest on a clearcut distinction between plastic
rearrangements and elastic deformations. This binary distinction is relaxed in continuous approaches based on a free
energy functional F [e] that depends on the mechanical strain variables, generically denoted by e here. Since the
energy increase due to elastic loading is cyclically interrupted by plastic rearrangements (associated with discrete
jumps between valleys of the energy landscape), F [e] involves periodic functions of the plastic deformation εp or the
total deformation e. For instance, Marmottant and Graner (2013) made use of the following effective potential,

Ueff(e, εp) =
E

2
(e− εp)2

+ Eεy
ε0
2π

cos

(
2πεp
ε0

)
,
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where E is an elastic modulus, εy is a yield strain and ε0 is the period of the pinning potential. If this prescription is
coupled with a dynamical equation of the form

τ ε̇p =
1

E

(
−∂Ueff

∂εp

)
,

with τ the characteristic relaxation timescale (leading to the Prandtl–Tomlinson model for stick–slip), a serrated
stress vs. strain curve is obtained under constant driving. The finite time needed by the plastic deformation εp to
jump between energy valleys implies that, at high driving rates, εp will not be able to instantaneously jump between,

say, ε
(−)
p and ε

(+)
p . Therefore, the elastic strain ε will continue increasing in the valley around ε

(−)
p for some time,

although the criterion for the onset of plasticity has already been met, which is similar to having a finite latency time
prior to relaxation once the threshold is exceeded in Picard et al. (2005)’s model. Similar equations of motion in a
random potential have been proposed for solid friction; the occurrence of stick-slip dynamics owes to the “pinning”
of the system in one potential valley, up to some threshold, while there exists another stable position (Tyukodi et al.,
2016b).

To go beyond the mean-field level, this type of continuous approach can be resolved spatially. In an inspiratonial
study, Onuki (2003a) introduced an elastic free energy of the form

Fel =

∫
drK0e

2
1 (r) + F (e2 (r) , e3 (r)) , (16)

where K0 is the bulk modulus and the volumetric strain e1 as well as the shear strains e2 and e3 are explicit functions
of the displacement field u(r). Here, F is an arbitrarily chosen function that is invariant under rotations of the
reference frame θ → θ + π/3 (because a 2D triangular lattice is assumed) and periodic in its arguments. Introducing
Fel in the equation of motion

ρü = −δFel
δu

+ η0∇2u̇+∇ · σR, (17)

where ρ is the density, η0 is the viscosity and σR is a random stress tensor due to thermal fluctuations, suffices to
obtain qualitatively realistic stress vs. strain curves. The framework was then extended to study the effect of an
interplay between the volumetric strain e1 and the density ρ, and to capture the elastic effects of edge dislocations, if
the material is crystalline (Onuki, 2003b).

If the strain components e1, e2 and e3 are handled as independent primary variables, instead of being functions
of u as in Eq. 17, then their compatibility as components of a strain tensor should be ensured by the Saint-Venant
condition

S [e1, e2, e3] = 0 where S [e1, e2, e3] ≡
(
∂2

∂x2
+

∂2

∂y2

)
e1 −

(
∂2

∂x2
− ∂2

∂y2

)
e2 − 2

∂2

∂x∂y
e3.

This constraint is implemented by means of a Lagrange multiplier in the total free energy F , viz., F → F +
λS [e1, e2, e3]. A minimization of F yields equations of motion such as ė ∝ − δFelδe , for a generic strain compo-
nent e, that complete the definition of the EPM (Jagla, 2007). If the function F (e2, e3) entering the free energy
in Eq. 16 is assumed to depend quadratically on e2 (as in linear elasticity), while its nonlinearity with respect to
e3 preserves the possibility of plastic relaxation, then it can be shown analytically that, owing to the Saint-Venant
condition, a plastic strain along e3 gradually gives rise to an elastic strain with a quadrupolar structure (Kartha et al.,
1995). Once mechanical equilibrium is reached, the final strain field produced by this local eigenstrain coincides in
the incompressible limit with the elastic propagator of Eq. 15 (Jagla, 2017). The approach was extended recently by
Jagla (2017) to study the influence of different choices for the effective plastic disorder potentials in the flow curve
and critical exponents.

IV. MECHANICAL NOISE AND ITS APPROXIMATIONS

The previous section has shed light on the modeling of the elastic propagator, i.e., the effect of a single rearrangement
on the surrounding elastic medium. In practice, however, several rearrangements may occur simultaneously, and the
rate ζi(t) of stress increment received by a given block (say, site i) at time t is then a sum of contributions from many
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sites, i.e., using Eq. 5, ζi(t) =
∑
j 6=i njGij

σj
τ , where nj denotes the plastic activity of site j. Due to its fluctuating

nature, this quantity is often referred to as mechanical noise. By rewriting Eq. 5 as

∂

∂t
σi(t) = µγ̇ − ni

|G0|σi(t)
τ

+ ζi(t), (18)

one can readily see that, in combination with the external loading and the dynamical rules governing ni, the mechanical
noise signal {ζi(t)} fully determines the local stress evolution. All “one-point” properties (such as the flow curve,
the density of plastic sites, the distribution of local stresses, etc.) can be obtained by averaging the local properties
at i over time. This shows the central role of {ζi(t)} in determining these properties. Unfortunately, this signal
is complex, as it stems from interacting plastic events throughout the system; nevertheless, mean-field approaches
suggest to substitute it with a simpler “mean” field.

A. Uniform redistribution of stress

The mechanical noise can be split into :

• a constant background 〈ζi〉, which contributes to a drift term µγ̇eff
i ≡ µγ̇ + 〈ζi〉 in Eq. 18, and

• zero-average fluctuations δζi(t).

Owing to the infinite range and slow decay of the elastic propagator (∝ r−d in d-dimensional space, see Sec. I.D),
site j is significantly coupled to a large number of other sites. This large connectivity has led some researchers to
overlook the fluctuations in favor of the average drift term. Along these lines, in the framework of Picard’s EPM,
which features a constant rate τ−1 of yield above a uniform threshold and a constant rate τ−1

res of elastic recovery, viz.,

n : 0
τ−1Θ(σ−σy)


τ−1
res

1, (19)

Martens et al. (2012) averaged Eq. 18 over time and found a mean-field analytical expression for the flow curve, which
reproduces the simulation results to a large extent. It also correctly predicts the destabilization of the homogeneous
flow leading to shear-banding for a range of model parameters, in particular at large τres.

In fact, the neglect of fluctuations would be rigorously justified if the system were infinite and the non-convexity of
the propagator G were left aside. The latter criterion is for instance fulfilled in a simple quasistatic model in which
sites yield past a threshold σc and redistribute the released stress (δσi) uniformly to the other N − 1 ≈ N sites
(Dahmen et al., 1998), viz.,

σi > σc : σi → σi − δσi

σj → σj +
δσi
N
, ∀j 6= i.

The simplicity of the model allows analytical progress. A first approach consists in treating the distances xi = σc−σi
to the threshold σc as independent variables in the system and sorting them in ascending order (i → 1, 2, . . .). An
avalanche will persist as long as the stress increment δσ1

N due to the yielding of the most unstable site suffices to make

the second most unstable fail, viz., δσ1

N > x2. Using an argument along these lines in a model featuring disorder in
the yield thresholds (σc → σc,i) and post-failure weakening (i.e., when site i yields, the threshold is restored to a
lower value σc,i(t+ 1) < σc,i(t)), Dahmen et al. (1998) were able to rationalize the existence of a regime of power-law
distributed avalanches and a regime of runaway, system-spanning avalanches.

Alternatively, owing to the similarity of the simplified problem with force-driven depinning, one can make use of the
machinery developed in the latter field. Transversal scaling arguments and renormalization group expansions (Fisher
et al., 1997) then allow one to derive scalings for different properties of the system in the quasistatic limit, such as the
size of avalanches. Note that this method was initially applied to the depinning problem and to earthquakes. Only
later on was it claimed to be much more general and to have bearing on very diverse systems exhibiting intermittent
dynamics or “crackling noise” (Sethna et al., 2001), in particular the yielding transition of amorphous solids (see
Sec. VII). Recently, these mean-field scaling predictions about avalanche sizes, shapes, and dynamics have been used
to fit experimental data, in metallic glasses subjected to extremely slow uniaxial compression (Antonaglia et al., 2014;
Dahmen et al., 2009) as well as in compacted granular matter (Denisov et al., 2016).
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B. Random stress redistribution

1. Deviations from uniform mean field

Notwithstanding this success, the underpinning of the foregoing mean-field approach has been called into question.
Theoretically, the argument based on the long range of the interactions is undermined by the fact that these interactions
are sometimes positive and sometimes negative (Budrikis and Zapperi, 2013). A crude estimate of the ratio of
fluctations over mean value of the stress increments points to a divergence of this ratio at low shear rates γ̇ and
therefore to the failure of the mean-field theory, according to Ginzburg and Landau’s criterion (Nicolas et al., 2014b).
Numerically, some lattice-based simulations do indeed reveal departures from mean-field predictions for the critical
exponents (Budrikis and Zapperi, 2013; Lin et al., 2014a; Liu et al., 2016). For instance, in these simulations, near
γ̇ → 0, the distribution of avalanche sizes S follows a power law P (S) ∼ S−τ with an exponent τ that deviates from
the τ = 3/2 value predicted by mean field (see Sec. VII for details).

2. The Hébraud-Lequeux model

To improve on the hypothesis of a constant mean field γ̇eff , fluctuations of the mechanical noise need to be accounted
for. In the crudest approximation, they can be substituted by random white noise ζ(w.n.)(t), with

〈
ζ(w.n.)

〉
= 0. This

turns Eq. 18 into a biased Brownian walk for the local stresses, in the elastic regime ni = 0. Hébraud and Lequeux
(1998)’s model was developed along these lines. The ensuing stochastic equation (Eq. 18 with ζi(t)→ γ̇eff + ζ(w.n.)(t)
and τ → 0) can be recast into a probabilistic Fokker-Planck-like equation operating on the distribution P (σ, t) of
local stresses σ, viz.,

∂P (σ, t)

∂t
= −µγ̇ ∂P (σ, t)

∂σ
+D(t)

∂2P (σ, t)

∂σ2
− Θ (|σ| − σc)

τliq
P (σ, t) + Γ(t)δ(σ), (20)

where the diffusive term D ∂2P
∂σ2 on the rhs arises from the fluctuations acting on σi, with a coefficient D(t) assumed

to be proportional to the number of plastic sites Γ(t) ≡ τ−1
liq

∫
|σ′|>σy P (σ′, t)dσ′, viz., D(t) = αΓ(t). The first term

on the rhs of Eq. 20 is a drift term, which amalgamates γ̇eff with γ̇; the last two terms correspond to the failure
of overloaded sites (above σc) on a timescale τliq and their rebirth at σ = 0 due to stress relaxation. The resulting
mean-field equations can be solved in the limit of vanishing shear rates γ̇ (Agoritsas et al., 2015; Olivier, 2011). For
a coupling constant α < 1/2, diffusion vanishes at low shear rates, with D ∝ γ̇, a yield stress ΣY > 0 is obtained and
the average stress obeys Σ ' ΣY + kγ̇1/2, with k > 0, in the limit of slow shear rates. For α > 1/2, the system behaves
like a Newtonian liquid.

3. Fraction of sites close to yielding

The diffusive term introduced in Eq. 20 impacts the distribution of sites close to yield, i.e., at distances x� 1 from
the yield threshold σc, where x ≡ |σ|−σc. On these short distances, or, equivalently, in the limit of short time scales ∆t,
the back-and-forth diffusive motion over typical distances ∝

√
∆t prevails over the drift in the random walk. Therefore,

for γ̇ → 0, determining the distribution P (x) is tantamount to finding the concentration of Brownian particles near
an absorbing boundary at x = 0 (yield): the well-known solution is a linear vanishment of the concentration near
x = 0, viz., P (x) ∼ x for x ≈ 0 (Lin et al., 2014a; Lin and Wyart, 2016). This result ought to be compared with
P (x) ∼ x0 for drift-dominated problems, such as depinning. Lin et al. (2014a) further claim that this discrepancy is
at the origin of the differences in scaling behavior between the depinning transition (v ∝

(
F − Fc)β

)
with β < 1) and

the flow of disordered solids (γ̇ ∝
(
σ − σc)β

)
with β > 1 generally).

Still, the singularity of the propagator G ∼ cos 4θ
rd

casts doubt on the Gaussian nature of the random stress increments
δζ and would rather suggest a broad density function

ρ(δζ) ∼ δζ−2

in the limit of sparse plastic events, with an upper cut-off δζM proportional to the volume of a rearranging region. For
such a heavy-tailed distribution, the biased random Brownian walk of σj is replaced by a Lévy flight of index µ = 1
for σj . On the basis of a simple extremal model, Lemâıtre and Caroli (2007) demonstrated that this change altered
the avalanche statistics as well as the distribution of distances to yield P (x). To be explicit, their model was based on
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plastic yield above a uniform yield strain γc, which resets the local stress to zero and increments the stresses at other
sites by random values drawn from ρ(δζ). Lin and Wyart (2016) explored a related, but more general (Hébraud-
Lequeux-like) model analytically and confirmed the impact of the non-Gaussianity of the noise. These authors derived
an asymptotic expression for P (x), which scales as xθ for x � 1. The exponent θ > 0 is a non-universal exponent
that depends on the loading and the amplitude of the noise and supplements the other two exponents characterizing
the depinning transition.

C. Validity of the above “mean-field” approximations

The foregoing paragraphs have presented distinct levels of “mean-field” approximations. Now we enquire into their
range of validity and record the results in Table II.

1. Uniform mean field

Clearly, the neglect of fluctuations in the constant mean-field approach is sensible only in the drift-dominated

regime, i.e., when |
∫∆t

0
γ̇eff(t′)dt′| � |

∫∆t

0
δζ(t′)dt′| on the considered time scales ∆t, with the notations of Sec. IV.A.

With interactions that change signs, this excludes vanishing shear rates or too small time windows ∆t. But at high
shear rates, this approach appears to correctly predict the avalanche scaling exponents in the EPM studied by Liu
et al. (2016).

2. White-noise fluctuations

Complemented with Gaussian fluctuations, the approximation is valid beyond the drift-dominated regime. In fact,
any mechanical noise signal with (i) finite average and finite variance, in particular ρ (δζ) = o(δζ−3), and (ii) no
significant time correlations, can be replaced by Gaussian white noise in Eq. 18 (Lin and Wyart, 2016). Accordingly,
the universality class of the Hébraud-Lequeux model encompasses all models based on similar rules for plasticity and
where the mechanical noise fulfils the above criteria (i) and (ii). In particular, for coupling parameters α such that the
diffusivity D(t) goes to zero at γ̇ → 0, their flow curves will follow a Herschel-Bulkley behavior Σ = ΣY + kγ̇m with
m = 1/2 in the low shear rate limit. This holds true in the presence of disorder on the local yield thresholds σc and
for plastic events that do not relax the local stress strictly to zero, but to a low random value (Agoritsas et al., 2015).
On the other hand, should the shear modulus of elastic blocks or the relaxation time display a shear-rate dependence,
the exponent m will deviate from 1/2 (Agoritsas and Martens, 2017).

Besides, even in an elastic system with sparse plastic events, where the formula for the elastic propagator suggests
ρ (δζ) = δζ−2, the finite-variance constraint (i) on ρ could be fulfilled. Indeed, the elastic propagator is but a far-field
approximation and the large δζ values predicted in the near field have not been observed numerically or experimentally.
Consequently, there will always be an upper cut-off in the predicted ζ−2-distribution, which may justify the Gaussian
noise approximation on long time scales. In this regard, it is interesting to note that the extremal model studied
by Lemâıtre and Caroli (2007) seemed to capture the avalanche scaling exponent measured in atomistic simulations
better with Gaussian fluctuations than with the heavy-tailed fluctuations suggested by the elastic propagator.

3. Heavy-tailed fluctuations

Nevertheless, if it so happens that the fluctuation distribution is heavy-tailed, the breadth of the mechanical noise
distribution ρ should not be overlooked, as it modifies the expected distribution P (x) of local distances to yield x. Yet,
in dimensions d = 2 and d = 3, taking into account the heavy tail does not suffice to capture the exponent θ (defined
by P (x) ∼ xθ) measured in lattice-based simulations relying on the genuine elastic propagator (Lin and Wyart, 2016).
This points to the failure of criterion (ii) above, i.e., the importance of temporal correlations in the mechanical noise
signal {ζi(t)}; these correlations are notably due to avalanches and are lost in the mean-field reasoning. Only for a
higher dimension d = 4 does the mean-field prediction for θ come closer to the value measured in the lattice-based
model, which suggests an upper critical dimension d = 4. This claim may be contrasted with Chen et al. (1991)’s early
speculation of an upper critical dimension of 3 for the applicability of constant mean field in their model. Leaving
aside mean-field concerns for a minute, we find quite noteworthy that the θ exponents measured in the lattice-based
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EPM are quite compatible with their (indirectly) measured value in atomistic simulations in the quasistatic regime,
in 2D and 3D (Lin et al., 2014a).

4. Structure of the elastic propagator and soft modes

Coming back to the comparison between EPM and their approximations, we note that the mean-field predictions
are recovered (even for d < 4) if the elastic propagator is shuffled, that is, if the coupling between sites i and j is given
by Gτ(i)τ(j), where τ is a random permutation of indices which changes at each time step, instead of being given by
Gij . This shows that the temporal correlations in the mechanical noise signal arise because of the spatial structure of
G. Of particular importance in this structure, claim Talamali et al. (2012) and Tyukodi et al. (2016b), are the soft
deformation modes of the propagator (the uniform shear bands described in Sec. III.C), that create no elastic stress
in the material. To clarify this importance, the authors focused on the evolution of the cumulative plastic strain εpl in
extremal dynamics and recast the EPM equation of motion (Eq. 5) into a depinning-like equation (also see Sec. IX.B),
viz.,

η∂tεp = P
(
σext + 2µG ∗ εp − σy

)
,

where η = µτ is a viscosity, σy is the local stress threshold, and P(x) = x if x > 0 and 0 otherwise. The deformation
of a disordered solid in d dimensions is then regarded as the advance of a d-dimensional elastic hypersurface in a d+1 -
dimensional space, where the additional dimension is εpl. Under the influence of the driving, the elastic hypersurface
moves forward along εpl , and, in so doing, gets deformed owing to the disorder in the yield thresholds σy seen by
different points on the hypersurface.

Despite the similar framework, Tyukodi et al. (2016b) showed that EPM will considerably deviate from elastic
depinning problems because of the existence of soft modes in the EPM kernel G, while nontrivial soft modes are

prohibited by the definite positiveness of the depinning propagator. As time goes on, the width W ε ≡
〈(

εpl − εpl
)2
〉

of the elastic hypersurface (where the overbar denotes a spatial average and the brackets indicate an ensemble average
over the disorder) saturates in the depinning problem. This saturation is due to the higher elastic stresses released by
regions of higher εpl, which destabilize regions of lower εpl and therefore act as restoring forces to homogenize εpl over
the hypersurface. On the contrary, in EPM, W ε (the variance of εpl) grows endlessly by populating the soft modes of
plastic deformation, which generate no elastic restoring force, and diverges in a diffusive fashion at long times.

D. A mechanical noise activation temperature?

1. The Soft Glassy Rheology model (SGR)

The Soft Glassy Rheology model of Sollich et al. (1997) proposed an alternative way to handle mechanical noise
fluctuations {δζ(t)}. In the SGR spirit, these random stress “kicks” operate as an effective temperature x that can
activate plastic events, in the same way as thermal fluctuations do. Accordingly, the fluctuation-induced diffusive
term in Eq. 20 is replaced by an Arrhenius law to describe activated effects. More precisely, in SGR, the material
is divided into mesoscopic regions that evolve in a landscape of traps whose depths are randomly drawn from an
exponential distribution (Bouchaud, 1992)

ρ(E) ∝ exp(−E/Eg).

Here, Eg is a material parameter that will be set to unity. To hop from trap to trap, blocks must overcome the energy

barrier E. The external driving facilitates these hops by elastically deforming each region at a rate l̇ = γ̇, where l is
the local strain, which lowers the local energy barrier: E → E− 1

2kl
2. The stiffness parameter k is such that kl is the

local stress. Finally, SGR assumes that the random “kicks” due to mechanical noise activate hops at a rate ω(E, l)
given by an Arrhenius law, viz.,

ω(E, l) = ω0exp

(−E + 1
2kl

2

x

)
, (21)

where ω0 is the attempt frequency and x quantifies the intensity of the mechanical noise. After a hop, l is set back
to zero and a new trap depth E is randomly picked from the distribution ρ.
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FIG. 10 Sketches illustrating the difference between thermal fluctuations ξT and mechanical noise ξpl. From (Agoritsas et al.,
2015)

.

The low-γ̇ rheology that emerges from this simple model is quite interesting. As the effective temperature x
decreases, the system transits from a Newtonian regime Σ ∝ γ̇, for x > 2, to a power-law regime Σ ∝ γ̇x−1 for
1 < x < 2, and a yield stress emerges for x < 1, where the stress follows the Herschel-Bulkley law Σ − Σy ∝ γ̇1−x.
Indeed, for x < 1, the ensemble average of the time spent in a trap, viz.,

〈τ〉 =

∫
ρ (E)ω−1(E, l)dE

diverges at γ̇ = 0. The system ages and falls into deeper and deeper traps on average; it follows that there is no
typical material time for the relaxation of the cumulated stress. Moreover, the wealth of timescales afforded by the
use of an Arrhenius law also leads to interesting linear viscoelastic properties, in accordance with experimental data
on colloidal pastes and emulsions.

2. Mechanical noise v. thermal fluctuations

However, the theoretical validity of this hypothesis has been contested in recent years (Agoritsas et al., 2015; Nicolas
et al., 2014a; Pons et al., 2015). The bone of contention is that, contrary to thermal fluctuations, mechanical noise
fluctuations persistently modify the energy landscape of the region, insofar as the plastic events that trigger them are
mostly irreversible. Indeed, with the notations used above (Eq. 18), the evolution of the stress in an elastic region is
given by

σ(t) = µγ̇efft+

∫ t

0

δζ (t′) dt′︸ ︷︷ ︸
≡ξpl(t)

+ cst.

This stress is applied at the boundary of the region by the outer medium and effectively tilts its potential energy V
into Ṽ (t) ≡ V − γσ(t), which favors internal deformation (Gagnon et al., 2001). Here, γ is the shear strain associated
with the internal configuration and the activation volume is set to unity. Assuming overdamped dynamics with friction
coefficient µ, one can write

0 = −µdγ
dt

(t)− ∂Ṽ

∂γ
(t) + ξT(t)

= −µdγ
dt

(t)− dV

dγ
[γ(t)] + 〈σ̇〉t+ ξpl(t) + ξT(t).

Here, ξT denotes the thermal fluctuations. Mechanical noise and thermal fluctuations differ in that 〈ξT(t)ξT(t′)〉 ∝
δ(t− t′) (for white noise), whereas, if the autocorrelation function C(∆t) ≡ 〈δζ(t)δζ(t+ ∆t)〉 decays quickly to zero,

〈ξpl(t)ξpl(t
′)〉 =

∫ t

0

dτ

∫ t′

0

dτ ′C(τ − τ ′) ∼ min(t, t′).
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Under the sole influence of ξpl, the energy barrier Ṽ flattens out after a time T ∼ (max dV/dγ)2 ≡ σ2
y. This purely

diffusive case is encountered in Picard’s model; the escape occurs much faster than in an activated process.

Numerical simulations of model glasses by Puosi et al. (2015) have confirmed that local stress fluctuations grow
diffusively with time, at least at very low shear rates, viz.,〈

(ξpl(t+ ∆t)− ξpl(t))
2
〉
∝ ∆t.

On the experimental side, in granular matter, the (fluidizing) effect of an actively sheared zone on the mechanical
response of a distant region has been vividly demonstrated: It facilitates the penetration of an intruder (Nichol et al.,
2010) or the motion of a rodlike probe (Reddy et al., 2011), presumably by agitating the grains in the distant region, as
if they were thermally agitated. However, although an Eyring-like activation picture may account for the observations,
Bouzid et al. (2015b) have argued that this does not suffice to validate the idea of a mechanical noise temperature,
insofar as the results can be reproduced by other nonlocal models as well. Studying a related effect, Pons et al. (2015)
have shown that applying small oscillatory stress modulations to a granular packing loaded below its yield point can
dramatically fluidize it. This effect is presumed to stem from a secular enhancement of the fluidity which is due to
the stress modulations and varies algebraically (and not exponentially) with their intensity in the proposed theory.

E. Connection with the diffusion of tracers

Rather than the local stresses, many experimental works have access to observables related to particle displacements,
in particular dynamic light scattering or particle tracking techniques. It is thus interesting to be able to connect the
local stress dynamics to the diffusion of tracer particles. Single events as well as plastic avalanches are expected to
contribute to the tracers’ motion even far away from the plastic zone due to their long-range effects, as sketched in
Fig. 11(a) (Lemâıtre and Caroli, 2009; Nichol et al., 2010).

Using the response to a punctual force in an incompressible elastic medium (Eq. 13), the displacement field induced
by a single plastic event can be calculated and is displayed in Fig. 11(b). To mimic diffusion, Martens et al. (2011)
introduced imaginary tracers that follow the displacement field generated by the ongoing plastic events and were able
to rationalize the relation between the nonaffine part of the self-diffusion coefficient and dynamical heterogeneities
(characterized by the four-point stress susceptibility), as shown in Fig. 11(c). Quantities comparable to the self-
intermediate scattering function in purely relaxing systems are also accessible, as discussed in Sec. VIII.A.

V. STRAIN LOCALIZATION: FROM TRANSIENT HETEROGENEITIES TO PERMANENT SHEAR BANDS

The similarities in the deformation of amorphous solids, exposed in Sec. I, should not mask the widely different
macroscopic consequences of applying shear to these materials. The elastoplastic viewpoint helps to understand these
differences in a common framework.

TABLE II Synthetic view of the distinct types of fluctuations at play and the methods with which they can be handled.

Fluctuation-dominated regime Drift-dominated regime

Mechanical noise
fluctuations δζ

Strong correlations and broad
distribution

No time correlations but
broad distr. ρ(δζ)∝δζ−1−µ

Gaussian white noise ρ(δζ) ∈ o(δζ−3)

Dynamics of σ in
elastic regime

Correlated evolution Lévy flight (biased) Brownian motion

Applicable ‘mean
field’ treatment

None known so far Reasoning on P (σ) taking
into account ρ(δζ)

Eq. on P (σ) with dif-
-fusive term due to δζ

Uniform mean-field approx.
may be valid

P (x) for x ≈ 0 ∼ xθ with unrationalized
exponent

∼ xθ with dimension
dependent θ

∼ x ∼ x0

References and
examples

Lin and Wyart (2016) for
d<4, Liu et al. (2016) at low γ̇

Lin and Wyart (2016)’s
shuffled model

Hébraud et al. (1997) Liu et al. (2016) at high γ̇
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FIG. 11 (a) Schematic illustration of the long-range effects of plastic avalanches (in green) on the diffusion of a tracer (in red).
From (Martens et al., 2011) (b) Color map of the stress redistributed by a plastic event located at the origin and associated
displacement field (arrows). (c) Comparison of the scaling of the rescaled dynamical susceptibility χ/χ0 for different system

sizes and shear rates with the scaling of the rescaled long-time diffusion coefficient D̃/D0; the inset shows the individual scalings.
From (Martens et al., 2011).

A. Two opposite standpoints

In the common sense, there is a chasm between (i) foams and other soft solids, that flow, and (ii) metallic or silicate
glasses that break/fracture after a certain amount of deformation (see Fig. 12b(right)).

To start with the latter category, in daily life, the soda-lime glasses routinely used to make windowpanes, bottles,
etc., and more generally silicate glasses exemplify the concept of perfect brittleness, in which the material deforms
elastically and then breaks, without going through a stage of plastic deformation. Nevertheless, at small scales plastic
deformations accompanying the densification of the material were revealed in indentation experiments with a diamond
tip (Yoshida et al., 2007) as well as experiments of uni-axial compression of micropillars of amorphous silica (Lacroix
et al., 2012) (which overall behaves comparably to soda-lime glass (Perriot et al., 2011)) and simulations of extended
shear (Rountree et al., 2009). However, in many situations, plasticity plays virtually no role, in particular when
failure is initiated by a crack: No evidence of plasticity-related cavities was seen by Guin and Wiederhorn (2004) (also
see references therein) and, with the help of simulations, Fett et al. (2008) claimed that the surface displacements
experimentally observed at crack tips are compatible with theoretical predictions discarding plasticity. (It should
however be mentioned that a minority of works support the existence of plasticity near the crack tip).

In metallic glasses, global failure is preceded by substantial plastic deformation. The latter is generally localized
in thin shear bands, that appear as clear bands in post-mortem scanning electron micrographs. These bands are
typically 10 to 50nm or even 100 nm-thin (Bokeloh et al., 2011; Schuh et al., 2007), i.e., much thinner than the
adiabatic shear bands encountered in crystalline metals and alloys, which are about 10− 100µm-thick. Despite these
plastic deformations, brittleness remains a major industrial issue for metallic glasses. Added to their cost and the
difficulty of obtaining large samples, this drawback may outshine their advantageous mechanical properties, such as
their high elastic limit (Wang, 2012). As a consequence, much effort has been devoted to improving their ductility.

By contrast, foams, emulsions and various other soft solids can undergo permanent shear flow without enduring
irretrievable damage. This conspicuous discrepancy with hard molecular glasses can however be lessened by noticing
that, even among soft solids, the flow sometimes localizes in shear bands (Bécu et al., 2006; Lauridsen et al., 2004).
Still, the distinction between hard solids that deform and break and soft solids that deform and flow is overly
caricatural. The case of gels, which consist of long entangled (and often cross-linked) chains, demonstrates that soft
solids, too, may break upon deformation. But, then, what distinguishes a material that flows from one that fails?
What determines whether the deformation will be macroscopically localized in shear bands or homogeneous (on the
macroscopic scale)?

1. The shear-banding instability from the standpoint of rheology

To start with, let us consider the rheological perspective. Shear-banding in complex fluids is interpreted as the
consequence of the presence of an instability in the constitutive curve, i.e., the flow curve Σ0 = f(γ̇) that would be
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FIG. 12 Experimental observation of shear bands in (a) a granular packing of ∼ 90µm glass beads under biaxial compression
and (b, right) a bulk metallic glass sample under uniaxial tension. The composite glass shown in (b, left), reinforced with
dendrites, displays a more ductile response to tension. From (Le Bouil et al., 2014) and (Hofmann et al., 2008), respectively.

obtained if the flow were macroscopically homogeneous. Indeed, it is easy to show that homogeneous flow in decreasing
portions of the constitutive curve is unstable to perturbations and is superseded by co-existing bands. The actual
flow curve displays a stress plateau Σ (γ̇) = cst for γ̇ between two values γ̇l and γ̇h. Shear localization corresponds
to the particular case γ̇l ' 0, i.e., that of a non-flowing band. In other words, it will occur if the constitutive curve
already starts decreasing at γ̇ = 0.

Note that, exploiting this negative-slope criterion, purely mean-field calculations can predict shear-banding (e.g., in
(Coussot and Ovarlez, 2010)), which is somehow counterintuitive, given the manifest spatial heterogeneity associated
with the phenomenon. Nevertheless, such calculations obviously leave aside the spatial organization of the flow (its
banded structure), which hinges on the shape of the elastic propagator in simulations: In EPM, with similar dynamical
rules, the banded flow structure obtained with the long-ranged elastic propagator of Eq. 15 is not preserved if the
propagator is substituted by a stress redistribution to the first-neighbors, even if the latter is anisotropic (Martens
et al., 2012).

The simple criterion based on the steady-state constitutive curve needs to be somewhat adjusted for amorphous
solids, which often exhibit aging effects. Then, the yield stress of the quiescent material may vary with the waiting
time since preparation (Varnik et al., 2003). Consequently, even if the flow curve obtained by ramping down γ̇ from a
high value is strictly monotonic, shear-banding may arise in non presheared samples. This will happen if an initially
undeformed band gradually solidifies and thus further resists deformation, while the rest of the material is sheared.
The solid band is “trapped” in its solid state because of the aging at play (Martin and Hu, 2012; Moorcroft et al.,
2011).

2. The mechanics of bands in a solid

Turning to the viewpoint of solid-state mechanics, as emphasized in Sec. III.C, uniform strain bands inclined by
±π/4 with respect to the principal directions of the strain tensor are soft modes of the elastic propagator (Eq. 15),
which means that they do not generate elastic stresses in the system. Should there be a weak stripe in the material
(in the sense of low elastic moduli or low yield thresholds), it will then be energetically beneficial to accommodate
part of the macroscopic strain in it in the form of a slip line. Such an energy-based argument is especially relevant
in a quasistatic protocol in which the system always reaches the local energy minimum between strain increments.
If the stripe in which the strain localizes displays ideal plasticity, the macroscopic stress-strain curve Σ = f(ε) stops
increasing due to the banding instability.

But this continuum-based approach ignores the granularity of the material at the scale of plastic rearrangements by
postulating the spontaneous and synchronous creation of a strain band all at once. Contrasting with this postulate,
some experimental evidence in colloidal glasses (Chikkadi et al., 2011) and granular matter (Amon et al., 2012;
Le Bouil et al., 2014) indicates that shear bands actually consist of disconnected, non-simultaneous localized plastic
rearrangements, as implemented in EPM. Therefore, only on average is a strain band uniform; its granularity (as a
patchwork of localized plastic rearrangements) as well as the time fluctuations in its plastic activity have no reason
to be overlooked. The sequential emergence of the band may explain its sensitivity to details in the implementation
of the elastic propagator (Talamali et al., 2012).

Taking the granularity of the band into account, Dasgupta et al. (2013, 2012) proposed to explain the existence
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and the direction of shear bands by an argument based on the minimization of the elastic energy of a collection of
Eshelby inclusions in a uniform elastic medium over their possible configurations in space. The neglect of the elastic
heterogeneity of glasses in the reasoning was justified by the authors by the specific consideration of carefully quenched
(hence, more homogeneous) glasses. An additional concern could be raised as regards the use of a global one-step
minimization, whereas plastic events occur sequentially and the elastic deformation field in the material evolves during
the process.

More generally, the strain bands described in the context of solids probably differ from the long-lived or permanent
shear bands observed experimentally in steadily sheared materials. The former might be more accurately referred
to as transient “slip lines” and some reports of “shear bands” in atomistic simulations should probably rather be
interpreted as slip lines, as already noted by Maloney and Lemâıtre (2006). However, it has been suggested that the
transient banding instability can act as a precursor to the formation of a shear band (Fielding, 2014).

In fact, transient banding is a matter of interest per se, as it can be long-lived (Divoux et al., 2010). Moorcroft
and Fielding (2013) proposed a way to rationalize its occurrence on the basis of a generic banding criterion involving
the transient constitutive curves Σ0 = f(γ̇, γ), where γ is the cumulative strain since shear startup, in a fictitious
system constrained to deform homogeneously. The rheological criterion dΣ0

dγ̇ < 0 is recovered at infinite times γ →∞,

while a purely elastic banding instability is predicted if A∂Σ0

∂γ + γ̇ ∂
2Σ0

∂γ2 < 0, with a model-dependent prefactor A > 0,

provided that the material is sheared much faster than it can relax (γ̇ → ∞). In the light of this, the authors claim
that there is a generic tendency to transient banding in materials that exhibit a stress overshoot in shear startup.
This connection has been noticed in EPM in the quasistatic regime (Lin et al., 2015).

However, transient slip lines need not always convert into steady-state banding in a homogeneously sheared disor-
dered solid. What is required for this purpose is a mechanism that explains how the transient “slip lines”, instead of
being dispersed, concentrate in the same region of the shear-banded material as time goes on. The distinction between
the situation at finite strains and in the steady state should perhaps be emphasized. The first-order yield transition
in the statistics of low-energy barriers observed by Karmakar et al. (2010) at a finite strain γc is not necessarily
associated with a first-order (banding) transition in the steady-state flow curve Σ (γ̇). Similarly, Jaiswal et al. (2016)
numerically observed that, in a batch of finite-size samples subjected to a strain γ, about half of the samples will have
irreversibly yielded when γ = γc, while the other half come back to their initial configuration upon unloading; but it
is not straightforward to conclude from this interesting observation that, if one stitched a “yielding” sample together
with a “recovering” one, a shear band would localize in the “yielding” part at longer times.

B. Spatial correlations in driven amorphous solids

The intermediate scale of EPM helps bridge the time and length scale gap between transient slip lines and permanent
shear-banding. A complex flow organization at short to intermediate time scales, featuring strong intermittency and
marked spatial correlations between plastic events, is encountered even in driven amorphous solids that do not exhibit
macroscopic shear localization, provided that the driving is sufficiently slow.

1. Spatial correlations

The computational efficiency of EPM allows one to quantify the spatial extent of correlations in the flow through
the measurement of cooperativity or correlation lengths ξ in bulk flows. The Kinetic Elastoplastic (KEP) Theory of
Bocquet et al. (2009), an extension of the Hébraud-Lequeux model (see Sec. IV.B.2) that includes heterogeneities,
predicts a decrease of ξ with the shear rate as

ξ ∼ (Σ− Σy)
−1/2 ∼ γ̇−1/4,

in contrast with the theoretical prediction ξ ∼ γ̇−1/2 in 2D of Lemâıtre and Caroli (2009), beyond which independent
avalanches are supposedly triggered.

Simulations of hoogeneous shear flow on spatially resolved EPM have shown, in general, results departing from the
ξ ∼ γ̇−1/4 scaling. By studying how the strain-rate dependence of the average stress drop 〈δσ〉 is affected by changes in
the size of the system and collapsing the data onto a master curve, Picard et al. (2005) measured a correlation length
that scales with γ̇−1/2 in 2D (see Fig.13a). Nicolas et al. (2014b) related this scaling to the average spacing between
simultaneous plastic events, which scales as γ̇−1/d in d dimensions, and several definitions of correlation lengths were
shown to follow this dependence in EPM. The variable sign of the elastic propagator enters the reasoning, insofar
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FIG. 13 (a) Mean stress drop (normalized by the average stress) ∆σ̃ , as a function of the renormalized dimensionless shear rate,
Nγ̇/γ̇c . From (Picard et al., 2005). (b) Top: Time evolution of the dynamical stress susceptibility χ4(t, γ̇) at different strain
rates. Bottom: Finite-size scaling plot for the maxima of the dynamical susceptibilities. Adapted from (Martens et al., 2011).
(c) Velocity profiles across the channel for different applied pressures. (Red crosses) Experimental data for an oil-in-water
emulsion; (dashed cyan lines) EPM; (solid black lines) bulk rheology predictions. The profiles have been shifted vertically for
legibility. Adapted from (Nicolas and Barrat, 2013b).

as plastic events are able to screen each other, because the sign of their contributions may differ. Nevertheless, the
γ̇−1/d scaling is not generic. In particular, the correlation length derived from the four-point stress correlator G4 (r),
exploited by Martens et al. (2011) (see Fig.13b), is more sensitive to the avalanche shape and was shown to depend
on the chosen EPM dynamical rules. Below the yield stress, Lin et al. (2015) claim that the system is critical,
with system-spanning avalanches in the transient, which is supported by a study of the cutoffs in the avalanche size
distributions in EPM simulations. This implies a diverging correlation length ξ =∞ in the whole Σ < Σy phase - not
unlike what is seen in 2D dislocation systems, at all applied stresses (Ispánovity et al., 2014).

Besides, it should be noted that EPM tend to overestimate the intensity and the extent of the correlations between
plastic events, e.g., compared to particle-based simulations (Nicolas et al., 2014c). Furthermore, the quasistatic
divergence of ξ observed in athermal EPM, with ξ → ∞ as γ̇ → 0, will be cut off strongly in systems at a finite
temperature, where thermal noise stifles the correlations (Hentschel et al., 2010).

2. Cooperative effects under inhomogeneous driving

The correlations measured in macroscopically homogeneous flows generate conspicuous cooperative effects if the
loading or the macroscopic flow is inhomogeneous over the correlation length scale.

This is in particular the case in pressure-driven flows through a narrow channel, of width w (w ≈ 102 µm for
microchannels). In this geometry, the streamline-averaged shear stress Σ varies linearly across the channel, which
notably implies that it is zero at the center (both in 2D and 3D). Therefore, for yield-stress fluids, a plug flow with
an advected, but unsheared central part (where |Σ| < Σy) is expected. Also, large stress gradients, of order ∇pw ,
are generated across the channel. Accordingly, differently-stressed streamlines interact in the flow via the elastic
propagator.

Seminal experiments on concentrated oil-in-water emulsions by Goyon et al. (2008) have revealed that the actually
observed 2D profiles are more rounded than the expected plug flow, and overall the flow is enhanced compared to
the predictions from the bulk rheology. Thus, there is no unique relation between the local strain rate and the local
stress (Goyon et al., 2010): the rheology is nonlocal. Using a similar system, Jop et al. (2012) demonstrated the
existence of finite strain rate fluctuations δγ̇(r) ≡

√
〈γ̇(r)2〉 − 〈γ̇(r)〉2 in the plug, which are minimal at the channel

center. Numerical simulations of athermal soft disks confirmed the impact of confinement on the rheology: In 2D
periodic Poiseuille flow (corresponding to a juxtaposition of Poiseuille flows of alternate directions), the wall stress
below which flow stops substantially increases as the channel becomes narrower (Chaudhuri et al., 2012).

This remarkable effect of spatial correlations on an inhomogeneous flow is often rationalized by means of a nonlocal
term in the equation controlling the fluidity f , defined here as the inverse viscosity γ̇/σ, a variable which is thought to
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be proportional to the rate of plastic events. Owing to the symmetry of the propagator, the leading-order correction
to the local fluidity involves the Laplacian ∇2f , which yields a steady-state fluidity diffusion equation,

ξ2∇2f + [fb (Σ)− f ] = 0, (22)

where ξ is a cooperative length and fb is the fluidity in a bulk flow subject to stress Σ. The KEP model of Bocquet

et al. (2009) provides a formal justification of Eq. 22 to linear order in f , with ξ ∼ (Σ− Σy)
−1/2

, by accounting for the
mechanical noise generated in the immediate vicinity of plastic events. In fact, using a constant value of ξ (for each
material) in Eq. 22 already provides very good fits of the experimental curves, not only for concentrated emulsions
(Goyon et al., 2008) and lattice-Boltzmann simulations thereof (Benzi et al., 2014), but also for polymer microgels
(Carbopol) (Geraud et al., 2013). In the case of emulsions, ξ takes a value of zero below the jamming point, and
reaches up to 3 to 5 droplet diameters (20 − 30µm), in the very dense limit (Goyon et al., 2008). Similarly, for
Carbopol samples, ξ is found to measure 2 to 5 structural sizes, as determined from the size of optical heterogeneities
(Géraud et al., 2017).

However, the fitting involves the adjustment of a boundary condition, namely, the fluidity fw at the wall. The high
sensitivity of the fits to fw (Geraud et al., 2013) may limit the accuracy of the experimental measurement of ξ. This
difficulty highlights the value of EPM for testing the validity of theoretical predictions. In EPM descriptions of channel
flow, the driving term µγ̇ is set to zero in Eq. 5; flow arises on account of the initially imposed transverse stress profile
Σ (y). The presence of channel walls is accounted for by a no-slip boundary condition, which adds a correction to
Eq. 15 for the elastic propagator. This correction can be calculated via a method of images and leads to a faster local
relaxation for plastic events near walls (Nicolas and Barrat, 2013a). Combined with appropriate dynamical rules, the
model semi-quantitatively reproduces the shear rate fluctuations in the plug observed by Jop et al. (2012) as well as
the moderate deviations of the velocity profiles from the bulk predictions witnessed with smooth walls, provided that
the EPM block size corresponds to around 2 droplet diameters (see Fig. 13c). The fluidity diffusion equation, Eq. 22
either with ξ = cst or ξ ∼ γ̇−1/4, captures the EPM fluidity profiles reasonably well, albeit imperfectly. Taking a closer
look at the decay of the shear rate γ̇(y) in a region (y > 0) subject to Σ < Σy contiguous to a sheared band (y < 0),

Gueudré et al. (2017) find that EPM results obey a scaling relation involving a length scale ξ ∝ (Σ) ∼ (Σ− Σy)
−ν

but
that the scaling exponents clearly differ from mean-field predictions and are also inconsistent with KEP-based Eq. 22.
In particular, for Σ ≈ Σy, γ̇(y) is argued to decay algebraically with y > 0 instead of exponentially. Recalling that
the finite size L of a system induces a shift by ∆Σ ∝ L−1/ν of the critical stress for flow initiation in a homogeneous
setup (so that l (Σ) = L at initiation), the same authors claim that pressure-driven flows display larger finite-size
effects than simple shear flows, e.g. with respect to the critical stress Σstop(L) below which flow stops, because in
the former setup L should be substituted by the width (Σw − Σstop)L of the sheared band near the wall (where the
stress is Σw), hence a smaller effective size.

The description of nonlocal effects by Eq. 22 has also been applied to granular matter, which generically display
heterogeneous flow and shear bands (Kamrin and Koval, 2012). To do so, the fluidity was redefined as γ̇/µ, owing to the
fact that the rheology of dry frictional grains is best expressed as a relation I(µ) between the inertial number I (which
is a rescaled shear rate) and the friction µ ≡ Σ/P (with P the pressure). The resulting model has proven its ability
to capture cooperative effects and account for the global velocity profile observed in discrete element simulations of
a simple shear flow with gravity, a gravity-driven flow in a channel (Kamrin and Koval, 2012) as well as the flow
of a granular layer on an inclined plate, which is sensitive to the thickness of the layer (Kamrin and Koval, 2012).
Nevertheless, the validity of the definition of a “granular fluidity”, which is not an intrinsic state variable (because of
the denominator Σ or µ), has been questioned, on the basis that employing another variable would also lead to an
exponential decay of the flow away from an actively sheared zone (Bouzid et al., 2015a). Other definitions for the
fluidity variable f that should enter a diffusive equation have thus been put forward: Aranson and Tsimring (2006)
considered the ratio between the “static” and the “fluid” part of the stress tensor; Bouzid et al. (2015b) claim that
the choice f = I (inertial number) best matches the results of their discrete-element simulations, in particular the
continuity of f at the interface between differently-loaded regions.

3. Cooperative effects due to boundaries

Coming back to emulsions, Goyon et al. (2008)’s observations indicate that the flow deviates much more from the
bulk predictions, with an enhanced fluidization, when smooth walls are replaced by rough walls. Further experimental
studies on regularly patterned surfaces show that the wall fluidization enhancement varies nonmonotonically with the
height of the (steplike) asperities, for asperities smaller than the droplet diameter, as does the wall slip velocity
(Mansard et al., 2014).
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These strong deviations in the presence of rough walls exceed by far what is found in EPM. This points to another
physical origin than the coupling to regions subject to higher shear stresses. Since wall slip was experimentally
observed, it has been suggested that the “collisions” of droplets against surface asperities, as they slide along the
wall, are the missing source of plastic activity; adding sources of mechanical noise along the walls in EPM can indeed
capture the experimental features (Nicolas and Barrat, 2013b). Derzsi et al. (2017) experimentally confirmed the
presence of roughness-induced scrambles at the wall and, with the help of lattice-Boltzmann simulations, the ensuing
increase in the rate of plastic rearrangements near rough walls.

C. The ingredients for permanent shear localization or fracture

Several EPM have been able to reproduce permanent strain localization (Bulatov and Argon, 1994b; Coussot and
Ovarlez, 2010; Jagla, 2007; Li et al., 2013; Martens et al., 2012; Nicolas et al., 2014b; Vandembroucq and Roux, 2011).
In these cases, after a transient, the plastic activity will typically concentrate in a narrow region of space, generally a
band, that may slowly diffuse over time. The discriminative observation of localization for certain (but not all) EPM
and for a certain range of parameters only, gives hints as to the ingredients responsible for this phenomenon. These
ingredients are to be found in the rules for yielding or for elastic recovery. Of course, they are of rather generic nature;
relating them to microscopic physical properties is not obvious in general. In fact, very few detailed comparisons
between microscopic calculations and the EPM rules are available, so that one remains at the level of a qualitative
interpretation.

To start with, one notices that large applied stresses Σ� Σy are incompatible with localization. Indeed, the applied
stress then exceeds the local yield stresses: Plastic events pervade the system, which globally flows in a viscous manner.
In other words, large loadings fluidize the material, consistently with experimental observations (Divoux et al., 2012).

On the other hand, at lower stresses (hence, lower shear rates), plastic events are sparser and may hit the same
regions over and over again, provided that the latter are strongly or durably weakened by these events. Meanwhile,
in the rest of the material, the driving term in Eq. 5 is compensated by the nonlocal contributions due to a band of
plastic events, i.e., a uniform relaxation (Martens et al., 2012). The general cause for localization thus evidenced is
the insufficient healing of regions following rearrangements (Nicolas et al., 2014b). In the following, we look into the
distinct possible origins of this weakening.

1. Long rearrangements

Coussot and Ovarlez (2010) rationalized shear-banding in jammed systems by considering the formation and break-
age of particle clusters. Locally, these events delimit periods of solid and liquid behavior, in which the elastic stress is
of order µγ̇t (with µ the shear modulus and γ̇t the local strain) and 0, respectively, while there is a constant viscous
stress of order ηγ̇. On the basis of a mean-field argument, they showed that if the liquid-like phase lasts longer than
η/µ, then the flow curve becomes nonmonotonic, which is the hallmark of shear-banding. The idea was elaborated by
Martens et al. (2012), who used a spatially resolved EPM of the Picard type with a variable rearrangement (“healing”)
time τres as a parameter, with the notation of Eq. 19. Their findings confirmed the formation of shear bands in space
for large τres, associated with the emergence of nonmonotonicity in the macroscopic flow curve. The banded flow
shares many properties with systems at a first-order transition in which different phases coexist; the shear rate is
well defined (independent of the driving) inside the band and there is an interface with the nonflowing phase. This
spatial organization in the form of a band is intrinsically related to the long range and anisotropy of the propagator,
for which bands are soft modes (see Sec. III.C).

Attractive interactions in adhesive colloidal systems (Irani et al., 2014) and directional bonds in molecular systems
are tentative candidates for possible microscopic origins of long rearrangements, i.e., long time delays before the
destabilized region reaches another stable configuration.

Similarly, the introduction of a pinning delay upon yielding by Papanikolaou (2016), during which potential forces
are inactivated (presumably due to inertial effects), enhance strain localization.

2. Structural softening combined with slow recovery (aging)

Both experimental (Rogers et al., 2008) and numerical (Shi and Falk, 2005) data indicate that letting a system
“age” in the absence of strain favors strain localization, or even fracture. The EPM proposed by Vandembroucq and
Roux (2011) and inspired by the weakening mechanism in Fisher et al. (1997)’s model for earthquakes helped interpret
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FIG. 14 Maps of cumulated plastic strain εp obtained in an EPM for different biases δ in the post-yielding distribution of
local yield stresses (see main text) and at different rescaled “times” 〈εp〉, as indicated on the figure. Darker colors represent
larger values of εp. The principal strain directions are the horizontal and vertical directions. Adapted from (Vandembroucq
and Roux, 2011).

this effect: The distribution P (σy) used for resetting the local yield stresses σy following a plastic event was shifted
by an amount δ with respect to the initial P (σy), to mimic the lower structural temperature of the material prior to
shear. For large enough negative δ (strain weakening), the first regions to yield are rejuvenated to a state with lower
threshold, so that the system gets trapped in a banded structure. The bands thus created are localized and pinned
in space if the elementary slip distance is small; otherwise, larger slip events are created, enhancing nonlocal effects
and making bands less stable and more diffusive. Nicolas et al. (2014b) introduced a healing process in this picture,
by allowing the blocks that have just become elastic again to age and gradually recover higher energy barriers, viz.,

Ėy(t) = k
E∞y − Ey(t)

E∞y − Emin
y

,

where k is the rate of recovery at which the energy barrier rises from its post-yielding value Emin
y to the asymptotic

value E∞y . For low enough recovery rates k, shear localization was observed. However, the localized behavior tends
to fade away when γ̇ reaches very small values. This may be paralleled with the recovery of a homogeneous flow in
the dense colloidal suspension studied by Chikkadi et al. (2011) for shear rates below a certain value, which allow the
strained system to structurally relax before further deformation.

Along similar lines, Li et al. (2013) implemented a process of free volume creation and annihilation in a finite-
element-based EPM designed to describe the deformation of the metallic glass Vitreloy 1. In their model, free volume
is created by the dilation accompanying a shear transformation and is annihilated gradually in strictly local diffusional
events. The activation of shear transformations, in turn, is facilitated by a local excess of free volume. Simulations
relying on a kinetic Monte Carlo scheme for the dynamics showed that the deformation localizes in bands at low
temperatures and that the variations of free volume are critical for this localization. A parallel can obviously be
drawn between the creation of free volume during shear transformations and the lowering of yield stresses in other
EPM. There is perhaps an even stronger connection with the plasticity-induced enhancement of the local effective
temperature in variants of the Soft Glassy Rheology model (Fielding et al., 2009) and the Shear Transformation Zone
theory (Manning et al., 2007), which can also lead to the observation of shear bands.

Another approach to account for the competition between local relaxation and driving-induced plastic events was
proposed by Jagla (2007). In his continuous model (see Sec. III.E), the system relaxes via a slow drift of the local
energy landscape seen by a given site towards lower energies. Sites whose evolution towards potential minima is
not interrupted by plastic deformations benefit from this local ‘structural relaxation’. Their elastic energy decreases
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FIG. 15 Steady-state flow curves obtained in variants of Picard’s EPM. (a) Rescaled flow curves for different system sizes for
the original Picard EPM, in the common logarithmic-linear representation. Inset: typical stress-strain curve in response to a
small shear rate, starting from a stress-free configuration. From (Picard et al., 2005). (b) Non-monotonic flow curve obtained
in Picard’s model with a long local restructuring time. Inset: average local shear rate in the flowing regions. For γ̇ < γ̇c a
mechanical instability leads to shear-banding, with a coexistence of a flowing band and a static region. From (Martens et al.,
2012). (c) Flow curve obtained in a variant of Picard’s model. The straight line is a fit to a Herschel-Bulkley equation, with
an exponent of 0.56. Inset: same data, in linear representation. From (Nicolas et al., 2014a).

and the local yield stress increases; while their plastically active counterparts have no time to undergo structural
relaxation, and their yield stress remains consequently low. Again, this leads to a nonmonotonic flow curve in a
mean-field analysis, and to strain localization at low γ̇.

To what extent precisely these strain localization mechanisms are connected with the weakening-induced runaway
(system-spanning) events observed in Fisher et al. (1997)’s model for earthquakes or Papanikolaou et al. (2012) and
Jagla et al. (2014)’s topple-down oscillations due to viscoelastic relaxation between earthquakes remains uncertain.

3. Temperature rise in shear bands

A temperature rise ∆T has been experimentally evidenced during the operation of shear bands in metallic glasses
(Lewandowski and Greer, 2006; Zhang et al., 2007). The dominant view is that it is however not the initial cause
of the shear banding observed at low strain rates, as ∆T is small in this case. Still, local heating may result in
the recrystallisation of the material, with associated changes in its mechanical properties (presumably more brittle
behavior). Such effects are obviously not included in EPM, and probably better described at the level of macroscopic
equations as a thermomechanical instability. The discussion above is therefore only relevant for the initiation of the
instability and for systems in which thermal effects are weak.

A related mechanism leading to a nonmonotonic flow curve, first identified in MD simulations (Nicolas et al., 2016)
and then also seen in finite-element-based EPM (Karimi and Barrat, 2016), is at play when inertia is progressively
introduced in an initially overdamped system. At a given strain rate, inertial effects create long-lived oscillations that
trigger the yielding of neighboring elements more efficiently than if mechanical equilibrium were instantly restored,
with an instantaneous stress redistribution. In MD simulations this facilitation was shown to be equivalent to a
heating of a more strongly damped system. In a system in which inertia is important, the energy dissipated in the
flow remains long enough in the relevant degrees of freedom to effectively modify the local stress evolution. Note that
stable shear banding has not been observed in this case, probably due to insufficient system sizes.

VI. STEADY-STATE BULK RHEOLOGY

In this Chapter we redirect the focus to materials that actually flow rather than fail. This is the relevant framework
for foams, emulsions, colloidal suspensions, and various other soft glassy systems. There have been several approaches
in the EPM literature to capture the steady-state rheology of these materials, which is macroscopically characterized
by the flow curve Σ(γ̇). The local yielding and healing dynamics adopted in the EPM description play a crucial rule
in determining these flow properties, as will be discussed in the following.
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A. Activation-based (glassy) rheology v. dissipation-based (jammed) rheology

Differences have been brought to light between the activation-based rheology found in aging systems such as glasses
and the dissipation-based rheology of jammed systems such as foams. The particle-based simulations of Ikeda et al.
(2012, 2013) contributed to disentangling glassy (thermal) and jammed (athermal) rheologies. These researchers
identified the time scales of the different processes at play, namely Brownian motion and dissipation, in addition to
the driving, and were able to separate the thermal rheology associated with the former from the dissipation-based
one. As the shear rate γ̇ is increased, the driving starts to interrupt the thermally triggered plastic relaxation and
dissipation starts to dominate the rheology. The idea of a transition from a thermal to an athermal regime was
bolstered by experiments on microgel colloidal suspensions, which are impacted by thermal fluctuations close to the
transition to rigidity (glass transition), but obey jamming-like scalings further from that transition (Basu et al., 2014).

The competition between the driving and the realization of plastic events had already been emphasized in the first
works about EPM and has since been implemented in different ways in these models.

For flows dominated by thermal relaxation, it makes sense to consider EPM of the type of Bulatov and Argon
(1994a)’s and Homer and Schuh (2009)’s, as well as Sollich et al. (1997)’s Soft Glassy Rheology (SGR) model (presented
in Sec. IV.D.1), in which plastic events are activated at a rate given by an Arrhenius law (Eq. 6). For instance, in
SGR, where this rate is controlled by a fixed effective temperature x, as γ̇ increases, blocks can accumulate more
elastic strain before a plastic event is activated. The macroscopic stress thus increases with γ̇. In fact, it does so in a
non-universal way: The flow curve follows a Herschel-Bulkley law (Eq. 1) with an exponent controlled by x.

Most other EPM works on steady-state rheology, however, focus on systems close to the athermal regime, in
particular foams and dense emulsions of large droplets (where thermal fluctuations are negligible in the range of γ̇
of general interest). The first EPM specifically designed for the study of athermal flow at finite driving rates is that
of Picard et al. (2005), which we already mentioned in Sec. IV.A. Since this model is athermal, elastoplastic blocks
can only yield when their stress exceeds a local threshold σy; the yielding process is then stochastic, with a fixed rate
τ−1, as is the process of elastic recovery.

Figure 15(a) shows the (monotonic) flow curve obtained for this model with all relevant material time scales set
to unity. Superficially, the curve coincides with many experimental flow curves, but more quantitatively it does not
follow a Herschel-Bulkley law: The crossover to a Newtonian regime already sets in at macroscopic stresses Σ only
slightly above the yield stress Σy. This is due to the postulated elastic stress accumulation above the threshold σy
for a fixed duration τ on average. These seemingly oversimplified yielding and healing rules have been refined since
then. To make the picture more realistic, Nicolas et al. (2014a) opted for an instantaneous triggering of plastic events
at σy and introduced a yield stress distribution. In their model, the event lasts for a fixed local strain “duration” γc.
Therefore, the local dissipation process can be disrupted by the external driving, which contributes to the local strain.
The ensuing flow curves are more compatible with experimental ones and are well described by a Herschel-Bulkley
law, as shown in Fig. 15(c).

Many experimental soft systems exhibit a qualitative change of their flow behavior when the adhesion properties
of their constituents are modified, with e. g. a higher propensity to shear-banding when the surfactant concentration
in an emulsion is altered (Bécu et al., 2006). This discovery prompted the idea that there exist different classes of
jammed systems depending on microscopic interactions. Coussot and Ovarlez (2010) suggested that adhesion results
in longer local restructuring events. Martens et al. (2012)’s EPM-based studies confirmed that long plastic events
lead to a nonmonotonic constitutive curve and the formation of permanent shear bands in the unstable parts of the
flow curve, as discussed in detail in Sec. V.C and shown in Fig. 15(b).

B. Is the flow curve a mean-field, or “local”, property?

In the case of shear-banded flows mean-field predictions of the flow curve that rely on effective local dynamics and
overlook the banded structure will fail. But in homogeneous situations is it possible to predict the flow curve by
mean-field reasoning? This seems plausible because both particle-based (Roy et al., 2015) and EPM computations of
the flow-curve prove much less sensitive to finite-size effects than are correlation lengths (see Fig. 15(a)).

In the quasistatic limit, the deformation of athermal systems is highly intermittent and strongly correlated in space.
At finite γ̇, the external forcing starts perturbing the individual localized rearrangements and the cascades thereof.
Defining τpl as the time scale for an individual rearrangement (of size a), we can estimate the upper bound for the

duration of a cascade as the propagation time (if applicable) across the system of linear size L, viz., τprop ≈ τpl (L/a)
β
,

where the exponent β depends on the damping regime. The driving time scale γy/γ̇ can thus compete with either
individual rearrangements (τpl) or avalanches (τprop).



41

FIG. 16 Shear-rate dependence of flow curves obtained with EPM. (a) Dependence on γ̇ of the difference ∆σ0 ≡ Σ − Σy
between the steady-state stress Σ and Σy in Nicolas et al. (2014a)’s model. From (Liu et al., 2016). The data clearly show two
different scaling regimes: Close to criticality the Herschel-Bulkley exponent is n = 0.65, whereas at high γ̇ the effective exponent
tends towards 1/2. (b) Flow curves for the same EPM at relatively high γ̇ with a shear-rate-dependent local shear modulus
G0(γ̇) ∼ γ̇ψ1 or a shear-rate-dependent strain “duration” γc(γ̇) ∼ γ̇−ψ2 for plastic events. From (Agoritsas and Martens, 2017).
(c) Flow-curves obtained from stress-imposed EPM simulations in 2D that are well-fitted by an Herschel-Bulkley law with an
exponent of n ≈ 0.66. From (Lin et al., 2014b).

Therefore, at least two scaling regimes could be seen as γ̇ is varied (Bonn et al., 2017). Two regimes were indeed
reported in Liu et al. (2016)’s EPM simulations, as shown in Fig. 16(a). At very small shear rates, the rheology
should be dominated by the interruption of avalanches (Maloney and Lemâıtre, 2006). In this regime, a proper
scaling description can be helpful in order to relate the various critical exponents close to the yielding transition; Lin
et al. (2014b)’s proposals along these lines are detailed in Sec. VII. It has been pointed out that the flow exponent can
explicitly depend on the plastic disorder potential (Jagla, 2017) and thus on the details in the plastic behavior. On
the other side EPM based on the quadrupolar interaction kernel tend to predict similar Herschel-Bulkley exponents
in the limit γ̇ → 0, independently of their dynamical rules (n2D ≈ 0.65 and n3D between 0.65 and 0.72). One may
hypothesize that this correlation dominated regime is determined mostly by the form of the elastic propagator. In
this regime mean-field reasoning will probably fail due to the strongly intermittent and correlated dynamics. Lin
and Wyart (2016)’s mean-field approach, which assumes a random distribution of mechanical noise with fat tails,
does indeed predict an upper critical dimension dc = 4 , not relevant to any experimental situation. Moreover,
the Herschel-Bulkley exponent is predicted to be n = 1 (Lin and Wyart, 2017) and is thus larger than the typical
numerical and experimental ones in 2D or 3D.

Stronger driving decorrelates plastic events. Mechanical noise then results from the superposition of a large number
of events and its characteristics thus change as γ̇ is increased2. Accordingly, a crossover in the flow behavior is
expected. A suitable mean-field description should capture this transition in the flow curve by implementing the
correct noise term, which should be defined self-consistently and have a shear-rate dependence (also see Table II).
Existing approaches are either dedicated to the quasistatic regime and rely on a broad random distribution for the
mechanical noise (Lin and Wyart, 2016), or actually target the regime of intermediate γ̇, where mechanical noise
is reduced to Gaussian white noise in the local stress dynamics due to the finite density of plastic events (Hébraud
and Lequeux, 1998). As discussed in Sec. IV.B.2, at vanishing shear rates the latter type of modeling leads to a
Herschel-Bulkley exponent n = 1/2, close to many experimental values. This exponent is robust to several variations
of the model (Agoritsas et al., 2015), but varies if a shear-rate dependence is introduced in the elastic modulus or the
local restructuring time, as can be verified on the simulated EPM flow curves plotted in Fig. 16(b) (Agoritsas and
Martens, 2017). Nevertheless, the diffusive effect of the mechanical noise has not been sufficiently justified so far and
the approach remains phenomenological.

2 E. E. Ferrero et al. , in preparation (2017).
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C. Strain-driven vs. stress driven protocols

Most EPM works consider strain-controlled protocols (defined in Sec. II.C). Some of the counterexamples are given
by Lin et al. (2014b) (see Fig. 16(c)) and the recent work by Jagla (2017). Another example of stress-imposed
modeling is the numerical work in Liu (2016)’s PhD thesis. In a section dedicated to the transient dynamics prior
to fluidization, a stress-controlled EPM is introduced. To this end, the internal stress resulting from plastic events is
separated from the externally applied stress field, which can be chosen arbitrarily.

In this type of protocols, depending on the initial condition, two types of stationary solutions are obtained, namely,
steady flow and a dynamically frozen state. Under athermal conditions the system may always reach a configuration
with large local yield stresses, in which the dynamics gets stuck, even if the applied stress Σ is larger than the
dynamical yield stress Σy. The smaller Σ and the smaller the system size, the more likely becomes the visiting of
such an absorbing state. But if a flowing stationary state is reached for a given time and granted that the mechanical
properties do not show history dependence (Narayanan et al., 2017), strain-controlled and stress-controlled protocols
yield identical flow curves Liu (2016).

VII. CRITICAL BEHAVIOR AND AVALANCHES AT THE YIELDING TRANSITION

Even though amorphous solids retain complex solid-like properties under continuous flow, the onset of flow is
of particular interest from a physical viewpoint owing to the critical behavior that may come along with it. Far
from being a weakness, the simplified description provided by EPM (which were originally phenomenological models)
represents an asset for the study of this yielding transition. In this section we review the thriving literature about
the statistics of avalanches close to the yielding transition.

A. Short introduction to out-of-equilibrium transitions

Statistical physics is largely concerned with phase transitions, whereby some properties of a system abruptly change
upon the small variation of a control parameter. The paradigmatic example of an equilibrium phase transition is
the Ising model, which consists of spins positioned on a lattice and interacting with their first neighbors. This
model describes the ferromagnetic to paramagnetic transition of a magnet as the temperature T rises above a critical
temperature Tc; the transition is marked by the presence of correlated domains of all length scales and the vanishment
of the magnetization m (the “order parameter”) as

m ∼ (Tc − T )β . (23)

Quite interestingly, the critical exponents, β and its kin, are shared by many other, a priori unrelated systems: The
latter are said to belong to the same universality class as the Ising model.

These ideas extend beyond equilibrium, but fewer methods are available to deal with the dynamical phase transitions
encountered out of equilibrium. In this respect, it is worth noting that the Herschel-Bulkley constitutive law can be
recast into an expression analogous to Eq. 23, viz.,

γ̇ ∼ (Σ− Σy)β . (24)

This yielding transition is receiving more and more attention as an example of transition in a driven system; in
particular, there have been some lively discussions as to whether it belongs to the same universality class as the
depinning transition for driven elastic lines (Sec. IX.B).

1. Avalanches in sandpile models

As models featuring threshold dynamics and a toppling rule, EPM are also connected to the somewhat simpler
sandpile models, introduced in Sec. III.A. Let us clarify some concepts using the latter class of systems.

Simulations of 2D sandpile models display avalanches of grains of duration T (number of iterations to reach stability)
and size S (total number of transferred grains). These avalanches are here compact structures, unlike those observed
in EPM (where the propagator is long-ranged and inhomogeneous). Without entering into details, at vanishing
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deposition rate, the cumulative distributions of S and T exhibit power-law scalings, with a cut-off at large scales due
to the finite size of the system, viz.,

C(S) = S1−τf(S/Ldf ) and C(T ) = T 1−τ ′g(T/Lz), (25)

where τ > 0 and τ ′ > 0 are critical exponents, f and g are fast decaying functions, and the positive exponents df
and z are called the fractal dimension of the avalanches and the dynamical exponent, respectively. This means that
small avalanches are more frequent than larger ones, but in such a fashion that no typical or characteristic size can be
established, which has been called self-organized criticality. Let us note that the extremal dynamics used to trigger
avalanches can be substituted by a very slow (quasistatic) uniform loading of the columns of sand if some randomness
is introduced in the stability thresholds. In this sense, self-organized criticality in the sandpile model simply exposes
the criticality associated with the dynamical phase transition undergone by the loaded system.

At finite deposition rate, different avalanche regimes appear, depending on the rate or, somewhat equivalently,
the frequency at which one probes the power spectrum SJ(ω) ≡

∫
dt
∫
dτe−iωτJ(t)J(t+ τ) of the current J , i.e., the

number of grains falling out of the pile per unit time. At large frequencies ω, independent, non-overlapping avalanches
are seen, while they start interacting as ω decreases. In this regime, their overlaps cut off the correlation lengths of
single avalanches, but due to mass conservation during grain transfer, the scale-free behavior is preserved. On long
time scales, i.e., for low ω, the observed features are typical of discharge events, whereby the whole sandpile becomes
unstable after having been loaded (Hwa and Kardar, 1992).

2. Stress drops and avalanches in EPM

Similarly to the instabilities in sandpile models, the plastic events occurring in EPM can trigger avalanches of
successive ruptures. To facilitate the comparison with experiments or atomistic simulations, these avalanches are
usually quantified by looking at the time series of the macroscopic stress σ(t) and, more specifically, at the stress
drops ∆σ associated with plastic relaxation. Close to criticality, the duration T of these drops and their extensive
size S ≡ ∆σLd, where L is the linear size of the system and d its dimension, most often display distributions formally
similar to Eq. 25, viz.

P (S) ∼ S−τf(S/Scut) and P (T ) ∼ T−τ
′
g(T/Tcut), (26)

where the upper cut-offs Scut and Tcut entering the scaling functions f and g will typically depend on system size,
e.g. Scut ∝ Ldf . In the following, we will pay particular attention to the possible impact of the peculiarities of the
quadrupolar stress redistribution in EPM, notably its fluctuating sign, on the avalanche statistics.

B. Avalanches in mean-field models

Shortly after the emergence of the first EPM, mean-field approximations were exploited to determine the statistics
of avalanches. Most of these approaches assume a uniform redistribution of the stress released by plastic events, as
exposed in Sec. IV.A. An exponent τ = 3/2 is then consistently found in the avalanche size scaling of Eq. 26.

For instance, Sornette (1992) proposed to map the Burridge-Knopoff model for earthquakes (see Sec. III.A) onto a
fiber bundle with global load sharing (see Sec. IX.C) and noted that at criticality the extremal load per fiber performs
an unbiased random walk, so that the avalanche size is akin to the walker’s survival time close to an absorbing
boundary, whence an exponent τ = 3/2. If deformation starts further away from the critical point, a larger exponent
is then found, τ = 5/2. A posterior, but widely celebrated (Dahmen et al., 1998) model for heterogeneous faults
in earthquakes was proposed by Fisher et al. (1997), and later applied to the deformation of crystals by Dahmen
et al. (2009) and more recently to the deformation of granular matter (Dahmen et al., 2011) and amorphous solids
(Antonaglia et al., 2014). Here, the problem is directly mapped onto a problem of elastic line depinning (see Sec. IX.B).
Once again, above an upper critical dimension that decreases with the interaction range, the model yields the mean-
field exponent τ = 3/2. But if a post-yield weakening mechanism is introduced or if stress pulses due to inertial effects
are present, the power-law regime only holds for small avalanches, while larger ones trigger runaway events that span
the whole system and result in a bump at a characteristic size in the avalanche statistics.

Much more recently, there have been endeavors to extend mean-field approaches in order to account for the non-
positiveness of the redistributed stress (which undermines the mean-field reasoning), e.g., via a diffusive term acting on
local stresses in the Hébraud-Lequeux model introduced in Sec. IV.B.2. Jagla (2015) studied avalanches in a discrete
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(a) (b) (c)

FIG. 17 Distributions of stress drops in the deformation of amorphous materials. (a) Distribution of stress drops ∆σ in a
foam that is strained in a Couette cell, for three different strain rates. From (Lauridsen et al., 2002) with APS permission.
The solid line in this logarithmic plot has a slope of −0.8. (b) Distribution D(s) of stress drops of normalized magnitude s
in a metallic glass (Cu47.5Zr47.5Al5). Adapted from (Sun et al., 2010). The red line represents a power law with exponent
τ ' 1.49. (c) Distribution D(s) of force fluctuation sizes s in a sheared granular system, for different shear rates and at
constant confining pressure P = 9.6 kPa. Adapted from (Denisov et al., 2016) with permission. The data suggest truncated
power laws D(s) ∼ s−τ exp(−s/γ̇µ), with τ = 1.5 and µ = 0.5.

variant of this model and reported on subtleties that are absent from depinning problems. Indeed, if avalanches are
artificially triggered by picking a random block and destabilizing it, the problem can yet again be mapped onto a
survival problem for an unbiased random walk, similarly to the fiber bundle, and the mean-field exponent τ ' 3/2 is
obtained. Incidentally, using a similar random-kick protocol, Lin et al. (2014a) had previously found the same result
in two EPM variants. If, instead, the physically more relevant protocol of quasistatic loading is used, by uniformly
increasing stresses until a block is destabilized, the result still holds in the depinning case. The explanation is that

the fairly homogeneous distribution of local stresses σ close to the yield point σy, i.e., p(σ)
∣∣∣
σ≈σy

' cst, is insensitive

to the stress shift induced by the uniform loading. By contrast, stress fluctuations in disordered solids deplete local
stresses close to σy, so much so that p(σ−y ) = 0, and thus render p(σ) inhomogeneous in stress space. Accordingly,
significantly smaller exponents τ ' 1.1− 1.2 are both predicted and observed numerically in that case (Jagla, 2015).
Furthermore, the power law is cut off at a value Scut that depends on the distance to criticality and on the system
size. An extension of these results to heavy-tailed distributions of stress fluctuations (Lin and Wyart, 2016) is still
pending.

C. Experimental observations and atomistic simulations of avalanches

1. Experiments

Various experimental settings have been designed to characterize avalanche statistics in deformed amorphous solids
in the last decade, even though experiments are still trailing behind the theoretical predictions and numerical com-
putations in this area. Let us mention examples of such works.

Lauridsen et al. (2002) sheared a foam in a Couette cell and investigated its plastic behavior. The distributions
P (S) of normalized stress drops S (plotted in Fig. 17a) were shown to follow a power law at three different shear-rates,
with an apparent exponent τ ' 0.8 in Eq. 26. This value was reported to be consistent with the bubble model of
Durian (1997), but contrasts with other theoretical predictions, as we will see. It should however be noted that the
power law was fitted over barely a decade in S.

At the other end of the softness spectrum, the compression of millimetric metallic glass rods was studied by Sun et al.
(2010) and the stress drops were analyzed. Again, P (S) follows a power law regime over one decade of experimental
measurements, but this time with exponents in the range τ ∈ [1.37, 1.49], as can be seen in Fig. 17b. Among several
works that came in the wake of this seminal paper, Antonaglia et al. (2014)’s compression experiments of microsamples
were argued to be compatible with the mean-field prediction P (S) ∼ S−3/2. Following the same approach, Tong et al.
(2016) reported exponents in the range τ ∈ [1.26, 1.6] for four different samples of a Cu50Zr45Ti5 alloy.

Quite recently, a granular packing subject to the simultaneous application of pressure and shear was also shown
to display stress drops with power-law statistics (Denisov et al., 2016). The power-law exponents, which seem to lie
in a relatively broad range in Fig. 17c, were not fitted, but, upon rescaling, were reported to be in good agreement
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(a) (c)(b)

FIG. 18 2D avalanche size distributions P (S) obtained with EPM in the quasistatic limit, in diverse settings: (a) In a system of
linear size L = 256 subject to extremal dynamics, with different spring constants k indicated in the legend. The fitted exponent
is τ ' 1.25. From (Talamali et al., 2011). (b) In strain-controlled simulations run with the ’image sum’ implementation of the
elastic propagator kernel (see Sec.III.C.2). Note the much larger spring constants k, compared to panel (a). From (Budrikis
and Zapperi, 2013). (c) In systems of different sizes L subject to extremal dynamics. The exponent reported for the unscaled
curves (inset) is τ ' 1.2, while τ ' 1.36 was used to fit the rescaled curve shown in the main plot. From (Lin et al., 2014b).

with the mean-field value τ = 3/2. It remains uncertain to what extent the value reported in this work and in the
other ones may have been influenced by the large body of literature claiming that the deformation of (a large variety
of) amorphous materials belongs to a unique universality class, the one describing the depinning of an elastic line
(Dahmen et al., 2009; Dahmen, 2017). Also note that the data obtained in the granular system of Denisov et al.
(2016) appear more promising than other experimental examples, insofar as two decades of power law are visible in
the raw (non-cumulative) stress drop distribution, at least for the smaller strain rates.

2. Atomistic simulations

In parallel to experiments, stress drops have been analyzed in atomistic simulations of the deformation of glassy
materials. In a 2D packing of soft spheres, Maloney and Lemâıtre (2004) measured power-law distributed energy
drops with an exponent τ = 0.5 − 0.7 comparable to that obtained in Durian (1997)’s foam experiments. On the
contrary, exponential distributions of stress drops and energy drops were then reported in athermal systems of particles
interacting with three distinct potentials in 2D (Maloney and Lemâıtre, 2006), but also with a more realistic potential
for a metallic glass in 3D (Bailey et al., 2007). All these studies were however limited to fairly small system sizes.
Using larger systems in 2D and 3D, Salerno and Robbins (2013) found power-law distributed energy drops and stress
drops, with distinct values for the exponent τ in the overdamped regime and the underdamped one, and in 2D and
3D. In the overdamped case, the value is identical in 2D and 3D, τ = 1.3 ± 0.1. We also mention that, opposing
the rather consensual view of scale-free avalanches and non-trivial spatiotemporal correlations, Dubey et al. (2016)
suggested that the characteristics of the stick-slip behavior stemmed from trivial finite-size effects.

D. Avalanche statistics in EPM

The large amount of statistics afforded by EPM can enlighten the debate about the criticality of the yielding
transition and the existence (or not) of a unique class of universality by overcoming the uncertainty and limitations
of some experimental measurements. In the last years, EPM have tended to challenge the strict amalgamation of the
yielding transition with the depinning one.

1. Avalanche sizes in the quasistatic limit

Avalanches are most easily defined in the limit of quasistatic driving, in which the external load is kept fixed during
avalanches (Sec. II.C). Applying extremal dynamics to a 2D EPM, Talamali et al. (2011) defined an avalanche size
S as the number of algorithmic steps ∆t during which the external stress Σ remains lower than Σstart − k∆t, as
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though the system were driven by a slowly moving spring of stiffness k. Their numerical simulations displayed a
scale-free distribution P (S) ∝ S−τ with τ = 1.25 ± 0.05 cut by a Gaussian tail (Fig.18a). It was made explicit that
this result is at odds with the mean-field exponent τ = 3/2. On the other hand, the measured value is similar to
that measured by Durin and Zapperi (2000) (τ ' 1.27) for one class of Barkhausen avalanches, due to the motion
of ferromagnetic domain walls under an applied magnetic field, and to that predicted for this effect using a model
of elastic line depinning with anisotropic (dipolar, but positive) interactions (Zapperi et al., 1998). Of at least equal
relevance is the similarity with the avalanche size exponent τ ' 1.25 found when simulating differential equations
(Bonamy et al., 2008) or cellular automata (Laurson et al., 2010) to describe the interfacial growth of a crack in a
heterogeneous medium. Indeed, the alignment of plastic events along the Eshelby ‘easy’ axes was seen as an effective
dimensional reduction, leading to avalanches belonging to a quasi 1D problem with positive interactions decaying as
r−2, similarly to the interfacial crack growth model of Bonamy et al. (2008).

A couple of years later, Budrikis and Zapperi (2013) exploited a closely related EPM, with randomly distributed
stress thresholds, to investigate the effect of two distinct implementations of periodicity for the long-range elastic
propagator G defined in Sec. III.C.2. A first series of simulations focuses on the nonstationary plastic activity below the
macroscopic yield stress Σy, by adiabatically increasing the applied stress Σ. Overloaded blocks yield simultaneously;
their strain is increased by dγ = 0.1 and a new local yield stress is drawn. For Σ � Σy, avalanche distributions are
found to decay as exponentials (or compressed exponentials). For stresses closer to Σy, the distribution’s shape can
be fitted by Le Doussal and Wiese (2012)’s prediction, viz.,

P (S) = c1S
−τ exp(c2S − c3S2), with τ ' 1.35.

The cutoff Scut in P (S) scales with the distance to the critical point, Scut ∝ (Σy −Σ)−1/σ with 1/σ ' 2.3. In a second
series of simulations, apparently inspired by Talamali et al. (2011), the system’s strain was pulled by the adiabatic
motion of a spring of stiffness k ∈ [0.1, 1]. Hence an external stress Σ = k(γtot − γ), where γtot is the spring position
and γ is the plastic strain. Large statistics were collected in the critical steady state and two very close, but not
strictly identical, exponents τ ' 1.35 were measured for different implementations of the propagator, (see Fig. 18b
and Table III for the precise values of τ). These values somewhat differ from Talamali et al. (2011)’s measurement,
presumably because the distance to criticality (k → 0) was larger due to the use of larger spring constants; still, they
definitely deviate from the mean-field value, too. The authors also considered the avalanche durations T , measured in
algorithmic steps, which were fitted by he power law P (T ) ∝ T−τ ′ with τ ′ ' 1.5. Joining these researchers, Sandfeld
et al. (2015) tested the robustness of these avalanche statistics to variations of the boundaries, implementations of the
stress redistribution and to finite-size effects, using an eigenstrain-based finite element method with different types of
meshgrids. They found that these variations have no influence on the critical exponents.

Lin et al. (2014a) implemented two slightly different automata based on the Hébraud-Lequeux model but embedded
in finite dimensions. In stress-controlled simulations with Σ ∼ Σy, in which sites are randomly ‘kicked’ to trigger an
avalanche, they found τ ≈ 1.42 in both model variants. Notice the larger value compared to the quasistatic simulations
described above, possibly pointing to the influence of the random-kick protocol (Jagla, 2015). Yet, later on, Lin et al.
(2014b) reported τ ' 1.36 in 2D and τ ' 1.43 in 3D, for the same protocol. Besides, power-law distributions were
reported for the avalanche durations, with exponents τ ′ ' 1.6 in 2D and 1.9 in 3D. In parallel, extremal dynamics
were implemented and yielded smaller exponents for the same models, τ ' 1.2 in 2D and τ ' 1.3 in 3D, closer to
previous quasistatic approaches, even though not devoid of finite-size effects.

2. Connection with other critical exponents

A discussion on the density of zones close to yielding and its connection with the critical exponents was opened up
by Lin et al. (2014a). Denoting x ≡ σy−σ the distance to threshold of local stresses, a stark contrast was emphasized
between depinning-like models, with only positive stress increments and p(x) ∼ x0 for small x, and EPM, where a
pseudo-gap emerges at small x, viz., p(x) ∼ xθ with θ > 0. In Lin et al. (2014a)’s stress-controlled simulations with
randomly ‘kicked’ sites, identical values of θ were obtained in two variants of the model embedded in 2D (θ ' 0.6)
and 3D (θ ' 0.4), whereas the stress-strain curves differed (see Table III for the slightly smaller values of θ measured
using extremal dynamics).

Shortly afterwards, Lin et al. (2014b) proposed to link p(x) with P (S), in a scaling description of the yielding tran-
sition. Their scaling argument can be summarized as follows. Starting from Eq. 26, one obtains 〈∆σ〉 ∝ Ldf (2−τ)−d.
Now, in a stationary situation, on average this stress drop must balance the stress increase that is applied to trigger
an avalanche. Among the Ld sites, the one with the smallest x, xmin, will start the avalanche, so ∆σ ∝ xmin. If
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FIG. 19 Probability density of the distance to threshold, P (x), in EPM : (a) In 2D and (b) 3D systems, whose size L is varied.
From (Lin et al., 2014b). (c) In a 3D system, as the shear rate is varied. The inset shows the rescaled distribution of avalanche
sizes. From (Liu et al., 2016).

p(x) ∼ xθ, then xmin ∝ L−
d
θ+1 . Identifying the two expressions leads to

τ = 2− θ

θ + 1

d

df
, (27)

which is supported by their EPM simulations (notably with the random-kick protocol). In this regard, the discrepancy
was once again underscored between the depinning transition (with fractal dimensions df ≥ d typically, due to the
compactness of the avalanches, and a velocity-force exponent β 6 1) and the yielding transition (with typically df < d
and a rheological exponent β > 1 in Eq. 24). Generalized scaling relations encompassing both transitions were put
forward (see Lin et al. (2014b)-Supporting Information).

TABLE III List of values measured for the critical exponents characterizing avalanches in EPM. Only values measured in EPM
with extremal dynamics (or akin) and a quadrupolar propagator are reported. Mean field values are added for comparison.

Exponent τ τ ′ df θ γ

Expression P (S) ∼ S−τ P (T ) ∼ T−τ
′

Scut ∼ Ldf
p(x) = xθ with
x ≡ σy − σ

S ∼ T γ

2D EPM
(Talamali et al., 2011) [spring

coupling k → 0]
1.25± 0.05 — ∼ 1 — —

(Budrikis and Zapperi, 2013)
[spring coupling k & 0.1]

1.364± 0.005 1.5± 0.09 & 1† — ∼ 1.85

(Lin et al., 2014b) [extremal] ∼ 1.2 ∼ 1.6 1.10± 0.04∗ ∼ 0.50 —
(Liu et al., 2016) [γ̇ → 0] 1.28± 0.05 1.41± 0.04 0.90± 0.07 0.52± 0.03 1.58± 0.07

(Budrikis et al., 2017) [spring
coupling, k → 0]

1.280± 0.003 — — 0.354± 0.004 1.8± 0.1

3D EPM
(Lin et al., 2014b) [extremal] ∼ 1.3 ∼ 1.9 1.50± 0.05∗ ∼ 0.28 —

(Liu et al., 2016) [γ̇ → 0] 1.25± 0.05 1.44± 0.04 1.3± 0.1 0.37± 0.05 1.58± 0.05
(Budrikis et al., 2017) [spring

coupling, k → 0]
1.280± 0.003 — — 0.354± 0.004 1.8± 0.1

Mean field
(Fisher et al., 1997) [depinning] 3/2 2 — 0 2

(Jagla, 2015)
[Hébraud-Lequeux like]

1.1− 1.2 — — 1 —

Legend – : † Estimated from the avalanches shape. ∗ Obtained using the τ exponents from the random-kick protocol.
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FIG. 20 Avalanche size distributions P (S) in EPM. (a) Distributions P (S) obtained in a variety of loading conditions and
different external stresses, with an EPM based on a Finite Element routine. The data are collapsed in panel (b) using exponents
τ ' 1.280 and 1/σ ' 1.95. From (Budrikis et al., 2017). The values in the legend refer to the ratio Σ/Σy. (c) Main panels show
rescaled distributions Ldf τPS vs. S/Ldf in 2D, compared to MD simulations, in the quasistatic limit. The fitted exponents
are τ ' 1.28 and df ' 0.90. The inset shows the raw data. From (Liu et al., 2016).

3. At finite strain rates

Seeking to narrow the gap between experiments and EPM, Liu et al. (2016) analyzed the EPM stress signal with
methods mimicking the experimental ones and studied the effect of varying the applied shear rate γ̇. At very low γ̇,
avalanches are power-law distributed with an exponent τ ' 1.28 in 2D and τ ' 1.25 in 3D, cut off by finite size effects
with df = 0.90 and 1.3, respectively. These results coincide very well with MD simulations in the quasistatic limit
and support the nascent convergence towards an avalanche size exponent τ ' 1.25 in 2D or 3D EPM, deviating from
the (depinning) mean-field value 3/2. Much more tentatively, there may be a downward trend of τ with increasing
dimensions, which would be compatible with Jagla (2015)’s suggestion τ ' 1.1−1.2 above the upper critical dimension.

Interestingly, Liu et al. (2016) observe a systematic crossover towards higher values of τ when the shear rate is
increased, so that τ reaches τ ' 1.5 at intermediate γ̇, before entering the high-γ̇ regime of pure viscous flow. At
the same time, the external driving starts to dominate over the signed stress fluctuations originating from mechanical
noise; this nudges the system into a depinning-like scenario, with an exponent θ in p(x) ∼ xθ decreasing towards zero
as γ̇ reaches finite values both in 2D and 3D. Similarly to pulling the system with a stiff spring (large k), increasing
the shear rate generates simultaneous uncorrelated plastic activity in the system, which leads to larger τ , closer to 1.5.
Overall, applying a finite shear rate does not destroy the criticality of avalanche statistics; but it affects the critical
exponents and eventually produces more trivial effective statistics.

4. Insensitivity to EPM simplifications and settings

At present, technical difficulties hamper a clear discrimination between theoretical predictions on the basis of
experimental data. The simplifications used in the models thus need to be carefully examined. Budrikis et al. (2017)
investigated the effect of the scalar approximation of the stress (see Sec. II.C.3) by comparing the results of a scalar
model to those of a finite-element-based fully tensorial model, under different deformation protocols (uniaxial tension,
biaxial deformation, pure shear, simple shear) and in both 2D and 3D. Irrespective of the tensoriality of the model, the
dimension, and the boundary conditions, a (non mean-field) universal scaling function is observed for the avalanche
distribution, shown in Fig. 20 and coinciding with Le Doussal and Wiese (2012)’s proposal

P (S) =
A

2
√
π
S−τ exp

(
C
√
u− B

4
uδ
)
, (28)

with an exponent τ = 1.280 ± 0.003 [note the perfect agreement with Liu et al. (2016)’s result], u ≡ S/Smax and
Smax ∝ (Σc − Σ)−1/σ (with 1/σ ' 1.95). The constants, A, B, and C are functions of τ , as is δ = 2(1− τ/3).

Heterogeneous deformations, such as bending and indentation, were also considered and yielded similar values for
τ , but some range of variation for exponent σ ∈ [1.53, 2.05] and a slightly different form for the cutoff Scut. The
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FIG. 21 Avalanche shapes in experiments and EPM. (a) Experimental avalanche shapes, for avalanches of fixed duration (top)
and fixed sizes (bottom) in a bulk metallic glasses and a granular system. From (Denisov et al., 2017). (b) Avalanche shapes
at different fixed durations in a strain-controlled EPM simulation at fixed γ̇. From (Liu et al., 2016). (c) Avalanche shapes at
fixed sizes. From (Budrikis et al., 2017).

latter differences are not unexpected: An independent length scale enters the problem and the yield stress Σy used
to measure exponent σ is not universal. Finally, the average avalanche size was related to its duration T via S ∼ T γ
with γ = 1.8± 0.1.

A possible explanation for the insensitivity of avalanche statistics to the aforementioned aspects may lie with the
quasi-1D geometry of the avalanches, resulting from the quadrupolar propagator. Most cooperative phenomena thus
appear to be controlled by the stress component along one direction, and a scalar description may be sufficient in this
respect. (Scalar models do indeed reproduce the same power-law exponent and evidence a fractal dimension df ≈ 1
in 2D and 3D, as shown in Fig.20c).

5. Effects of inertia

Without the assumption of instantaneous stress redistribution, stress waves are expected to propagate throughout
the system (see Sec. III.D and Fig. 9), in a ballistic way or a diffusive one depending on the damping. This is not
described by the traditional elastic propagator G of Eq. 14, but finite-element based EPM have recently made it
possible to account for inertial effects (Karimi and Barrat, 2016). Karimi et al. (2017) exploited this type of model
to study Salerno and Robbins (2013)’s claim, based on extensive atomistic simulations in the quasistatic regime,
that inertial effects drive the system into a new (underdamped) class of universality. At odds with this claim, but
consistently with results from sandpile models (Khfifi and Loulidi, 2008; Prado and Olami, 1992) and seismic fault
models (Carlson and Langer, 1989), they found that inertial effects break down the universal, scale-free avalanche
statistics. A characteristic hump (or secondary peak) of large events emerges in the avalanche size distribution P (S),
similarly to Fisher et al. (1997)’s findings. In Karimi et al. (2017)’s work, both the relative weight and the scaling with
the system size of this peak are controlled by the damping coefficient Γ, a dimensionless parameter that quantifies
the relative impact of dissipation. The effective fractal dimension d′f (Γ) of avalanches also varies with the damping,

but was found to satisfy a scaling relation with the exponent θ′(Γ) defined by p(x) ∼ xθ′(Γ).

These results are compatible with Papanikolaou (2016)’s phenomenological description of inertial effects, which
are accounted for by a temporary vanishment of elasticity after local plastic events (plastic delay): Simulations of
the model showed the appearance of a hump of large events in P (S), an increase of the exponent τ , as well as the
emergence of dynamical oscillations, accompanied with strain localization.
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6. Avalanche shapes

In addition to their duration and size, further insight has been gained into the avalanche dynamics by considering
their average temporal signal, i.e., the ‘shape’ of the bursts. This observable can be determined experimentally with
higher quality (Antonaglia et al., 2014; Denisov et al., 2017). Avalanche shapes have thus been estimated for various
systems displaying crackling noise; examples include earthquakes (Mehta et al., 2006), plastically deforming crystals
(Laurson et al., 2013), and the Barkhausen noise (Mehta et al., 2002; Papanikolaou et al., 2011).

In the latter example, the magnetization of a film changes mostly changes via the motion of domain walls (in the
central part of the hysteresis loop near the coercive field); its rate of change is recorded as a time series V (t). When
the film thickness, which controls the long-range dipolar interactions, is such that mean field is valid, the average
shape V (t|T ) of avalanches of duration T is well described by an inverted parabola (Papanikolaou et al., 2011), viz.,

V (t|T ) ∝ T t̃(1− t̃) where t̃ ≡ t/T . (29)

Since oftentimes mean field does not hold, a generalized functional form was proposed by Laurson et al. (2013)::

V (t|T ) ∝ T γ−1
[
t̃
(
1− t̃

)]γ−1
[
1− a

(
t̃− 1

2

)]
. (30)

Here, the shape factor γ is also the exponent that controls the scaling between size and duration (S ∼ T γ), since

S(T ) is nothing but the integral
∫ T

0
V (t|T )dt. γ and the parameter a controls the asymmetry (a > 0 refers to positive

skewness); the mean-field formula is recovered for γ = 2 and a = 0. As the interaction range increases from local to
infinite, the university-class parameters evolve from γ ' 1.56, a ' 0.081 to γ ' 2.0, a ' 0.01. Dobrinevski et al. (2015)
provided an analytic formalization for this expression as a one-loop correction around the upper critical dimension;
these authors also computed the shape of avalanches of fixed size S. The need for this generalization beyond mean
field was confirmed by Durin et al. (2016).

In the deformation of amorphous solids, the inverted-parabola shape predicted by mean field was shown to provide
a satisfactory description in experiments on metallic glasses (Antonaglia et al., 2014) and on granular matter (Denisov
et al., 2017). Still, at a more quantitative level, deviations can be seen (see Fig.21a).

On the EPM side, Liu et al. (2016) studied the effect of finite shear rates γ̇ on the avalanche shape. By sorting the
avalanches according to their duration T , at fixed γ̇, they found that short avalanches are noticeably more asymmetric
and display faster velocities at earlier times (positive skewness, see Fig.21b). For larger T , it is argued that avalanches
most likely result from the superposition of uncorrelated activity, which leads to more mean-field like results. This
would explain the gradually more symmetric shapes observed for increasing T (see the evolution of the asymmetry
parameter in the inset of Fig. 21b). In the quasistatic limit, asymmetric stress-drop shapes are then expected. Indeed,
at low γ̇, fits with Eq. 30 give a non-mean-field value γ ' 1.58 in both 2D and 3D. This feature gradually disappears
at larger γ̇.

In their EPM studies under different loading conditions, in 2D and 3D , Budrikis et al. (2017) measured values for
γ in the range [1.74, 1.87]. But, contrary to Liu et al. (2016)’s findings, based on a scalar EPM, clearly asymmetric
avalanches with positive skewness were only found in the bending and indentation protocols, and not (visibly, at least)
in the tension and shear simulations. In addition, the shapes obtained by sorting the avalanches according to their
sizes (see Fig.21c) collapsed well with the scaling form proposed by Dobrinevski et al. (2015); the shape exponent
differed from the mean-field value γ = 2, being closer to γ ' 1.8.

VIII. RELAXATION, AGING AND CREEP PHENOMENA

So far EPM have mostly been exploited to investigate the macroscopic flow behavior and flow profiles (Sec. V),
characterize stationary flow (Sec. VI), or study fluctuations and correlations in the steady flow close to criticality,
where one finds scale free dynamics in the plastic avalanches (Sec. VII). Still, some works, however few, are concerned
with relaxation, aging, and creep phenomena. This section is dedicated to both the dynamics in the temperature
assisted relaxation (aging) of disordered systems and to the transient dynamics under loading (creep), prior to yielding
or complete arrest. The latter phenomenon can be either an athermal process, provided that the stress load is above,
but close to, the yielding point, or thermally assisted creep, in response to a load below the dynamical yield stress.
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A. Relaxation and aging

A striking feature in the theory of viscous (glassforming) liquids is their response to an external perturbation,
close to the glass transition: They do not exhibit an exponential structural relaxation, with a simple relaxation time
scale, but a stretched exponential relaxation. More specifically this means that the temporal behavior of the response
function R(t) (e.g., the response in stress Σ(t) to the application of a strain step at time t = 0) can often be described
by the so called Kohlrausch-Williams-Watt (KWW) function

R(t) ∝ exp

[
−
(
t

τ

)b]
with R(t) ≡ Σ(t)− Σ(∞)

Σ(0)− Σ(∞)
. (31)

In this expression, b typically takes a value between 0 and 1, which stretches the exponential relaxation. This was
ascribed to the formation of dynamical heterogeneities close to the glass transition, thus producing separately relaxing
domains and leading to a broad distribution of relaxation times (Macedo and Napolitano, 1967), hence a stretched
exponential relaxation (Bouchaud, 2008; Campbell et al., 1988).

With this picture in mind, it came as a surprise when a series of dynamical light-scattering measurements on
colloidal gels showed the opposite behavior, namely, a compressed exponential structural relaxation, characterized by
an exponent b > 1 (Cipelletti et al., 2000, 2003; Ramos and Cipelletti, 2001). More recent experiments using X-ray
photon correlation spectroscopy have found that this feature is not specific to gels (Orsi et al., 2012), but also arises
in supercooled liquids (Caronna et al., 2008), colloidal suspensions (Angelini et al., 2013) and even in hard amorphous
materials like metallic glasses (Ruta et al., 2013, 2012). Although this anomalous relaxation was observed ubiquitously
in experimental systems, it took more than a decade to reproduce dynamics with compressed exponential decay in
molecular-scale simulations, until Bouzid et al. (2017) and Chaudhuri and Berthier (2017) eventually reported such
dynamics in microscopic models for gels; the main obstacle had been to probe the right parameter range, notably
with respect to temperature and also length scales.

From the outset, Cipelletti et al. (2000) suggested that the faster than exponential relaxation stems from the elastic
deformation fields generated by local relaxation events. Shortly afterwards Bouchaud and Pitard (2001) put forward a
mean-field model based on the assumption of elasticity to explain this anomalous relaxation. Should this explanation
be correct, EPM should be the ideal tool to test it (Ferrero et al., 2014). In a quiescent system, the driving term
vanishes in Eq. 5, which turns into

σ̇i(t) =
∑
j

2µGjiε̇pl
j (t) ,

where εpl
j (t) indicates the field of local plastic deformation and the other notations were defined below Eq. 5. As before,

this equation describes the response of the surrounding medium to local relaxation events. Here, only thermally
activated processes are relevant, and their modeling is inspired by the the trap model of Denny et al. (2003) and
Sollich et al. (1997)’s Soft Glassy Rheology model (SGR, see Eq. 21), with an Arrhenius-like yielding rate for sites
below the threshold, viz.,

p± ∼ exp

[
−
σ2
y ∓ sgn(σ)σ2

2κT

]
, (32)

while sites with |σ| > σy yield instantaneously. In Eq. 32, the signs correspond to the direction of the yielding event,
σy is a local yield stress, κ is a dimensional prefactor, and T the ambient temperature.

Such models confirm the dependence of the shape parameter β of structural relaxation on the dimensionality
of the system, which Bouchaud and Pitard (2001)’s mean-field arguments predict to be b = 3

2 in 3D and b = 2
in 2D. Moreover, in EPM insight into the microscopic dynamics can be gained by following the motion of tracers
advected by the elastic displacement field, as explained in Sec. IV.E. This led Ferrero et al. (2014) to distinguish
three dynamical regimes in 2D, namely (I) ballistic, (II) subdiffusive and (III) diffusive. In the ballistic regime (see
Fig. 22), compressed relaxation was found, with a shape parameter b ≈ 2. The subdiffusive regime was ascribed to
correlations in the relaxation dynamics, a feature that has not been reported in experiments. This disagreement can
either be due to oversimplifications of the model or to the fact that experiments are usually performed in 3D, and
not 2D. Preliminary EPM studies in 3D observed ballistic motion at short times, with a compressed exponent b = 3

2 ,
followed by a diffusive regime 3.

3 Unpublished data of Ferrero et al. (2014).
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FIG. 22 Motion of particle tracers and structural relaxation in a quiescent system obtained in an EPM. (a) Diffusivity D(t) (i.e.,
mean-square displacement divided by time) of tracer particles (see main text) for four different temperatures, increasing from
bottom (blue) to top (black). (b) Rescaled self-part of the intermediate scattering function S(q, t) for t in the first ascending
regime of D(t). The motion is close to ballistic (linear in time), with τ ≈ q−1 in Eq. 31, and the form factor β ' 2 (defined in
the same equation) implies a compressed exponential relaxation. Panels (c) and (d) display the same quantities in dynamical
regimes II (subdiffusive) and III (diffusive). All insets show the data from the main graph without rescaling. From (Ferrero
et al., 2014).

There remain many other open questions that could be addressed by EPM. For instance the q-dependence of the
experimental intermediate scattering functions S(q, t) (Ruta et al., 2012) cannot be captured in EPM at present, but
could be included by implementing hybrid models that consider smaller-scale dynamics as well. Besides, the self and
the intermediate part of S(q, t) cannot be distinguished in EPM yet, because the tracers do not interact, but may
differ in reality. Other questions include the 3D dynamics and the possibility of intermittency in time as well as
spatial correlations of the localized relaxation events.

B. Creep

Another field that has stimulated much experimental work in the last years (Bonn et al., 2017) but few rationalization
attempts at the mesoscale is creep. The definition of creep is somewhat ambiguous. In some contexts it may refer to
stationary motion at a vanishingly small velocity, in particular the creep dynamics of a driven elastic manifold over a
disordered landscape at finite temperature (Ferrero et al., 2017), but also the flow of a granular medium subjected to a
constant stress Σ� Σy supplemented with an additional small cyclic stress modulation (Pons et al., 2016). But here
we will restrict our attention to the traditional definition in material science, namely, the slowdown of deformation
prior to failure, fluidization or complete arrest, under loading Σ. This load is usually comparable to, or smaller, than
the material yield stress Σy and creep can in principle be both of thermal and athermal nature.

For Σ > Σy the usual response can be separated into three regimes. Primary creep corresponds to a first slowdown of
the dynamics, with a gradual decrease of the (initially high) strain rate γ̇. The deformation rate is roughly constant in
the secondary creep regime but abruptly shoots up in the tertiary regime, which ultimately culminates in macroscopic
failure or fluidization. The measured macroscopic quantities are usually the time-dependent γ̇(t) and the fluidization
or failure time τf (Divoux et al., 2011a; Skrzeszewska et al., 2010).

Creep is observed in many experimental systems, from crystalline and amorphous solids to soft materials. In the
former materials, a power-law slowing down of the deformation rate with an exponent close to 2/3 is often reported
(Miguel et al., 2002), viz.,

γ̇(t) ∼ t−2/3 or, equivalenty, γ(t) ∼ t1/3.

This law is commonly called Andrade creep and hints at a possible universality of the dynamics. However, experiments
and simulations on creep in amorphous systems have found a variety of power-law exponents for the decay of γ̇(t) in
primary creep, ranging between 1/3 (Bauer et al., 2006) and 1.0 (the latter value corresponding to logarithmic creep
γ(t) ∼ ln(t)), with a multitude of values in-between (Ballesta and Petekidis, 2016; Chaudhuri and Horbach, 2013;
Divoux et al., 2011b; Landrum et al., 2016; Leocmach et al., 2014; Sentjabrskaja et al., 2015). Bonn et al. (2017)
extensively reviewed the literature on the topic. Scaling results for the fluidization (or failure) time τf also vary and
basically fall in two classes. Among other works, Divoux et al. (2011b) found a power-law scaling of τf , defined as the
time to reach a homogeneous stationary flow, viz., τf ∼ (Σy − Σ)−β , where β varies between 4 and 6. On the other
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(a) (b) (c)

FIG. 23 EPM characterization of creep. (a) Strain rate ε̇ as a function of time t for different applied stresses Σ in the EPM of
Bouttes and Vandembroucq (2013). (b) Non-linear compliance J ≡ ε

Σ0
as a function of time for different applied stresses Σ0,

obtained with Merabia and Detcheverry (2016)’s mesoscopic model. (c) Dependence of the fluidization time tf on Σ0. Panels
(b) and (c) are extracted from (Merabia and Detcheverry, 2016).

hand, other works defined τf as the duration of the rapid increase of γ̇(t) at the end of secondary creep and reported
an inverse exponential dependence τf ∼ exp

(
Σ0

Σ

)
, where a characteristic stress scale Σ0 has been introduced (Gibaud

et al., 2010; Gopalakrishnan and Zukoski, 2007; Lindström et al., 2012).

Thus, rather than a universal behavior, experiments suggest a multitude of dependencies, notably on the preparation
protocol prior to the application of the step stress (quench or pre-shear), on temperature, age and also on the dominant
physical process at play during creep. In some systems the initial creep regime appears to be completely reversible
and one expects the creep to be a result of visco-elasticity. Accordingly, Jaishankar and McKinley (2013) were able
to reproduce the experimental power-law creep in Acacia gum solutions using a modified Maxwell model featuring
fractional time derivatives. On the other hand, on the basis of molecular dynamics simulations, Shrivastav et al.
(2016) claim that the power-law creep in a variety of glassy systems can be related to a percolation dynamics of
mobile regions, thus plasticity, which would render EPM particularly suitable to tackle the open questions in the
field. Among the ‘hot topic’ highlighted by Bonn et al. (2017), the detection of precursors that may point to incipient
failure stands as the Atlantis in many disciplines from material science to engineering and geology.

Using a lattice-based EPM, Bouttes and Vandembroucq (2013) made a first endeavor to address thermal creep and
showed its strong dependence on initial conditions and the impact of aging on the creep behavior. In the model,
each site is assigned an energy barrier E0 (renewed after every plastic event) in the stress-free configuration, with a
uniform distribution of E0. The elastic stress redistributed by plastic events via usual quadrupolar elastic propagator
of Eq. 15 biases this potential. The plastic activation probabilities are analogous to Eq. 32, with an Arrhenius-like
law, and are resolved with a kinetic Monte-Carlo algorithm. The resulting creep dynamics γ̇(t), studied in pure shear,
depend on the applied stress Σ and temperature T and all display an apparent exponent suggestive of logarithmic
creep (see Fig. 23a). Besides, the fluidization time τf is found to decrease with increasing Σ and T .

Merabia and Detcheverry (2016) explored the transient thermal creep of a viscous liquid under an external stress
step prior to steady flow, at relatively high temperatures. They also resorted to a kinetic Monte-Carlo scheme and
Arrhenius-type plastic activation rates, but they used a non-uniform distribution of intrinsic trap depths ρ(E0).
With an exponential distribution ρ(E0) ∼ exp[−αE0] (leaving aside a lower cutoff), the model is formally similar
to the SGR model (see Sec. IV.D.1), but here the temperature parameter is interpreted as the room temperature,
instead of an effective noise temperature, and samples are assumed to be thermally equilibrated before stress is
applied (αkBT > 1). Contrary to (Bouttes and Vandembroucq, 2013), the simulated creep does not always slow
down logarithmically. Instead, a power-law decay Σ ∼ γ̇α is observed, in agreement with a mean-field analysis.
Merabia and Detcheverry (2016) also considered a Gaussian distribution ρ(E0). In that case the steady-state flow
curve grows logarithmically, Σ ∼ ln(γ̇), and the fluidization time τf follows the inverse exponential dependence on Σ,
τf ∼ exp

(
Σ0

Σ

)
(see Fig. 23c), found in experiments on carbopol black gels by Gibaud et al. (2010). The latter result

is robust to variations of the Gaussian half-peak width.

The authors also tried different stress propagators of short range character, besides the quadrupolar (Eshelby-like)
one. It turns out that their mean-field predictions agree best with the simulations with a short-range propagator and
an exponential distribution of energy barriers, whereas there is a systematic offset in the creep exponent with respect
to the more realistic quadrupolar propagator. This is somewhat counter-intuitive because increasing the interaction
range usually leads to a more mean-field-like behavior.

Liu et al. (2017) resorted to a mean-field approach based on the Hébraud-Lequeux model (see Sec. IV.B.2) to
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study the effect of the loading Σ ≡ 〈σ〉 and aging on athermal creep, for Σ > Σy. The initial distribution of stresses
P(σ, t = 0) was taken as a proxy for the sample age, on the basis that aging results in stress relaxation and thus
a narrower distribution P(σ, t = 0). For Σ slightly above the yield stress and long aging, there is first a power-law
decay γ̇(t) ∼ t−µ (µ > 0) to a minimal value and then an acceleration up to the steady-state value. This evolution
is consistent with several experimental measurements in bentonite suspensions and colloidal hard-sphere systems.
But, contrary to expectations, the model exhibits a parameter-dependent (thus, non-universal) power-law exponent
µ. Within the model, the first creep regime is dominated by the plastic activation of sites that have not yielded yet,
which become rarer and rarer, until the memory of the initial configuration is lost and steady-state fluidization is
achieved. This occurs at a fluidization time τf that decreases as Σ increases, but in a non-universal way.

In conclusion, these few seminal papers proposing a mesoscopic approach to creep leave room for further exploration
with EPM, for instance about the universality (or not) of the long-time response in thermal and athermal systems.
It would also be interesting to determine if precursors can be defined to predict failure and, once the validity of EPM
is established, to upscale the mesoscopic approach into a valid macroscopic description of the creep response.

IX. RELATED TOPICS

Amorphous solids seem to form a specific class of materials. However, the phenomenology exposed above suggests
underlying theoretical connections with other problems. And, indeed, EPM are related to a spectrum of other models,
with physics-based distinctions, in particular in the interaction kernels. This section reviews, and attempts to compare
to EPM, some of these related approaches, from mesoscale models for crystalline plasticity and elastic line depinning
to fiber bundles, fuse networks and random spring models.

A. Mesoscale models of crystalline plasticity

1. Crystal plasticity

Like amorphous solids, driven crystalline materials respond elastically to infinitesimal deformations, via an affine
deformation of their structure, but undergo plastic deformation under higher loading. To be energetically favorable,
plastic deformation increments must somehow preserve the regular stacking of atoms; one must then determine when
it is more favorable to jump to the closest regular structure (’switch neighbors’) than to keep on with the affine
deformation of the current structure. For a perfect crystal, such a criterion would predict an elastic limit of around
5%.

Real crystals actually have a much lower elastic limit because they harbor structural defects, which were created
at the stage of their preparation and which play a key role in the deformation. These defects in the regular ordering
take the form of dislocations and grain boundaries which separate incompatible crystalline domains. Dislocations are
line defects obtained by making a half-plane cut in a perfect crystal and mismatching the cut surfaces before stitching
them back together. Similarly to creases on a carpet, which can be pushed across the rug to gradually move it without
lifting it as a whole, dislocations can glide across the crystal (and occasionally “climb” when they encounter a defect),
thereby generating slip planes. Grain boundaries also promote deformation; in these regions, gliding is facilitated by
the mismatch-induced weakness of the local bonds. On the other hand, the presence of impurities, e.g., solute atoms
in the crystal, may pin a dislocation at some location in space until it is eventually freed by a moving dislocation,
which results in a dent in the stress vs. strain curve; this is the so called Portevin-Le Chatelier effect.

The stress field around a dislocation is well known (it decays inversely proportionally to the distance to the line) and
the attractive or repulsive interactions between dislocations can also be rigorously computed. As a matter of fact, the
elastic propagator used in EPM can be regarded as the stress field induced by four edge dislocations whose Burgers
vectors sum to zero (Ben-Zion and Rice, 1993; Ispánovity et al., 2014; Tüzes et al., 2017). However, owing to the vast
lengthscales separating the individual dislocation from the macroscopic material, it is beneficial to coarse-grain the
description to the mesoscale, by considering the dislocation density field.

2. Models and results

Mesoscale dislocation models, which exist in several variants (Field Dislocation Model, Continuum Dislocation
Dynamics), bear formal similarities with EPM.
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Noticing that the plastic deformation induced by crystallographic slip generates an elastic stress field τint (r) (via
the very same elastic propagator as in EPM), Zaiser and Moretti (2005) separated this internal stress τint (r) from
the aspects more specific to dislocations and crystals and arrived at the following equation in two dimensions:

1

B
∂tγ (r) = τext + τint (r) +

DG

ρ
∂2
xγ + δτ (r, γ) , (33)

where B, D, and G are material constants, τext is the externally applied stress, and ρ is the dislocation density.
The last two terms on the rhs have no strict counterparts in EPM; they account for the mechanisms generated by
interactions between dislocation that alter the stress required to set a dislocation in motion. The third term is a
homogenizing term while the fourth one is a (ρ-dependent) fluctuating term; its dependence on the plastic strain
γ may be used to effectively describe strain hardening effects due to the multiplication of dislocations. In EPM,
such effects would belong to the rules that govern the onset of a plastic event. Armed with this model, the authors
then study the slip avalanches in order to explain the experimentally observed deformation patterns consisting of
slip lines and bands, echoing the endeavors in this direction on the EPM side. They find scaling exponents for such
avalanches that are comparable, but not strictly equal, to the mean-field exponents for the depinning problem; this
difference is not unexpected, owing to the fluctuating sign of their elastic propagator, which is identical to the EPM
one (see Sec. VII). Also, large avalanches are cut off due to strain hardening, which is one possible explanation for
the macroscopic smoothness of the deformation.

Contrasting with this macroscopically smooth situation, the deformation dynamics may feature strong intermittency,
which points to collective effects. Power-law-distributed fluctuations have recently been evidenced in the acoustic
emissions as well as in the stress vs. strain curves of loaded crystals (Weiss et al., 2015; Zhang et al., 2017). These
fluctuations may be “mild”, with bursts superimposed on a relatively constant, seemingly uncorrelated fluctuation
background, which is the case for many bulk samples, especially those with an fcc structure. On the other hand,
intermittency becomes dominant in bcc crystals and in smaller samples, where large bursts dominate the statistics.
Samples with fewer defects also tend to have “wilder” fluctuations. A mean-field rationalization of these phenomena
considers the density ρm of mobile dislocations and expresses its evolution with the strain γ as

dρm
dγ

= A− Cρm +
√

2Dρmξ (γ) ,

where A is a nucleation rate, C is the rate of annihilation of dislocation pairs, and D controls the intensity of the white
noise ξ (Weiss et al., 2015). Notice that the latter is multiplied by ρ, owing to the long-ranged interactions between
dislocations; the presence of multiplicative mechanical noise makes collective cascade effects possible. Such a model
allowed the authors to capture the distinct types of fluctuations in the dynamics, from mild to wild, depending on
the noise intensity D. More recently, Valdenaire et al. (2016) rigorously coarse-grained a fully discrete 2D dislocation
picture into a continuum model centered on a kinetic equation for the dislocation density, with superficial similarities
with the EPM equation of motion, Eq. 5.

3. Relation to EPM

Although the microscopic defects and the microscopic deformation mechanisms differ between crystals and dis-
ordered solids, the macroscopic phenomenology and, to some extent, the mesoscopic one share many similarities:
Microscopic defects interact via long-range interactions and their activity is, in some conditions, controlled by tem-
perature. Globally, the dynamics are highly intermittent at low shear rates and involve scale-invariant avalanches,
as indicated, inter alia, by acoustic emission measurements on stressed ice crystals (Miguel et al., 2001). This in-
termittency is generically known as crackling noise (Sethna et al., 2001) and does not connect EPM only to crystal
plasticity, but also to the fields of seismology and tribology.

The phenomenological similarity is paralleled by a proximity in the models. In some EPM, the stress redistributed
by a shear transformation is actually described as the effect of a combination of dislocations (Ben-Zion and Rice,
1993; Ispánovity et al., 2014; Tüzes et al., 2017). Conversely, quadrupolar interactions may be directly implemented
in mesoscale models of crystal plasticity, for instance in Eq. 2 of (Papanikolaou et al., 2012). More generally, the basic
equations of evolution in the two fields look very much alike, and models sometimes seem to have bearing on both
classes of materials (Shiba and Onuki, 2010). Rottler et al. (2014) numerically investigated the transition between the
dislocation-mediated plasticity of crystals and the shear-transformation-based deformation of amorphous solids. They
found that the directions of the nonlinear displacements under strain could be well predicted from the low-frequency
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vibrational modes and that polycrystals already behave comparably to glasses, despite their regular structure at the
grain scale.

Nevertheless, the connection between crystals and disordered solids should not be overstated. Even though flow
defects (“soft spots”) in the latter might to some extent persist over rearrangements (Schoenholz et al., 2014), on
no account can they be assimilated to well identified structural defects moving through a crystal. Following from
this discrepancy are the facts that, contrary to plastic rearrangements, dislocations are strongly dependent on the
preparation of the material (which determines the dislocation density), and may be pinned by defects, annihilate
through the merger of partials (“opposite” defects) or multiply.

B. Depinning transition

1. The classical depinning problem

In several systems, an interface is driven through a disordered medium by a uniform external force. This interface
can be a magnetic or ferroelectric domain wall, the water front (contact line) in a wetting problem, the fracture front,
or even charge density waves and arrays of vortices in superconductors. In all these cases, the interplay between the
quenched disorder (e.g., due to impurities) and the elastic interactions along the interface is at the root of a common
phenomenology and a universal dynamical response.

If the external force is weak, the interface will advance and soon get pinned and unable to advance any further.
If the force is strong enough, instead, the interface will overcome even the largest pinning centers, reaching a steady
state of constant velocity. This is the well documented dynamical phase transition known as depinning. Beyond the
transition itself, the literature now also describes the equilibrium configuration of the elastic line, several variations of
the problem (short/long-range elasticity, different disorder types, etc.), thermally activated dynamical regimes and,
in general, tackles the transport problem and its relation with the geometry of the interface. The interested reader is
referred to one of the following self-contained works or reviews: (Agoritsas et al., 2012; Chauve et al., 2000; Ferrero
et al., 2013; Fisher, 1998; Kolton et al., 2009).

2. Models

The most celebrated model to describe the depinning problem is the quenched Edwards-Wilkinson (QEW) equation.
A d = 1-dimensional interface without overhangs is driven by an external pulling force f . In the overdamped limit,
its local displacement at time t, described by a single-valued function, h(x, t), obeys

η∂th(x, t) = c∇2h(x, t) + f + Fp(x, h) + ξ(x, t) (34)

where c∇2h(x, t) represents the elastic force due to the surface tension, the (quenched) disorder induced by impurities
is encoded in the pinning force Fp(x, h) and thermal fluctuations are included as a Langevin thermal noise ξ(x, t).
In general, two different kinds of disorder are considered: random bond disorder, in which the pinning potential is
short-range correlated in the direction of motion (< V (h, i)V (h′, j) >= δijδhh′), and random-field disorder, where
the pinning force is short-range correlated (thus generating correlations of the potential in the direction of motion,
< V (h, i)V (h′, j) >= δij min(h, h′) ).

Of course, the QEW model just mentioned is minimal. Some of its variants take into account additional ingredients.
For example, charge density waves and vortices involve a periodic elastic structure, in fracture and wetting the elastic
interactions are long-ranged, and anharmonic corrections to elasticity or anisotropies could also be relevant. These
features would call for a rewriting of Eq. 34 into a more general form involving an elastic interaction energy Hel

η∂th(x, t) =
−δHel[h]

δh(x)
+ f + Fp(x, h) + ξ(x, t) (35)

Remarkably, all these different problems, grouped in a few distinct universality classes, share the same basic physics,
discussed in the following.

3. Phenomenology

The velocity-force characteristics < ḣ >= v(f) is well known for the depinning problem (see Fig.24a); the infor-
mation conveyed by this “equation of state” is enriched by a vast analytical and numerical knowledge of universal
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FIG. 24 The depinning picture. (a) Connection between transport and geometry in depinning. From (Ferrero et al., 2013).
(i) Snapshot of a domain wall in a 2D ferromagnet. (ii) Typical velocity-force characteristics. (iii) Crossover lengths `opt
and `av representing the optimal excitation and the deterministic avalanches, respectively. (iv) Geometric crossover diagram.
(b) Steady-state structure factor S(q) of the line in the limit of vanishing temperature for different forces (curves are shifted
for clarity). Adapted from (Kolton et al., 2006). (c) Comparison of the depinning and yielding critical transitions in a
correspondence (v ↔ γ̇), (f ↔ Σ).

properties at three special points: (i) equilibrium, i.e., f = 0; (ii) depinning, i.e., f = fc at T = 0; and (iii) fast-flow
f � fc. Around these points, at vanishing temperature, the steady-state interface h(x) displays a self-affine geometry
(in the sense that it is invariant under dimensional rescaling, viz., h(ax) ∼ aζh(x)) above a microscopic length scale,
with characteristic roughness exponents: (i) ζeq, (ii) ζdep, and (iii) ζff .

Turning to transport properties, at equilibrium, the mean velocity is zero and the dynamics is glassy. When the
applied force approaches zero macroscopic movement can be observed only at finite temperatures and at very long
times. Collective rearrangements on a scale of size `opt (`opt →∞ as f → 0) are needed to overcome barriers Eb(`opt)
growing as Eb ∼ `θopt, with θ > 0 a universal exponent related to the roughness by θ = d− 2 + 2ζeq. This is the creep

regime. At the zero temperature depinning transition the velocity vanishes as v(f, T = 0) ∼ (f − fc)β for f > fc
while v = 0 for f < fc. Approaching fc from above the motion is very jerky and involves collective rearrangements of
a typical longitudinal size `av that diverges at fc. The avalanche size S, defined as the area covered by the moving
interface, has power-law statistics, viz.,

P (S) ∼ S−τdep , with τdep = 2− 2

d+ ζdep
. (36)

At finite temperature, the sharp depinning transition is rounded, the velocity behaves as v(fc, T ) ∼ Tψ and the size `av
is finite at the transition. In the fast-flow regime f � fc, the response is linear, viz., v ∼ f . Here impurities generate
an effective thermal noise on the interface. Therefore, the fast-flow roughness corresponds to the Edwards-Wilkinson
roughness ζff = (2− d)/2.

One of the remarkable lessons learned from this simple model is the possibility to relate transport and geometry. If
the applied force f lies in between two of the above mentioned reference points, the interface geometry (in particular
the roughness exponent, see Fig.24b) depends on the observation scale and its relative position compared to the
characteristic lengths (`opt,`av,. . . ). Granted that one knows the functional dependencies of these characteristic
lengths with f and the velocity-force characteristics for a given system, transport properties (which intrinsically
pertain to the dynamics) can be deduced from the static interface geometry, and vice-versa.

4. Similarities and differences with EPM

The manifest qualitative similarity between the yielding transition and the depinning one has enticed many re-
searchers to look for a unification of these theories. The analogy has promoted the vision of yielding as a critical
phenomenon and has given rise to interesting advances, but, in our opinion, the (spurious) belief in a strict equivalence
of the problems has been deceptive in some regards.
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To stay on firm ground, a formal approach consists in finding an EPM analog to the depinning equation, Eq. 35. In
the stress-controlled situation (with applied stress Σext), Weiss et al. (2014) (Eq. S3 of the Supplemental Information)
and Tyukodi et al. (2016b) thus proposed to substitute the EPM equation of motion (Eq. 5) with

η∂tε
pl(r, t) = P

[−δU el[εpl]

δεpl(r)
+ Σext − Fp(r, εpl)

]
, (37)

where U el[εpl] ≡ − 1
2

∫∫
drdr′εpl(r)G(r − r′)εpl(r′), with G the elastic propagator, and P(x) denotes the positive part

of x (x if x > 0, 0 otherwise). In so doing, the deformation of an amorphous solid is mapped onto a problem of
motion through an (abstract) disordered space for the εpl-manifold pulled by the ‘force’ Σext. The positive part P in
Eq. 37 creates genuine threshold dynamics; it has no direct counterpart in the depinning equation but was argued by
Tyukodi et al. (2016b) not to be a core dissimilarity between yielding and depinning.

This formal similarity between the two classes of phenomena seems to buttress the application of results from the
depinning problem ( hence mean field, owing to the long range of the elastic propagator) to the question of, e.g.,
avalanche statistics in disordered solids (see Sec. VII). However, the following differences must be borne in mind.

First, and perhaps foremost, as often mentioned along the present review, the interaction kernel in depinning
problems is positive, whereas the quadrupolar elastic propagator G used in EPM has positive and negative bits. This
has profound consequences on the critical behavior at the yielding transition observed in EPM, in particular with
respect to the possibility of strain localization and the avalanche statistics. Furthermore, while in depinning v vanishes
at fc as v ∼ (f −fc)β with β < 1, the strain rate γ̇ does so at the yielding transition as γ̇ ∼ (Σ−Σc)

β with β > 1, as
schematically shown in Fig.24c. Note that, if the systems were at equilibrium, this difference in the value of β would
imply a change in the order of the continuous phase transition. Other consequences can be deduced from the general
scaling relations proposed by Lin et al. (2014b) [Supplementary Information], which are claimed to encompass the
depinning and the yielding cases:

β = ν (d− df + z) (38)

ν =
1

d− df + αk
(39)

τ = 2− df − d+ 1/ν

df
− θ

θ + 1

d

df
(40)

Here df is the fractal dimension of the avalanches, z is the dynamical exponent, ν is the exponent controlling the
divergence of the correlating length at the transition and αk is the dimension of the elastic interaction kernel. In
EPM αk = 0 and df < d so that β > 1. In depinning, αk = 2 for short-ranged elasticity and αk = 1 for long-ranged
elasticity, θ = 0 and df ≥ d.

Secondly comes the question of the nature of the disorder in the pinning force Fp. In elastic depinning models,
regardless of how realistic the chosen correlations of Fp are, the origin of the disorder is generally extrinsic. More
precisely, it reflects the disorder of the substrate on which the elastic manifold advances, hence Fp = Fp(h). On the
other hand, in the yielding phenomenon, as stated by Papanikolaou (2016), ‘the pinning disorder for every particle
originates in the actual interface that attempts to depin (other nearby particles); a disordered solid pins itself during
deformation’. Therefore, it is inaccurate to consider that Fp only depends on the local value of εpl. In particular, a
given system will not encounter the same pinning forces Fp along its deformation between, say, εpl = 0 and εpl = 1
if it is sheared slowly and if it is sheared fast. Typically, at high shear rates, the potential energies of the inherent
structures of the material are higher, and the pinning forces (as evidenced by the variations of potential energies of
the inherent structures with the shear rate, in atomistic simulations). This dependence should impact the γ̇ = f(Σ)
curve.

Last, the EPM equation of motion (Eq. 5) cannot always be reduced to an expression akin to Eq. 37, because of
the memory effects contained in the plastic activity variable n.

Let us now mention a subclass of problems that may be more closely related to EPM: the so called “plastic
depinning”. This phenomenon is observed for example in particle assemblies driven over random substrates whenever
irreversible plastic deformations actually occur, or in charge density wave problems. Unfortunately, this comparison
has been much less exploited by the amorphous solids community, even though the connection was very recently
pointed out in Reichhardt and Reichhardt (2016)’s review.

To conclude on the topic, there undoubtedly remains much to be learned from the more than 30 years of studies on
depinning phenomena. Some intriguing open questions left from this comparison are the following: Are the transport
properties of driven amorphous solids related to geometrical properties, as they are in elastic manifolds? Is it possible,
for example, to infer from a picture at which strain-rate a dense emulsion is being sheared?
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C. Fiber bundle, fuse networks and continuum models for the study of cracks and fracture

1. Brief introduction to cracks and fracture

In partial overlap with the scope of EPM, the question of the failure of hard solids under loading, e.g. in tension,
has attracted much attention over the last centuries. Pioneering in this respect, as recalled by Alava et al. (2006),
is Leonardo da Vinci’s observation that metal wires of equal cross sections loaded in tension by a weight fail more
readily if they are longer, which runs counter to basic continuum mechanics predictions for a uniform medium. In
fact, the failure of brittle solids, in particular rocks, is ascribed to the growth and propagation of pre-existing cracks
(at the scale of the crystalline grains constituting the material) or, more generally, defects.

If one considers an individual crack in a homogeneous medium, according to Griffith (1921)’s criterion, its growth
hinges on a competition between a surface energy term averse to the opening of solid-air interfaces and an elastic
energy term favoring its growth and thereby reducing the elastic energy stored in the bulk. For example, for a single
elongated elliptic of length a in a 2D medium, the sum of these competing terms reads

ET =
−πΣ2a2

2E︸ ︷︷ ︸
elastic energy

+ 2γa︸︷︷︸
surface energy

,

where E is the Young modulus of the material, γ is the interfacial energy, and Σ is the applied stress. Thus, the
evolution of the crack depends on the sign of the derivative dET

da (Alava et al., 2006). However, cracks very seldom
have so simple a geometric shape. Roughly speaking, owing to the presence of heterogeneities, the crack will zigzag
around hard spots. This will result in undulations and protrusions in the post-mortem fracture surface, which exhibits
a self-similar (fractal) pattern: If the surface height at a point (x, z) is denoted by h(x, z), the root mean square w(l)
of the height in a region of size ∆x ≈ ∆z ≈ l obeys

w(l) ≡
√
〈h(x, z)2〉 − 〈h(x, z)〉2 ∼ lζ⊥ ,

where ζ⊥ is the (out-of-plane) Hurst exponent, or roughness exponent. Interestingly, this exponent seems to be
weakly sensitive to the material or the loading, with values centered around ζ⊥ ' 0.8 and early claims of universality
(Bouchaud et al., 1990). The fractal dimension df of the surface is then related to ζ⊥ via df = 3− ζ⊥ for 3D fracture.
While the material is being fractured, the crack propagates along a rough, scale-invariant frontline (see Fig. 25a),
characterized by the in-plane roughness exponent ζ‖. Roughness bears practical importance, since it modifies the
scaling of the surface energy term.

Let us mention two subtleties. First, the exponents ζ‖ and ζ⊥ are not independent (Ertaş and Kardar, 1994).
Second, ζ⊥ might in fact mix two distinct exponents, insofar as Ponson et al. (2006)’s fracture experiments on silica
and aluminium alloys hint at anisotropic height variations in the fracture plane, with distinct behaviours along the
front line and along the crack propagation direction.

In addition to being spatially nontrivial, the propagation of the crack front also displays marked variations in
time. The associated dynamics is highly intermittent and involves avalanches of events which span a broad range of
energies. Indeed, the crackling noise emitted during these events has a power-law power spectrum, for instance in
composite materials (Garcimartin et al., 1997). For instance, the crack produced when tearing apart two sandblasted
Plexiglas sheets stuck together through annealing undergoes a stick-slip motion at small scales that is reminiscent of
dry solid friction (Måløy and Schmittbuhl, 2001), which in turn may tell us about earthquake dynamics (Svetlizky
and Fineberg, 2014).

At this stage, a discrepancy with respect to soft solids ought to be mentioned: In (rock) fracture, the microruptures
very generally do not have time to heal on the time scale of the deformation; without recovery process, the material
is thus permanently damaged. However, the crack velocity may still have an influence on the dynamics of the process
owing to the finite duration of the avalanches.

2. Fiber bundles

Arguably, the simplest way to model fracture is to consider two blocks bound by N aligned fibers. These fibers
share the global load and break irreversibly when their elongation x exceeds a randomly distributed threshold; this
is the basis of fiber-bundle models (Herrmann and Roux, 2014). In democratic fiber bundles, the load of broken
fibers is redistributed equally to all survivors. Analytical progress is possible in this intrinsically mean-field model.
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In particular, it is easy to show that, on average, when the bundle is stretched by x (with x = 0 the reference
configuration), a fraction C(x) of fibers have broken, where C(x) is the cumulative distribution of thresholds, and the
total load (normalized by the initial number of fibers, of stiffness κ each) reads f̄(x) = κx [1− C(x)]. It follows that
the maximum strength per fiber of the bundle is, on average,

fc = max
x

κx [1− C(x)] .

If one pulls on a given bundle, however, the load f will not evolve along the smooth average profile f̄(x), but along a
rugged profile {f(xk) ≡ κxk [1− C(xk)] , k = 1 . . . N} due to the randomness of the thresholds x1 6 x2 6 . . . 6 xN ,
sorted according to the order of failure. The f(xk) thus perform a random walk in “time” k with a time-dependent
bias 〈f(xk+1)− f(xk)〉 (Sornette, 1992). If, starting from a stable situation, the rupture of the k-th bond leads to S
additional failures, viz.,

f (xk+i) < f(xk) for i between 1 and S (but not for i = S + 1), (41)

an avalanche of size S will occur under fixed load. Noting that (i) this is a problem of first return for the walker f(xk)
[or, equivalently, of survival close to the absorbing boundary f = f(xk)−], and that (ii) close to global failure f ≈ fc
the random walk is unbiased, i.e., 〈f(xk+1)− f(xk)〉 = 0, Sornette (1992) showed that the distribution of avalanche
sizes s obeys

p(S) ∼ S−τ , where τ = 3/2. (42)

More precisely, for a uniform distribution of thresholds between x0 and xm, the distribution reads

p(S) ∼ S−5/2
(

1− e
−S
Scut

)
,

where the cutoff size Scut ≡ x2
m

2(xm−2x0)2
diverges at the critical point x = xm/2 (Pradhan et al., 2005). The power

law with exponent τ = 3/2 of Eq. 42 is recovered for S � Scut, whereas for S � Scut the random walk of the f(xk)
is biased upward and a steeper power law is obtained, with an exponent 5/2. The scaling p(S) ∼ S−5/2 is found
generically if all avalanches since the start of the deformation (x = 0) are taken into account (Hemmer and Hansen,
1992). The gradual shift to an exponent τ = 3/2 then signals imminent failure. Interestingly, the power-law behavior
fades out in favor of a much faster decay of p(s) if the load released by broken fibers is redistributed locally to the
first neighbors only, instead of being shared by all intact fibers (Kloster et al., 1997).

3. Fuse networks

Unfortunately, the picture promoted by mean-field or 1D fiber bundles is incapable of describing the heterogeneous
and anisotropic propagation of cracks. Extending the approach to higher dimensions, fuse networks connect lattice
nodes (say, nodes i and j) by fuses of conductance Kij that break past a threshold x ∈ [0, 1], thereby burning the
fuse (Kij → 0). To take an example, the distribution p of the thresholds can be set as a power law, p(x) ∼ xθ with
θ > 0. The voltages Vi are imposed at two opposite edges of the system, as depicted in Fig. 25c. The Hamiltonian of
the system reads

Hnc =
1

2

∑
〈i,j〉

Kij (Vi − Vj)2
, (43)

where the sum runs over neighboring sites. Note that, if the distribution p is uniform, i.e., θ = 0, the model can then
be viewed as a discretization of Poisson’s equation in the vacuum, ∇2V=0. Fuse networks are thus closer to EPM than
fiber bundles, insofar as the stress redistribution when one fuse burns (in the pristine network) is strongly anisotropic,
with a shielding of the current fore and aft and an enhancement sideways (Barthelemy et al., 2002; Rathore, 2016).
It can then be understood that failure occurs along a line of burnt fuses, the “crack” line, provided that there is finite
disorder (θ > 0) and the network is large (Shekhawat et al., 2013). Besides, in a 2D fuse network, Hansen et al. (1991)
computed a roughness exponent ζ approximately equal to 0.7 for weak disorder, not far from experimental values for
fractured surfaces ζ⊥ ≈ 0.8 (note that ζ = ζ⊥ in 2D).

The expression of the Hamiltonian in Eq. 44 evokes a random bond Ising model; the equivalence is formally exact
if the voltages are restricted to the values ±1, and the thresholds are infinite, thus making bonds unbreakable (perfect
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FIG. 25 Observation and modeling of crack propagation. (a) Raw image of the front of an in-plane crack propagating between
Plexiglas plates. The intact region appears in black and the image-processed front line is shown in (b). The roughness along
the propagation (z ) direction has a power-law spectrum characterized by the roughness exponent ζ‖. From (Schmittbuhl and
Måløy, 1997). (c) Sketch of the random fuse network and (d-e) failure process for distinct probability density functions for the
thresholds, p(x) ∼ xθ. The crack has been colored in red. From (Shekhawat et al., 2013).

ductility). These differences are not negligible in any way. Indeed, the interactions between nodes are thereby much
reduced, in spatial extent and magnitude; by contrast, in random fiber or fuse models, the impact of breaking a bond
is magnified close to failure, owing to the small number of intact bonds which will share the load. Nevertheless, the
process of fracture can be mimicked in the random Ising models by imposing spin +1 (-1) on the left (right) edges
of the sample and monitoring the interface line between the +1 and -1 domains. Rosti et al. (2001) studied the
probability that this interface passes through an artificial “notch”, i.e., a segment in which the bond strengths Kij

have been set to zero, and observed a transition from low to high probabilities as the notch length was increased
above a disorder-dependent threshold value. Similar results were obtained in experiments in which sheets of papers
with pre-cut notches were torn.

4. Spring models

From a mechanical perspective, should one replace the voltage Vi in Eq. 43 with the displacement ui at node i, viz.,

H′nc =
1

2

∑
〈i,j〉

Kij (ui − uj)
2
, (44)

the interpretation of the Hamiltonian as the energy of a network of random springs of stiffness Kij will become appar-
ent. The x, y, and z components of the dispacements in H′nc decouple, so that model is actually scalar (De Gennes,
1976). However, it features noncentral forces: the force exerted by j on i is not aligned with eij . A more consistent
description of a network of nodes connected by harmonic springs relies (to leading order) on the Hamiltonian

Hc =
1

2

∑
〈i,j〉

Kij [(ui − uj) · eij ]
2
. (45)

On a triangular lattice, with bonds of uniform strength Kij = 1, the continuum limit of this Hamiltonian represents
an isotropic elastic medium with a Poisson ratio of 1/3 in 2D and 1/4 in 3D (Monette and Anderson, 1994). As bonds
are gradually removed in a random fashion, the initially rigid system transitions to a non-solid state with vanishing
elastic moduli at a critical bond fraction pc. Such a transition is also observed with the models based on the scalar
Hamiltonian Hnc or the noncentral Hamiltonian H′nc, although at a distinct fraction pc. Somewhat surprisingly, the
scalings of the shear and bulk moduli with the fraction of bonds p around pc differ between the Hc and Hnc-based
models; the discrepancy stems from the distinct symmetries, in the same way as the Heisenberg model differs from
the Ising model (Feng and Sen, 1984). The distinction subtly differs from the scalar vs. tensorial dichotomy in EPM,
in that the EPM propagator is always derived from the same constitutive model (tensorial continuum elasticity); the
scalar description simply discards some tensor components at the end of the day.

Regarding the avalanches of ruptures close to the point of global failure, i.e., under loading f ≈ fc, Zapperi
et al. (1999) claimed that both the random fuse network of Eq. 43 and the central-force spring model of Eq. 45
(supplemented with bond-bending forces) fall in the universality class of spinodal nucleation, in that the avalanche
sizes S are distributed according to

p(S) ∼ S−τΦ [s (fc − f)] , where τ = 3/2
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and Φ is a scaling function. Zaiser et al. (2015) also found that fuse networks yielded results similar to spring models
regarding the initiation of failure, with localized correlations in the damage patterns.

We conclude this section on spring models with a historical note referring to the fact that such models had in
fact been pioneered by De Gennes (1976) to tackle the “converse problem”, namely, gel formation (e.g., through
cross-linking): Instead of gradually destroying bonds, he cranked up the fraction p of bonds by randomly connecting
pairs of neighbours until bonds percolated throughout the system; this occurred at a critical fraction pc, supposedly
corresponding to gel formation. In any event, the nature of the transition associated with the random depletion (or
creation) of bonds, which pertains to percolation, is distinct from what is observed in random fuse or spring networks.
In the latter models, the disorder in the yield thresholds bestows critical importance to the spatial redistribution of
stresses following ruptures. This distinction is at the origin of different scaling relations, e.g., between the failure force
and the system size (Hansen et al., 1989).

5. Beyond random spring models

Refinements have been suggested to bring random fuse (or spring) networks closer to models of material deformation
and fracture. First, the irreversible breakage of the fuses past a threshold mirrors perfectly brittle fracture. At the
opposite end, perfect plasticity is mirrored by the saturation of the fuse intensity past a threshold. But a continuum
of possibilities can be explored between these extreme cases, whereby the conductivity of the fuse is decreased to
mimic partial weakening, similarly to what can be done in EPM.

Another limitation of the models stems directly from the description of the bonds on a regular lattice: let alone
the presence of soft modes in several cases, the (Hc-based) central-force model, discretized on a triangular lattice,
displays an anisotropic tensile failure surface (despite an isotropic linear response), with an anisotropy ratio of 50%
(Monette and Anderson, 1994). These deficiencies can be remedied in part by complementing the spring-stretching
energies in Hc with bond-bending energies. This refinement leads to an isotropic elastic medium with adjustable
Poisson coefficient and a more isotropic failure surface.

As with EPM, the following step in the endeavor to refine the description led to the introduction of a finite-
element approach, which relies on a continuum description down to the scale of one mesh element. The equations
of inhomogeneous elasticity are solved and a damage (of magnitude D) is introduced by reducing the local elastic
constant E → (1−D)E whenever the local stress exceeds a threshold value. The process can evolve into avalanches,
and eventually to a vanishment of the elastic resistance through the propagation of a fracture through the system.
Incidentally, this mechanism had first been implemented by Zapperi et al. (1997) using a fuse network with damage
operating on the fuse resistances; the model displayed scale-free behavior with power-law distribution of event sizes,
P (S) ∼ S−τ with τ ' 1.2.

Amitrano et al. (1999) refined the modeling approach by using a pressure-modified (Mohr-Coulomb) criterion for
the onset of plasticity, viz.,

C + σn tanφ− σ < 0,

where C represents the cohesion of the material, σn and σ are the normal and shear stresses, respectively. A transition
from brittle failure with very localized damage (at low internal friction angle φ, i.e., little sensitivity of the yield
criterion to pressure) to ductile with diffuse damage (at large φ) was observed. At low φ the damage around a single
event is similar to the stress redistribution considered in EPM, while for large φ it becomes much more directional.
The transition from ductile to brittle shares qualitatively similarities with the strain localization transition, but the
control parameter is different from those discussed in Sec. V.C.

In the case of large φ and brittle failure, a description of compressive failure under uniaxial stress as a critical
phenomenon analogous to depinning was proposed by Girard et al. (2010) and elaborated by Weiss et al. (2014). The
interpretation in terms of a criticality notably affords a detailed description of size effects on the critical stress (Girard
et al., 2012).

X. OUTLOOK

In the last ten years, EPM have become an essential theoretical tool to understand the flow of solids. Starting from
elementary models intended to reproduce earthquake dynamics, they have blossomed into more refined approaches
that have helped rationalize many experimentally observed features, at least at a qualitative level, and unveil new
facets of the rheology of these materials.
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Future developments in the field can be expected in a number of directions, following current experimental and
theoretical interests. In rheology, considerable attention has recently been devoted to the study of transient regimes,
for instance creep under an imposed stress, and oscillatory regimes. In the latter category, the Large Amplitude
Oscillatory Strain (LAOS) protocol probes the nonlinear behavior and the frequency dependent one at the same time,
and therefore involves a complex interplay between plastic deformation and internal relaxation. Reproducing the
complex response of particular systems under such protocols is particularly challenging for simple models. Several
issues could be investigated within the framework of EPM, such as the onset of tracer diffusion as the amplitude
of the oscillatory strain is increased, or the fatigue behavior leading to failure. Recently, it was suggested that the
LAOS protocol could induce strain localization in systems with a monotonic flow curve, based on a study of a spatially
resolved version of the soft glassy rheology model, presented in Sec. IV.D.1 (Radhakrishnan and Fielding, 2016, 2017).
Creep (see Sec. VIII) is an equally challenging phenomenon, and recently a mean field version of EPM was used to
illustrate the very strong sensitivity of this phenomenon to initial conditions (Liu et al., 2017). A more unexpected
emerging avenue is the study of systems with internal activity, such as living tissues or dense cell assemblies. The
general ideas exploited in the description of amorphous systems can indeed be extended by incorporating different
types of events and units, e.g., cell division (local anisotropic dilation) and cell death (local isotropic contraction). A
new analysis in that direction was conducted by Matoz-Fernandez et al. (2017) based on a mean field description. At
present, new experimental tools are providing information on the statistical fluctuations in such systems, which will
allow to calibrate these models.

From the viewpoint of statistical physics, the yielding transition described by EPM stands as a new type of dynamical
phase transition, with specificities that are still to be understood in detail. Considerable efforts have been devoted to
the theoretical study of the related problem of the depinning transition (Sec. IX.B). In the latter case, (mostly) exact
exponents, scaling functions, and avalanche shapes were derived using scaling analysis and renormalization techniques.
For the yielding transition, the (slow) process of consensus building has not converged yet, but there are reasons to
believe that the results on avalanche statistics obtained in the depinning problem cannot be directly transposed to
this field, because the propagator controlling stress redistribution is partly negative, which affects the density of sites
close to yielding. Nevertheless, scaling relations between critical exponents have been proposed (Lin et al., 2014b)
and tested in diverse models (which was possible thanks to the variety of EPM in the literature), but no analytical
calculation beyond mean field is available so far. The discussion is even more open regarding flow curve exponents.
The situation is somewhat similar on the experimental side: The depinning phenomenon has benefited from a very
detailed experimental characterization in various systems (magnetic domain walls, contact lines, vortices), including
avalanche statistics and shapes, which has permitted comparison to the theory. Amorphous plasticity is not on quite
so good a footing, with only a few attempts to characterize the distribution of stress drops in deformed systems. The
situation is however improving, thanks to several recent efforts, e.g. those combining mechanical deformation and
confocal microscopy in colloidal glasses.

The foregoing discussion is related to the critical aspects of the yield phenomenon, discussed in Sec. VI and VII. In
a number of real systems (Bonn et al., 2017), the transition to flow is in fact discontinuous and implies a coexistence
between flowing and immobile states. EPM and other theoretical studies have suggested possible mechanisms that
may influence the continuous or discontinuous character of the transition (see Sec. V). Nevertheless, it turns out to
be experimentally difficult to control the transition in a systematic way by changing some experimental parameter.
Wortel et al. (2016)’s work on weakly vibrated granular media represents a notable exception, insofar as the intensity
of external shaking could be used to continuously tweak the flow curve towards nonmonotonicity. Similar systems of
vibrated grains have also permitted the experimental realization of a Gardner transition (Seguin and Dauchot, 2016),
a transition which may be important for the theory of glasses and which has recently been associated with shear
yielding (Urbani and Zamponi, 2017).

These prospective lines of research have hardly been explored using EPM. So, for all our efforts to articulate a
comprehensive view of the state of the art here, we can only wish that this review will soon need to be updated with
insightful results in these new avenues.
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Chattoraj, J, and A. Lemâıtre (2013), “Elastic signature of flow events in supercooled liquids under shear,” Physical Review
Letters 111 (6), 066001.
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during inhomogeneous deformation of bulk metallic glasses,” Acta Materialia 58 (10), 3742–3750.

Dasgupta, Ratul, Oleg Gendelman, Pankaj Mishra, Itamar Procaccia, and Carmel ABZ Shor (2013), “Shear localization in
three-dimensional amorphous solids,” Physical Review E 88 (3), 032401.

Dasgupta, Ratul, H George E Hentschel, and Itamar Procaccia (2012), “Microscopic mechanism of shear bands in amorphous
solids,” Physical review letters 109 (25), 255502.

De Gennes, Pierre-Gilles (1976), “On a relation between percolation theory and the elasticity of gels,” Journal de Physique
Lettres 37 (1), 1–2.

Debregeas, G, H. Tabuteau, and J.-M. Di Meglio (2001), “Deformation and flow of a two-dimensional foam under continuous
shear,” Physical Review Letters 87 (17), 178305.
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Divoux, Thibaut, David Tamarii, Catherine Barentin, and Sébastien Manneville (2010), “Transient shear banding in a simple

yield stress fluid,” Physical review letters 104 (20), 208301.
Divoux, Thibaut, David Tamarii, Catherine Barentin, Stephen Teitel, and Sébastien Manneville (2012), “Fluidization dynamics
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Maloney, C, and A. Lemâıtre (2004), “Subextensive Scaling in the Athermal, Quasistatic Limit of Amorphous Matter in Plastic

Shear Flow,” Physical Review Letters 93 (1), 016001.
Maloney, CE, and D.J Lacks (2006), “Energy barrier scalings in driven systems,” Physical Review E 73 (6), 061106.
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dislocation flow in viscoplastic deformation,” Nature 410 (6829), 667–671.
Monette, L, and MP Anderson (1994), “Elastic and fracture properties of the two-dimensional triangular and square lattices,”

Modelling and Simulation in Materials Science and Engineering 2 (1), 53.
Moorcroft, R, M.E. Cates, and S. Fielding (2011), “Age-Dependent Transient Shear Banding in Soft Glasses,” Physical Review

Letters 106 (5).
Moorcroft, Robyn L, and Suzanne M Fielding (2013), “Criteria for shear banding in time-dependent flows of complex fluids,”

Physical review letters 110 (8), 086001.
Narayanan, Aditya, Frieder Mugele, and Michael HG Duits (2017), “Mechanical history dependence in carbon black suspensions

http://dx.doi.org/10.1103/PhysRevLett.113.038303
https://doi.org/10.1038/nmat1536
https://doi.org/10.1016/j.actamat.2013.02.024
https://doi.org/10.1209/0295-5075/105/26003
https://doi.org/10.1103/PhysRevLett.115.168001
https://doi.org/10.1073/pnas.1406391111
https://doi.org/10.1103/PhysRevX.6.011005
https://doi.org/10.1103/PhysRevX.6.011005
https://doi.org/10.1039/c2sm06723d
https://tel.archives-ouvertes.fr/tel-01570010
http://dx.doi.org/10.1103/PhysRevLett.116.065501
https://doi.org/10.1103/PhysRevE.55.4095
http://dx.doi.org/10.1103/PhysRevLett.87.105502
http://dx.doi.org/10.1103/PhysRevLett.87.105502
https://doi.org/10.6028/jres.071A.031
https://doi.org/10.1103/PhysRevLett.93.016001
https://doi.org/10.1103/PhysRevE.73.061106
https://doi.org/10.1103/PhysRevE.74.016118
https://doi.org/10.1103/PhysRevE.76.056106
https://doi.org/10.1103/PhysRevLett.107.108302
https://doi.org/10.1103/PhysRevLett.107.108302
https://doi.org/10.1039/C4SM00230J
https://doi.org/10.1039/c3sm51220g
https://doi.org/10.1103/PhysRevLett.106.156001
https://doi.org/10.1039/c2sm07090a
https://doi.org/10.1039/c2sm25299f
https://doi.org/10.1039/c2sm25299f
https://doi.org/10.1103/PhysRevLett.118.158105
http://dx.doi.org/10.1103/PhysRevE.73.056104
http://dx.doi.org/ 10.1103/PhysRevE.65.046139
https://doi.org/10.1209/0295-5075/116/46003
http://dx.doi.org/ 10.1103/PhysRevLett.89.165501
https://doi.org/10.1038/35070524
https://doi.org/10.1088/0965-0393/2/1/004
https://doi.org/10.1103/PhysRevLett.106.055502
https://doi.org/10.1103/PhysRevLett.106.055502
https://doi.org/10.1103/PhysRevLett.110.086001


71

for flow batteries: a rheo-impedance study,” Langmuir 33 (7), 1629–1638.
Nichol, K, A. Zanin, R. Bastien, E. Wandersman, and M. van Hecke (2010), “Flow-Induced Agitations Create a Granular

Fluid,” Physical Review Letters 104 (7).
Nicolas, A, and J.-L. Barrat (2013a), “Fd 167 a mesoscopic model for the rheology of soft amorphous solids, with application

to microchannel flows,” Faraday Discuss. 167 (1), 567–600.
Nicolas, A, and J.-L. Barrat (2013b), “Spatial Cooperativity in Microchannel Flows of Soft Jammed Materials: A Mesoscopic

Approach,” Physical Review Letters 110 (13), 138304.
Nicolas, A, K. Martens, and J.-L. Barrat (2014a), “Rheology of athermal amorphous solids: Revisiting simplified scenarios

and the concept of mechanical noise temperature,” EPL (Europhysics Letters) 107 (4), 44003.
Nicolas, A, K. Martens, L. Bocquet, and J.-L. Barrat (2014b), “Universal and non-universal features in coarse-grained models

of flow in disordered solids,” Soft Matter 10, 4648–4661.
Nicolas, A, J. Rottler, and J.-L. Barrat (2014c), “Spatiotemporal correlations between plastic events in the shear flow of

athermal amorphous solids,” The European Physical Journal E 37 (6), 50.
Nicolas, Alexandre, Jean-Louis Barrat, and Jörg Rottler (2016), “Effects of inertia on the steady-shear rheology of disordered

solids,” Physical review letters 116 (5), 058303.
Nicolas, Alexandre, Francesco Puosi, Hideyuki Mizuno, and Jean-Louis Barrat (2015), “Elastic consequences of a single plastic

event: towards a realistic account of structural disorder and shear wave propagation in models of flowing amorphous solids,”
Journal of the Mechanics and Physics of Solids 78, 333–351.

Olami, Zeev, Hans Jacob S Feder, and Kim Christensen (1992), “Self-organized criticality in a continuous, nonconservative
cellular automaton modeling earthquakes,” Physical Review Letters 68 (8), 1244.

Olivier, J (2011), Fluides vitreux, diffusion réactive, structures craniofaciales : quelques contributions à l’étude de ces systèmes
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Pons, Adeline, Axelle Amon, Thierry Darnige, Jérôme Crassous, and Eric Clément (2015), “Mechanical fluctuations suppress

the threshold of soft-glassy solids: the secular drift scenario,” Physical Review E 92 (2), 020201.
Ponson, Laurent, Daniel Bonamy, and Elisabeth Bouchaud (2006), “Two-dimensional scaling properties of experimental

fracture surfaces,” Physical review letters 96 (3), 035506.
Pradhan, Srutarshi, Alex Hansen, and Per C Hemmer (2005), “Crossover behavior in burst avalanches: Signature of imminent

failure,” Physical review letters 95 (12), 125501.
Prado, Carmen P C, and Zeev Olami (1992), “Inertia and break of self-organized criticality in sandpile cellular-automata

models,” Phys. Rev. A 45, 665–669.
Priezjev, Nikolai V (2015), “Plastic deformation of a model glass induced by a local shear transformation,” Physical Review E

91 (3), 032412.
Princen, HM (1983), “Rheology of foams and highly concentrated emulsions: I. elastic properties and yield stress of a cylindrical

model system,” Journal of Colloid and interface science 91 (1), 160–175.
Princen, HM (1985), “Rheology of foams and highly concentrated emulsions. II. experimental study of the yield stress and wall

effects for concentrated oil-in-water emulsions,” Journal of Colloid and Interface Science 105 (1), 150–171.
Princen, HM, and AD Kiss (1986), “Rheology of foams and highly concentrated emulsions: Iii. static shear modulus,” Journal

of Colloid and Interface Science 112 (2), 427–437.
Princen, HM, and A.D. Kiss (1989), “Rheology of foams and highly concentrated emulsions: Iv. an experimental study of the

https://doi.org/10.1021/acs.langmuir.6b04322
https://doi.org/10.1103/PhysRevLett.104.078302
https://doi.org/10.1039/c3fd00067b
https://doi.org/10.1103/PhysRevLett.110.138304
https://doi.org/10.1209/0295-5075/107/44003
https://doi.org/10.1039/C4SM00395K
https://doi.org/10.1140/epje/i2014-14050-1
https://doi.org/10.1103/PhysRevLett.116.058303
https://doi.org/10.1016/j.jmps.2015.02.017
https://doi.org/10.1103/PhysRevLett.68.1244
https://doi.org/10.1088/0953-8984/15/11/313
https://doi.org/10.1103/PhysRevE.68.061502
https://doi.org/10.1103/PhysRevLett.108.105701
https://doi.org/10.1103/PhysRevLett.108.105701
https://doi.org/10.1016/0031-9201(72)90015-5
https://doi.org/10.1073/pnas.0806051105
http://dx.doi.org/10.1103/PhysRevE.77.041502
https://doi.org/10.1038/nature11568
https://doi.org/10.1103/PhysRevE.93.032610
https://doi.org/10.1103/PhysRevE.93.032610
https://doi.org/10.1038/nphys1884
https://doi.org/10.1103/PhysRevLett.117.045501
https://doi.org/10.1080/14786435.2010.491808
https://doi.org/10.1140/epje/i2004-10054-8
https://doi.org/10.1103/PhysRevE.71.010501
https://doi.org/10.1209/0295-5075/113/28001
https://doi.org/10.1103/PhysRevE.92.020201
https://doi.org/10.1103/PhysRevLett.96.035506
https://doi.org/10.1103/PhysRevLett.95.125501
http://dx.doi.org/10.1103/PhysRevA.45.665
https://doi.org/10.1103/PhysRevE.91.032412
https://doi.org/10.1103/PhysRevE.91.032412
https://doi.org/10.1016/0021-9797(83)90323-5
https://doi.org/10.1016/0021-9797(85)90358-3
https://doi.org/10.1016/0021-9797(86)90111-6
https://doi.org/10.1016/0021-9797(86)90111-6


72

shear viscosity and yield stress of concentrated emulsions,” Journal of colloid and interface science 128 (1), 176–187.
Puosi, F, J. Rottler, and J-L. Barrat (2014), “Time-dependent elastic response to a local shear transformation in amorphous

solids,” Physical Review E 89, 042302.
Puosi, Francesco, Julien Olivier, and Kirsten Martens (2015), “Probing relevant ingredients in mean-field approaches for the

athermal rheology of yield stress materials,” Soft matter 11 (38), 7639–7647.
Radhakrishnan, Rangarajan, and Suzanne M. Fielding (2016), “Shear banding of soft glassy materials in large amplitude

oscillatory shear,” Phys. Rev. Lett. 117, 188001.
Radhakrishnan, Rangarajan, and Suzanne M Fielding (2017), “Shear banding in large amplitude oscillatory shear (laostrain

and laostress) of soft glassy materials,” arXiv preprint arXiv:1704.08332.
Ramos, Laurence, and Luca Cipelletti (2001), “Ultraslow dynamics and stress relaxation in the aging of a soft glassy system,”

Physical review letters 87 (24), 245503.
Rathore, Raghu Singh (2016), “Planar 2-d cracks and inclusions in elastic media,” arXiv preprint arXiv:1601.05822.
Reddy, KA, Y. Forterre, and O. Pouliquen (2011), “Evidence of Mechanically Activated Processes in Slow Granular Flows,”

Physical Review Letters 106 (10), 108301.
Reichhardt, C, and CJ Olson Reichhardt (2016), “Depinning and nonequilibrium dynamic phases of particle assemblies driven

over random and ordered substrates: a review,” Reports on Progress in Physics 80 (2), 026501.
Reid, HF (1910), The California Earthquake of April 18, 1906: The Mechanics of the Earthquake/By Harry Fielding Reid

(Carnegie Inst.).
Rodney, D, and C. Schuh (2009), “Distribution of Thermally Activated Plastic Events in a Flowing Glass,” Physical Review

Letters 102 (23).
Rodney, D, A. Tanguy, and D. Vandembroucq (2011), “Modeling the mechanics of amorphous solids at different length scale

and time scale,” Modelling and Simulation in Materials Science and Engineering 19 (8), 083001.
Rogers, SA, D Vlassopoulos, and PT Callaghan (2008), “Aging, yielding, and shear banding in soft colloidal glasses,” Physical

review letters 100 (12), 128304.
Rosti, J, LI Salminen, ET Seppälä, MJ Alava, and KJ Niskanen (2001), “Pinning of cracks in two-dimensional disordered

media,” The European Physical Journal B-Condensed Matter and Complex Systems 19 (2), 259–263.
Rottler, J, S.S. Schoenholz, and A.J. Liu (2014), “Predicting plasticity with soft vibrational modes: From dislocations to

glasses,” Physical Review E 89 (4), 042304.
Rottler, Jörg, and Mark O. Robbins (2005), “Unified description of aging and rate effects in yield of glassy solids,” Phys. Rev.

Lett. 95, 225504.
Rountree, Cindy Linn, Damien Vandembroucq, Mehdi Talamali, Elisabeth Bouchaud, and Stéphane Roux (2009), “Plasticity-

induced structural anisotropy of silica glass,” Physical review letters 102 (19), 195501.
Roy, Arka Prabha, Kamran Karimi, and Craig E Maloney (2015), “Rheology, diffusion, and velocity correlations in the bubble

model,” arXiv preprint arXiv:1508.00810.
Ruta, B, G Baldi, G Monaco, and Y Chushkin (2013), “Compressed correlation functions and fast aging dynamics in metallic

glasses,” The Journal of chemical physics 138 (5), 054508.
Ruta, B, Y. Chushkin, G. Monaco, L. Cipelletti, E. Pineda, P. Bruna, V. Giordano, and M. Gonzalez-Silveira (2012), “Atomic-

Scale Relaxation Dynamics and Aging in a Metallic Glass Probed by X-Ray Photon Correlation Spectroscopy,” Physical
Review Letters 109 (16), 165701.

Salerno, K Michael, and Mark O Robbins (2013), “Effect of inertia on sheared disordered solids: Critical scaling of avalanches
in two and three dimensions,” Physical Review E 88 (6), 062206.

Sandfeld, Stefan, Zoe Budrikis, Stefano Zapperi, and David Fernandez Castellanos (2015), “Avalanches, loading and finite
size effects in 2d amorphous plasticity: results from a finite element model,” Journal of Statistical Mechanics: Theory and
Experiment 2015 (2), P02011.

Sandfeld, Stefan, and Michael Zaiser (2014), “Deformation patterns and surface morphology in a minimal model of amorphous
plasticity,” Journal of Statistical Mechanics: Theory and Experiment 2014 (3), P03014.

Schall, P, D.A. Weitz, and F. Spaepen (2007), “Structural rearrangements that govern flow in colloidal glasses.” Science (New
York, N.Y.) 318 (5858), 1895–9.
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