Machine Learning for Automatic Classification of Volcano-Seismic Signatures - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Machine Learning for Automatic Classification of Volcano-Seismic Signatures

Marielle Malfante
Mauro Dalla Mura
Jerome I. Mars
Jean-Philippe Métaxian
  • Fonction : Auteur
  • PersonId : 1250723
  • IdHAL : jpmeta

Résumé

—The evaluation and prediction of volcanoes activities and associated risks is still a timely and open issue. The amount of volcano-seismic data acquired by recent monitoring stations is huge (e.g., several years of continuous recordings), thereby making machine learning absolutely necessary for their automatic analysis. The transient nature of the volcano-seismic signatures of interest further enforces the need of automatic detection and classification of such events. In this paper, we present a novel architecture for automatic classification of volcano-seismic events based on a comprehensive signal representation with a large feature set. To the best of our knowledge this is one of the first attempts to automatize the classification task of these signals. The proposed approach relies on supervised machine learning techniques to build a prediction model.
Fichier principal
Vignette du fichier
1570347114.pdf (324.58 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01578149 , version 1 (28-08-2017)

Identifiants

  • HAL Id : hal-01578149 , version 1

Citer

Marielle Malfante, Mauro Dalla Mura, Jerome I. Mars, Jean-Philippe Métaxian. Machine Learning for Automatic Classification of Volcano-Seismic Signatures. EUSIPCO 2017 - 25th European Signal Processing Conference, Aug 2017, Kos Island, Greece. pp.2457-2461. ⟨hal-01578149⟩
291 Consultations
512 Téléchargements

Partager

More