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Extended Kalman Filtering for continuous
volumetric MR-Temperature Imaging

Baudouin Denis de Senneville, Sébastien Roujol, Silke Hey, Chrit Moonen and Mario Ries

Abstract—Real time magnetic resonance (MR) thermometry
has evolved into the method of choice for the guidance of high-
intensity focused ultrasound (HIFU) interventions. For this role,
MR-thermometry should preferably have a high temporal and
spatial resolution and allow observing the temperature over the
entire targeted area and its vicinity with a high accuracy. In
addition, the precision of real time MR-thermometry for therapy
guidance is generally limited by the available Signal to Noise ratio
(SNR) and the influence of physiological noise. MR-guided HIFU
would benefit of the large coverage volumetric temperature maps,
including characterization of volumetric heating trajectories as
well as near- and far-field heating.

In this paper, continuous volumetric MR-temperature monitor-
ing was obtained as follows: The targeted area was continuously
scanned during the heating process by a multi-slice sequence.
Measured data and a priori knowledge of 3D data derived from
a forecast based on a physical model were combined using an
Extended Kalman Filter (EKF). The proposed reconstruction
improved the temperature measurement resolution and precision
while maintaining guaranteed output accuracy.

The method was evaluated experimentally ex-vivo on a phan-
tom, and in-vivo on a porcine kidney, using HIFU heating. On
the in-vivo experiment, it allowed the reconstruction from a
spatio-temporally under-sampled data set (with an update rate
for each voxel of 1.143 s) to a 3D dataset covering a field of
view of 142.5×285×54 mm3 with a voxel size of 3×3×6 mm3

and a temporal resolution of 0.127 s. The method also provided
noise reduction, while having a minimal impact on accuracy and
latency.

Index Terms—Magnetic Resonance Imaging, Real time sys-
tems, Motion analysis.

I. INTRODUCTION

RECENTLY, real time magnetic resonance (MR) ther-
mometry [1] [2] has evolved into the method of choice

for the guidance of non-invasive interventional modalities
such as high-intensity focused ultrasound (HIFU) [3]. Non-
invasive HIFU ablation of kidney and liver tumors has been
demonstrated to be feasible in a clinical environment [4] [5].
The principal role of MR-thermometry for the guidance of
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HIFU ablations is the continuous monitoring of the thermal
intervention for an increased patient safety. MR-thermometry
can be used to provide necrosis estimates and thus to de-
termine the therapy endpoint: The cumulative temperature
allows computing on-line the deposited thermal dose which,
compared to the lethal dose (taken as 43◦C during 240
minutes), provides an accurate and immediate prediction of
tissue necrosis [6]. Thermometric information can then be
used for adaptive ablation strategies, which employ feedback
control of the HIFU power and dynamic modifications of the
HIFU trajectory [7]: Since a complete destruction of the tumor
is required to assure therapeutic success, efficient ablation
control strategies are required exploiting both electronic beam
steering and mechanical displacements of the HIFU transducer.
The feedback control algorithm can either be based on the
targeted temperature, as it is required for the use of HIFU
in local drug delivery applications [8], or directly on necrosis
estimates as is preferable for the direct thermal destruction of
tumors [6].

However, although it is well established that MR-imaging
can provide data with a high spatial resolution, it is in practice
difficult to acquire 3D isotropic image volumes of a larger
field of view (FOV) in real time. In general, the precision of
real time MR-thermometry for therapy guidance is limited by
the available Signal to Noise ratio (SNR) and the influence
of physiological motion [9]. As a consequence, the inherent
trade-offs in MRI between spatial resolution, volume coverage,
and scan time leads for fast MRI often to a sacrifice of spatial
resolution and coverage in order to improve the temporal
resolution. Several strategies have therefore been proposed for
reducing the scan times of a Proton Resonance Frequency
(PRF) sequence, such as echo-shifted gradient echo imaging
[10], SENSE [11], SMASH [12], UNFOLD [13] or k-t BLAST
[14]. However, each method introduces new drawbacks in
terms of SNR, spatial and temporal resolution.

Initially, MRI temperature monitoring of sonications has
been reported in the kidney as well as in the liver in [15]
and [16], respectively. For both studies, the MR-temperature
monitoring was achieved in a single slice at an update rate of
3.4 seconds or more. However, for direct retroactive control
of the heating device, MR-thermometry should have a high
temporal and spatial resolution and allow observing the tem-
perature over the entire target area and the vicinity with a
high accuracy and precision. First, both the update time and
the latency of the thermal information should preferably be
substancially shorter [17]. As a consequence, the employed
processing for image reconstruction must be able to complete
all computations within the time interval between two suc-
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cessive acquisitions and achieve a short processing latency
[18]. Second, an extended spatial coverage is a necessary
prerequisite to achieve:

• Retroactive control of volumetric heating strategies, based
on temperature or thermal dose measurements in a pre-
defined volumes [7].

• Accurate monitoring of collateral damages such edema
induced by the low temperature diffusion close to the
skin [19] [20]. Similarly, the important difference of the
acoustic impedance of soft tissue and bones results in
an important heating of the bones by absorption of the
acoustic energy [9].

A recent study reported on-line volumetric MRI thermom-
etry in pig livers with an update rate of 400 milliseconds
on a volume limited to 5 slices and a relatively high pre-
cision of the temperature estimate (the median value of the
standard deviation of the temperature was lower than 2◦C)
[21]. To further improve the imaging performances, recent
studies investigated the possibility of using Kalman filtering
to exploit the physical knowledge of the heating process [22]
[23]. In [24], Roujol et al. used an Extended Kalman filter
(EKF) to combine measured and model predicted temperature
data to achieve a measurement noise reduction. A weighting
factor (the Kalman gain) allowed adjusting the confidence
between the predictor model and the measured data, and was
calculated iteratively based on estimates of the measurement
noise and the model covariance [25]. The EKF employed the
bio-heat transfer equation (BHTE) as the model predictor and
dynamically adapts the model covariance in order to achieve
measurement accuracy even in regions where the parameters
of the BHTE are not exactly known. Alternatively, sparse
sampling approaches in k-space have been proposed, which
also exploit the physical knowledge of the heating process
[26] to achieve off-line an artefact free reconstruction of 3D
MR-temperature maps from under-sampled k-space data using
sparse sampling approaches [27] [28].

In the current paper, a continuous volumetric MR-
temperature monitoring is obtained from spatio-temporally
undersampled thermometric data as follows: The targeted area
is continuously scanned during the heating process by a multi-
slice sequence. Measured data and a priori knowledge of
3D data derived from a forecast based on a physical model
are combined using an EKF. The EKF improves both the
temperature measurement temporal resolution and precision
while maintaining guaranteed output accuracy. The method
was evaluated experimentally on both an ex-vivo phantom and
an in-vivo porcine kidney heated using HIFU, and demon-
strated to be compatible with a real-time implementation.

II. METHOD DESCRIPTION
The proposed approach combines temperature measurement

obtained from a multi-slice acquisition with a model of tem-
perature transfer as follows:

A. Temperature modeling using the Bio Heat Transfer Equa-
tion (BHTE) model

The bio-heat transfer equation (BHTE) was employed as
the model for 3D temperature prediction, which includes the

applied acoustic power P , a priori knowledge of the absorption
rate α, the heat diffusion coefficient D and the perfusion value
w [29].

∂

∂t
T (~r, t) = α.P(~r,t) +D.∇2T(~r,t) − w.T(~r,t) (1)

where ∇2 is the Laplacian operator, and ~r = (x, y, z) is the
voxel coordinate. In the implemented model, coefficients P ,
α, D and w were assumed to be spatially and temporally
invariant. The spatial distribution of the acoustic pressure field
was determined using an acoustic field simulation based on
Rayleigh integration over the active transducer surface. The
remaining parameters of the bio-heat transfer equation were
calibrated similar to the approach proposed by Mougenot
et al. [30]. The temperature modeling with the BHTE was
performed using a voxel size matching the reconstructed MR
measurements. For this purpose, an integration of the analytic
distribution of the acoustic pressure field was individually
performed over each voxel in the field of view to obtain
temperature prediction matching the sampling of the MR
measures.

Computation times were shortened by solving the BHTE in
the Fourier domain [31], since the problem can be transformed
in Fourier space into a linear differential equation, as follows:

∂

∂t
T̃(~k,t) +

(
D.k2 + w

)
.T̃(~k,t) = α.P̃(~k,t) (2)

where T̃ , P̃ denotes the Fourier transform of T and P
respectively and k denotes the frequency coordinates in the
Fourier domain.

B. Volumetric thermal maps calculation

The discrete solution of the BHTE represents a non-linear
model for data prediction in Eq. (2) which was addressed using
the EKF formalism [25]. The targeted area was continuously
scanned during the heating process by a multi-slice sequence.
After a new 2D MRI measurement provides a temperature
update Tm

t , the Kalman filter computed, in a first pass, the
volumetric temperature prediction V −

t at time t based on the
last reconstructed volumetric temperature Vt−1 by applying:

V −
t = f (Vt−1, ut−1) (3)

where f represents the BHTE model, ut−1 is the control input
parameter which in our case corresponds to the HIFU delivered
power at time t− 1.

Subsequently, the part of the thermometric data in V −
t

which corresponds to the currently acquired slice position, is
updated with the measured temperature map Tm

t in order to
obtain a mixed thermometric volume V m

t .
Then, the a priori estimate error covariance P−

t was com-
puted as follows:

P−
t = AtPt−1A

T
t +Q (4)

where At is the Jacobian matrix of partial derivatives of f at
(Vt−1, ut−1), AT

t denotes the transpose t of At, Pt−1 is the a
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posteriori estimate error covariance at instant t − 1 and Q is
the process noise covariance related to the model innacuracy.

In a second pass, the EKF combined both the measured
thermometric data, which is contained in V m

t and the predicted
data in V −

t , in order to obtain the Kalman filtered temperature
Vt. For this purpose, a weighting factor, the Kalman gain
Kt, allowed to adjust in the acquired slice, the confidence
between the employed model and the measured data. The
Kalman gain was calculated iteratively and is predominantly
influenced by two parameters: the process noise covariance Q
and the measurement noise (we note R for the measurement
noise covariance that relates to the MR-thermometry precision
of the measure). Kt is first updated based on the new a priori
estimate error covariance:

Kt = PtH
T
(
HP−

t H
T +R

)−1
(5)

where H relates the model state to the measurement (here H
is the identity since the measurements are directly obtained in
state space).

Then, the Kalman filtered temperature Vt could be computed
from the weighted innovation St (St = V m

t − HV −
t ) as

follows:

Vt = V −
t +KtSt (6)

whereby St is only nonzero at the location of the new
thermometric measurements. Finally, the a posteriori estimate
error covariance Pt was updated as follows:

Pt = (I −KtH)P−
t (7)

C. Estimation of input parameters for the Kalman filter

The measurement noise R could be determined before the
heating process by evaluating the temperature variance in the
targeted area on a thermometric dataset in absence of any
heating (in this study we assumed R to be spatially and
temporally invariant). However, the process noise covariance
Q, which characterizes the accuracy of the BHTE model to
predict the true temperature evolution, is a priori not known
and has shown to vary over time (especially between heat up
and cool down period). As shown in [24], this can be achieved
using an adaptive EKF (AEKF), where Q is automatically
adjusted over time based on a dynamic evaluation of the model
accuracy for each new measurement. Based on the assumption
that the temperature noise is a white noise centered around
the true temperature, it was proposed to evaluate the model
accuracy at time t by computing the spatio-temporal sum of the
difference between predicted and measured data. In the current
study, the model accuracy εt was evaluated on a voxel-by-
voxel basis by computing the temperature bias over a temporal
window, as follows:

εt(x, y, z) =
1

N

∣∣∣∣∣
t∑

i=t−N+1

(
V −
i (x, y, z)− V m

i (x, y, z)
)∣∣∣∣∣ (8)

The following heuristic was used to find a map Q mini-
mizing the metric εt on a voxel-by-voxel basis: A maximum

acceptable penalty on the temperature bias (noted εthreshold)
was chosen. Two states were defined for the Kalman filter:

1) A model covariance Q(x, y, z) = Qmin was employed
for voxels depicting a model accuracy εt(x, y, z) lower
than εthreshold.

2) Q(x, y, z) = Qmax was chosen for εt(x, y, z) >
εthreshold.

A value of 0.1 was defined for Qmin in the scope of
this study. However, the determination of Qmax is of great
importance and was defined as the maximal temperature error
within the update time between two successive slice updates
(which is equal to the repetition time multiplied by the applied
power and by the absorption rate).

D. Experimental setup

Continuous volumetric MR-temperature imaging was per-
formed on a clinical Philips Achieva 1.5 T MRI (Philips
Healthcare, The Netherlands). Heating was achieved with a
Philips Sonalleve HIFU system (Philips Healthcare, Finland),
which is integrated into the patient bed of the MR-system.

1) Phantom heating study: MRI guided HIFU heating was
performed on a phantom using a PRF sequence which acquires
one slice placed in the coronal direction, sweeping contin-
uously through ten positions within the desired observation
area (Temporal resolution=0.17 s per position). 1000 slices
were acquired using a single-shot EPI sequence (TR=17 ms,
TE=11 ms, flip angle=10 ◦, FOV=76× 100× 30 mm3, voxel
size=1.5× 1.5× 3 mm3, which was reconstructed to a voxel
size of 0.5× 0.5× 3 mm3 to mitigate partial volume effects).
Heating was performed using 50 Watts of electrical power
during a period of 30 seconds. The accuracy of the MR
thermometry in the heated region was evaluated using the
readings of a T-type thermocouple probe as an independent
reference.

2) In-vivo heating study: MRI guided HIFU heating was
performed in-vivo in the kidney of a pig under general
anesthesia using a PRF sequence which acquires one slice
placed in the coronal direction, sweeping continuously through
nine positions within the desired observation area (Temporal
resolution=1.143 s per position). Each new acquired slice was
used to reconstruct dynamically the volumetric temperature
over the observation area, as described in II-B. In addition, the
sequence continuously acquires one spatially invariant slice
placed in sagittal direction through the heated region (the
sagittal slice and coronal slices were acquired in an interleaved
fashion). This slice provided an additional temperature mea-
surement with a nine fold increased temporal resolution (i.e.
equal to 0.127 s) and was the basis for the calculation of a
gold standard temperature with a reduced noise as follows:
A temporal temperature averaging was performed on a voxel-
by-voxel basis over each new succession of nine maps, which
increased the SNR by a factor 3. The control slice was
positioned in a sagittal direction several millimeters apart from
the focal point, in order to limit the signal perturbation of
the sweeped slice. 6000 slices were acquired using a single-
shot EPI sequence (TR=63.5 ms per slice, TE=25 ms, flip
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angle=35 ◦, FOV=142.5×285×54 mm3, voxel size=3×3×6
mm3, reconstructed voxel size=3× 3× 6 mm3).

Heating was performed using 250 Watts of electrical power
during a period of 50 seconds. Note that since the kidney was
static during the experiment, no correction of motion related
temperature errors was required.

3) Implementation: All calculations were performed using
a dual processor, INTEL 3.1 GHz Penryn, two cores, 8 GB of
RAM. To reduce computation time, the volumetric temperature
reconstruction was limited to a region of 32 × 32 × 9 voxels
centered on the targeted area. In the scope of this study, the
effect of perfusion was neglected (w = 0). The heat diffusion
evaluated to 0.1 mm2 s−1 for both presented experiments.
The absorption rate was evaluated to 0.15 and 0.02 KJ−1 for
the phantom and the in-vivo study, respectively. N = 10 was
defined so that the temporal window size for the evaluation of
the temperature bias εt covered a duration of a few seconds.
εthreshold was set to 1◦C for the heuristic adaptation of the
model covariance.

III. RESULTS

A. Phantom heating study

Fig. 1 shows an example of temperature maps extracted
from a volume reconstructed at the end of the heating process.
A significant reduction in measurement noise can be visu-
ally observed between the original measured MR-temperature
data (the spatio-temporally under-sampled measured MR-
temperature maps were reconstructed using a sliding window)
and the volumetric AEKF reconstructed temperature data. Fig.
2 shows that, using the reference measurement obtained with
the thermocouple probe (indicated by the white arrow in Fig.
1d), the precision of the measurement (i.e the standard devi-
ation of the difference between the red and the black curve)
was found to be improved from an initial value of ±2.4 ◦C
with the original data (2a), to ±1.4 ◦C using the proposed
AEKF reconstruction (2b). It can be observed however that
the accuracy occasionaly decreased to 5 ◦C off the true value
with the AEKF reconstruction.

B. In-vivo heating study

Fig. 3 shows an example of temperature maps extracted
from a volume reconstructed at the end of the heating process.
Two typical examples of the temporal temperature evolution
obtained in the heated region are reported: A voxel located
close to the focal point was selected (referred to as voxel #1),
as well as a voxel placed further in the vicinity (referred to as
voxel #2). The two voxel locations are indicated in Fig. 3.

To illustrate the influence of the Q value on the recon-
structed temperature, we first assumed Q to be spatially and
temporally invariant and we fixed a low value in order to give
a high confidence in the BHTE model (a typical value of
Q = Qmin = 0.1 was chosen). In voxel #1, close to the
focal point, accurate results with an improved precision could
be visually observed, as shown in Fig. 4a: While the original
measured temperature shows up to 5 ◦C of temporal variation
between two successive acquisitions, it remained stable over
the whole experiment using the EKF approach. The precision

(a) (b) (c)

(d) (e) (f)

Fig. 1: MR-Thermometry results obtained on the phantom
heating experiment with HIFU. Temperature maps are dis-
played along the three directions of the space, across the center
of the focal point, after 30 seconds of heating. (a), (b) and
(c) show the original spatio-temporally under-sampled mea-
sured MR-temperature maps. (d), (e) and (f) show the AEKF
reconstructed temperature data. (a-d), (b-e) and (c-g) display
coronal, sagittal and transversal directions, respectively. The
read (R), phase (P) and slice (S) directions are reported on
the bottom left of each image.

of the MR thermometry was quantified during the cool-down
period (time interval 120−280 s) using the standard deviation
between MR measurements and a fitted exponential decay
curve, and was improved from an original value of 0.9 ◦C to
0.11 ◦C using the additional a priori knowledge of the system
physics provided by the BHTE. However, it can be observed
in Fig. 4b that results were found to be less accurate in voxel
#2, which was located in the periphery of the focal point.

Then, we applied the proposed heuristic for the dynamic
update of Q on a voxel-by-voxel basis. The temporal evolution
of the estimated temperature bias εt is reported for the two
examined voxels in Fig. 5. Concerning voxel #1, the time
period with ε > εthreshold covers a duration of ∼ 2 seconds
(which represents less than 1% of the total experiment time). It
can also be observed that, in this voxel, the model is found to
be accurate most part of the time, except when the sonication
is stopped. The time period with ε > εthreshold was found
to be equal to ∼ 30 seconds for voxel #2 (which represents
∼ 11% of the total experiment time). Although the model
accuracy decreases strongly upon start of the sonication, the
model was found to be accurate in the cool down period. Fig. 6
shows the impact of the process noise covariance Q adaptation
on the EKF reconstructed temperature data: The temperature
evolution measured in voxel #2 was improved compared to
results shown in Fig. 4b.

The inserts of Fig. 4 and Fig. 6 display the effect of the
temporal interpolation of the applied AEKF: Although the
temperature information was updated only every 9th acqui-
sition cycle, a continuous estimation was available for all
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(a)

(b)

Fig. 2: Comparison between the PRF-based MR-thermometry
(black line) and the reference temperature measured with
the thermocouple probe (red line). (a): with the original
spatio-temporally under-sampled measured MR-temperature,
(b): with the AEKF reconstructed temperature data.

time points, which showed, compared to the measured data, a
significantly reduced measurement noise.

The estimated temperature bias εt was found to be maximal
during the HIFU energy deposition period. Fig. 7 shows the
spatial distribution of the maximal temperature bias εt reached
during the experiment for each voxel of the observed field of
view. Although very high εt values (> 3 ◦C) were observable
in voxels prone to low MR-signal, εt remained well below
2.5 ◦C in the heated region.

The efficiency of both the sliding window-based and the
AEKF reconstruction is evaluated in Fig. 8, using temperature
informations of the control slice as a reference. In order to
account for the different slice geometries, a spatial temperature
average was performed over four neighboring voxels (for the
control slice as well as for the reconstructed temperature
volume) to compare the temperature in voxels with an identical
isotropic resolution (i.e. 6 × 6 × 6 mm3). The temperature
evolution is reported in a single voxel located in the heated
region, which is present both in the control slice and in the
reconstructed volumes. While a similar accuracy was obtained
with the sliding window-based and the AEKF reconstruction
(an average temporal temperature difference of about 0.1 ◦C
was measured), the precision was improved (the standard

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 3: MR-Thermometry results obtained on a pig kidney
during HIFU ablation. The acquisition timing diagram is
detailed in (a): The coronal slice, which sweeps continuously
through nine positions, is indicated in blue, while the static
sagittal control slice is reported in red. Temperature maps are
displayed along the three directions of the space, across the
center of the focal point, after 50 seconds of HIFU heating of
a porcine kidney: (b), (c) and (d) show the original spatio-
temporally under-sampled measured MR-temperature maps,
(e), (f) and (g) show the AEKF reconstructed temperature data.
The position of the control slice is shown in (e).

deviation of temperature difference was found to decrease
from an initial value of 1.2 ◦C to below 0.6 ◦C), as shown
in the inserts of Fig. 8.

Less than 15 milliseconds were required for the complete
calculation of one reconstructed 3D volume on our compu-
tational platform. This rendered the method compatible with
sub-second MRI and the sampling frequency was only limited
by the MR-acquisition time (up to 16 Hz was achievable
with the used MR-imaging protocol). The latency (i.e the
delay between the actual time of the measurement and the
availability of the information) is equal to the sum of the
remaining acquisition time after the passage of the k-space
center (equal to half of the echo time with the used MR-
imaging protocol), the data transport duration (which was
evaluated to be approximatively equal to 10 milliseconds with
the used implementation) and the image processing time. A
latency lower than 60 milliseconds was thus achievable for the
obtention of one 3D temperature volume with the proposed
AEKF reconstruction.
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(a)

(b)

Fig. 4: Temporal temperature evolution obtained with a fixed
Q value (we choose Q = 0.1 in order to give a high confidence
in the BHTE model). (a): in a single voxel located close to
the focal point area (voxel #1 in Fig. 3), (b): further in the
vicinity of the focal point (voxel #2 in Fig. 3). The black curve
shows the measured MR-temperature data, while the red curve
depicts the volumetric EKF reconstructed temperature data.
Note the significant reduction in measurement noise obtained
with the EKF reconstruction in (a), and the loss of accuracy
in (b).

Fig. 5: Temporal evolution of the estimated temperature bias
εt in the two voxels reported in Fig. 3): voxel #1 (black line)
and voxel #2 (red line).

IV. DISCUSSION
The method extends our recent work reported in [24] to re-

construct continuous volumetric temperature data from spatio-

Fig. 6: Temporal temperature evolution obtained with a dy-
namic voxel-by-voxel basis Q adaptation in voxel #2 (arrow
(2) in Fig. 3b). Note the improvement of the reconstruction
at the beginning of the heating process, as compared to the
scenario reported in Fig. 4b in which to Q was not dynamically
adapted.

(a) (b) (c)

Fig. 7: Spatial distribution of the maximal temperature bias
εt reached in each voxel during the porcine kidney experi-
ment. (a), (b) and (c) display coronal, sagittal and transversal
directions, respectively.

(a) (b)

Fig. 8: Accuracy of the proposed reconstruction evaluated
using the temperature measured in the control slice as a refer-
ence. The temporal temperature evolution in the heated region
obtained from the measured (a) and the AEKF reconstructed
temperature data (b) are compared to the reference provided by
the control slice. Note, in the inserts, the significant reduction
in measurement noise obtained with the AEKF reconstruction
while maintaining an identical averaged accuracy.

temporally under-sampled 3D MR-temperature maps using an
Extended Kalman Filter (EKF). The bio-heat transfer equation
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(BHTE) was employed as the model for 3D temperature
prediction, which includes the applied acoustic power, a priori
knowledge of the absorption rate, the heat diffusion coefficient
and the perfusion value.

The proposed method is a step toward a precise volumetric
MR-temperature monitoring with a high spatial and temporal
resolution. Since all measured temperature values are Kalman
filtered using a predictor which models the underlying energy
deposition and heat evacuation processes, the measurement
noise is reduced. It is in particular important to note that this
increase in thermometric precision may have a direct impact
on the accuracy of the estimation of the tissue necrosis, since
the calculation of the thermal dose is based on a temporal
integration of the temperature on a voxel-by-voxel basis [6].

Since the BHTE models the physical processes of heat
diffusion and absorption, it requires to be applied in 3D space
in order to obtain unbiased results. However, the available
acquisition time is generally too limited in interventional
imaging applications to obtain full 3D thermometric coverage
of the heated area, especially if physiological motion has to be
resolved. As a consequence, previous approaches [24], applied
the BHTE to 2D or severely undersampled 3D datasets, which
leads to a systematic under-estimation of the heat evacuation
and neglects heat inflow from adjacent slices, in particular
for low temporal imaging resolution. This led to a systematic
accuracy bias introduced to the filtering process. In the pre-
sented approach, the targeted area was continuously scanned
during the heating process by a multi-slice sequence and thus
a 3D implementation of the BHTE model was possible, which
improved the filtering performance in terms of both accuracy
and precision.

For the in-vivo experiment, the proposed method allowed the
reconstruction of thermometric 3D datasets with an interpo-
lated temporal resolution of 0.127 s from a spatio-temporally
under-sampled data (update time per voxel 1.143 s) in a
temporally consistent way: Although neighboring voxels in
slice direction are in the original dataset 0.127 s apart, all
voxels in the 3D map show the temperature evolution at the
same point in time.

The computation times for the reconstruction of a complete
3D volume were found to be below the acquisition time of
one single slice (63.5 ms on the in-vivo experiment). In ad-
dition, compared to the previously proposed approach for 3D
dynamic temperature reconstruction [27], only the knowledge
of past temperature measurements is required, which renders
the method compatible with a real-time implementation.

The intrinsic limit of the proposed approach arises from
its dependence on a correct representation of the underlaying
heating process by the BHTE model. The parameters of
the BHTE model, which are in practice often not exactly
known, and are subjected to spatio-temporal changes due to
the heating process. Furthermore, although the acoustic field
can be precisely modeled in homogeneous media, variations in
the celerity and attenuation will generally modify the predicted
field in biological tissue. As a consequence, the estimate based
on Rayleigh integration was sufficient for accurate filtering
directly in the focal point area (see Fig. 4a), but was found in-
accurate in the periphery of the focus, leading to a systematic

underestimation of the observed temperature (see the insert of
Fig. 4b).

These model errors can lead to a systematic accuracy bias,
which could be observed when Q was fixed deliberately to
give a high confidence to the BHTE model, as reported in
Fig. 4. In the proposed approach, this loss of accuracy was
addressed by the dynamic model covariance adaptation of
the EKF, which applies a stronger weighting to the measured
data in the affected regions. For this purpose, the adjustment
of the Q parameter allowed handling correctly the model
accuracy in the proposed filter: While high Q values lead to
measurement fidelity, low Q values lead to an emphasis on
modeling. Although this reduces the achievable noise removal,
it prevents the filtering to introduce a systematic bias and
thus a loss of accuracy in the affected regions. In the scope
of the presented work, the numerical complexity induced by
the increased amount of data in 3D prevented the use of an
iterative optimization scheme to find the optimal Q minimizing
the filter accuracy εt as it was proposed in [24]. Instead, a
simple heuristic was introduced which allowed an adaptation
of Q on a voxel-by-voxel basis based on an a priori error
estimate of the process noise covariance.

Another important aspect is the latency of the Q adaptation
process: In the presented implementation, this latency was
determined by the size of the temporal window employed
to evaluate the filter accuracy εt (which covered the past
10 seconds in the presented in-vivo study). Although a high
temporal window size increases the precision of the evaluation,
it also increases the latency of the filter adaptation. This
latency may disturb the AEKF reconstruction by raising the
two following scenarios:

• In the focal point, the estimated model accuracy can be
biased when the HIFU generator was shifted from ON to
OFF (the estimated model accuracy reached the maximal
allowed threshold εt, as shown on Fig. 1 and Fig. 5).

• In the vicinity of the focal point, it typically introduces a
delay in the EKF adaptation at the beginning of the HIFU
sonication, as it can be observed in Fig. 6 and Fig. 8b.

With the proposed approach, the high temporal resolution
per volume associated with a low latency allowed for a
typical non-invasive measurement of the local temperature
distribution, which is of particular interest for highly perfused
and/or mobile organs targets such as kidney and liver tumors
[18]. As a consequence, the current approach is a step toward
an adequate spatial resolution over 3D volume with sufficient
temporal resolution to cope with sophisticated tumor abla-
tion procedures which involves high energy depositions, real-
time feedback control, and offline optimized 3D trajectory.
However, for this purpose, several limitations will need to be
addressed in future studies:

First, future works must involve the integration of a 3D
acoustic pressure field simulation accounting for media with
heterogeneous acoustic properties in the beam path [32].
Although a Fourier-based approach could be used in the scope
of the current study to speed up the on-line BHTE model
resolution [31] (see Eq. (2)), this technique is only valid under
the assumption that no heterogeneous media are present. The
solution of the BHTE in heterogeneous media requires more
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complex numerical solutions which would potentially render
a real-time volumetric AEKF reconstruction challenging.

Second, the implemented BHTE must be improved by
integrating several physiological parameters into the model:
One limitation of the implemented predictor model arises from
the negligence of the heat evacuation due to tissue perfusion.
Future works on in-vivo tissue, especially in the liver, will
require a careful assessment of the corresponding error bias
and potentially to take the perfusion term in Eq. (1) into
account. Similarly, an assessment of the local absorption and
diffusion also needs to be achieved. The a priori knowledge of
these parameters is in practice difficult and often relies either
on empirical data or calibration experiments [7]. Moreover,
although apparent coefficients can be expected to be suffi-
ciently homogeneous within large organs such as the liver,
this assumption could break down in smaller heterogeneous
organs such as the kidney, or close to organ boundaries, where
both become spatially variant. An accurate assessment of these
parameters will improve the performance of the volumetric
reconstruction by enhancing the BHTE performances, which,
in turn, will reduce the need of large scale Q adaptations. The
latter needs to be limited due the unavoidable Q adjustment
process latency (see the delay of the correction and aliasing
effects in the insert of Fig. 4b which are not completely
removed by the proposed approach).

Finally, in order to take into account dynamic changes in
the energy deposition and heat evacuation during the ablation
(acoustic absorption, heat diffusion, tissue perfusion), the
concept of volumetric sonications has been combined with
retroactive feedback control of the HIFU power. However, an
important challenge for HIFU ablations in organs in the upper
abdomen arises from the fact that the respiratory cycle causes a
continuous displacement of the target area. Therefore, the focal
point of the HIFU-system must be adaptively repositioned as
the organ moves with respect to the external transducer in
order to avoid damaging healthy tissue and to limit acoustic
energy losses. It has been demonstrated that the volumetric
heating procedure can be combined with HIFU motion correc-
tion by compensating the tissue displacement for each short
sonication period [33]. As a consequence, future work will also
involve the integration of the correction of motion artifacts in
thermal maps [34] [35], as well as the integration into the
BHTE of an update of the focal point position combined with
a trajectory optimized by the feedback control strategy.

V. CONCLUSION

The proposed approach combined temperature measure-
ments obtained from a spatio-temporally under-sampled multi-
slice acquisition with a bio-heat transfer equation for the
reconstruction of 4D MR-thermometry. Compared to the ap-
proach proposed previously [27], which is, in its current form,
intrinsically limited to post-processing, the proposed EKF
reconstruction is compatible with real-time processing and
has been implemented so that the computation times for the
reconstruction of a complete 3D volume were found to be
below the acquisition time of one single slice, associated with
a short latency.

The resulting increased spatial coverage and temporal res-
olution may facilitate real-time feedback control strategies,
which can be based on either the temperature or the thermal
dose, depending on the particular application scenario. For
HIFU applications, this allows maximizing the energy depo-
sition in the targeted area while reducing undesired heating in
the near-field. Hence, the described method is a step towards
effective tumor ablations while inflicting minimal damage on
the healthy surrounding tissue.
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