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Abstract

Resilience is a rehashed concept in natural hazard management —
resilience of cities to earthquakes, to floods, to fire, etc. In a word, a
system is said to be resilient if there exists a strategy that can drive the
system state back to “normal” after any perturbation. What formal
flesh can we put on such a malleable notion? We propose to frame the
concept of resilience in the mathematical garbs of control theory under
uncertainty. Our setting covers dynamical systems both in discrete or
continuous time, deterministic or subject to uncertainties. We will
say that a system state is resilient if there exists an adaptive strategy
such that the generated state and control paths, contingent on uncer-
tainties, lay within an acceptable domain of random processes, called
recovery regimes. We point out how such recovery regimes can be
delineated thanks to so called risk measures, making the connection
with resilience indicators. Our definition of resilience extends others,
be they “à la Holling” or rooted in viability theory. Indeed, our defini-
tion of resilience is a form of controlability for whole random processes
(regimes), whereas others require that the state values must belong to
an acceptable subset of the state set.
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ery regimes
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1 Introduction

Consider a system whose state evolves with time, being subject to a dynamics
driven both by controls and by external perturbations. The system is said to
be resilient if there exists a strategy that can drive the system state towards
a normal regime, whatever the perturbations. Basic references are [8, 9, 10,
12, 1].

In the case of fisheries, the state can be a vector of abundances at ages
of one or several species; the control can be fishing efforts; the external
perturbations can affect mortality rates or birth functions appearing in the
dynamics (an extreme perturbation could be an El Niño event, affecting the
populations renewal). In the case of a city exposed to earthquakes, floods
or other climatic events, the state can be a vector of capital stocks (energy
reserves, energy production units, water treatment plants, health units, etc.);
the controls would be the different investments in capital as well as current
operations (flows in and out capital stocks); the dynamics would express
the changes in the stocks due to investment and to day to day operations;
external perturbations (rain, wind, climatic events, etc.) would affect the
stocks by reducing them, possibly down to zero.

In Sect. 2, we introduce basic ingredients from the mathematical frame-
work of control theory under uncertainty. Thus equipped, we frame the
concept of resilience in mathematical garbs in Sect. 3. Then, in Sect. 4, we
provide illustrations of the abstract general framework and compare our ap-
proach with others, “à la Holling” or the stochastic viability theory approach
to resilience. In Sect. 5, we sketch how concepts from risk measures (intro-
duced initially in mathematical finance) can be imported to tackle resilience
issues. Finally, we discuss pros and cons of our approach to resilience in
Sect. 6.

2 Ingredients for an abstract control system

with uncertainties

We outline the mathematical formulations of time, controls, states, Nature
(uncertainties), flow (dynamics) and strategies. As the reference [12] is the
more mathematically driven paper on resilience, we will systematically em-
phasize in what our approach differs from that of Rougé, Mathias and Def-
fuant.
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2.1 Time, states, controls, Nature and flow

We lay out the basic ingredients of control theory: time, states, controls,
Nature (uncertainties) and flow (dynamics).

2.1.1 Time

The time set T is a (nonempty) subset of the real line R. The set T holds a
minimal element t0 ∈ T and an upper bound T , which is either a maximal
element when T < +∞ (that is, T ∈ T) or not when T = +∞ (that is,

+∞ 6∈ T). For any couple (s, t) ∈
(
R ∪ {+∞}

)2
, we use the notation

s : t = {r ∈ T | s ≤ r ≤ t} (1)

for the segment that joins s to t (when s > t, s : t = ∅).

Special cases of discrete and continuous time. This setting includes
the discrete time case when T is a discrete set, be it infinite like T = {t0 +
k∆t, k ∈ N} (with ∆t > 0), or finite like T = {t0 + k∆t, k = 0, 1, . . . , K}
(with K ∈ N). Of course, in the continuous time case, T is an interval of R,
like [t0, T ] when T < +∞ or [t0,+∞[ when T = +∞. But the setting makes
it possible to consider interval of continuous times separated by discrete times
corresponding to jumps. For these reasons, our setting is more general than
the one in [12], which considers discrete time systems.

Environmental illustration. In fisheries, investment decisions (boats,
equipment) are made at large time scale (years), regulations quotas are gener-
ally annual, boat operations are daily. By contrast, populations and external
perturbations evolve in continuous time. Depending on the issues at hand,
the modeler will choose the proper time scales, symbolized by the set T. In
an energy system, like a micro-grid with battery and solar panels, investment
decisions in equipment (buying or renewal) occur at large time scale, whereas
flows inside the system have to be decided at short time scales (minutes).

2.1.2 States, controls, Nature

At each time t ∈ T,

• the system under consideration can be described by an element xt of
the state set Xt,
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• the decision-maker (DM) makes a decision ut, taken within a control
set Ut.

A state of Nature ω affects the system, drawn within a sample set Ω, also
called Nature. No probabilistic structure is imposed on the set Ω.

Environmental illustration. In the case of dengue epidemics control at
daily time steps, the state can be a vector of abundances of healthy and
deseased individuals (possibly at ages), together with the same description for
the mosquito vector; the control can be the daily fumigation effort, mosquito
larva removal, quarantine measures, or the opening and closing of sanitary
facilities; Nature represents unknown factors that affect the dengue dynamics,
like rains, humidity, mosquito biting rates, individual susceptibilities, etc.
Some of these factirs (like rain) can be progressively unfolded as times passes.

Special case where the sample set is a set of scenarios. In many
cases, at each time t ∈ T, an uncertainty wt affects the system, drawn within
an uncertainty set Wt. Hence, a state of Nature has the form ω = {wt}t∈T —
and is called a scenario — drawn within a product sample set Ω =

∏
t∈TWt.

Environmental illustration. The above definition of scenarios is in phase
with the vocable of scenarios in climate change mitigation; it represents se-
quences of uncertainties that affect the climate evolution. In our framework,
a scenario is not in the hands of the decision-maker; for instance, a scenario
does not include investment decisions.

Relevance for resilience. In the case of scenarios, as the uncertainty
sets Wt depend on t, we cover the case where

• an uncertainty wt ∈ Wt affects the system at each time t, possibly
progressively revealed to the DM, hence available when he makes deci-
sions;

• other uncertainties, that are present from the start (like parameters),
hence are part of the set Wt0 ; such uncertainties are not necessarily
revealed to the DM as times passes, and remain unknown.

Our setting is more general than the one in [12]. First, we do not restrict
the sample set to be made of scenarios as Rougé, Mathias and Deffuant do.
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Second, even in the case of scenarios, no probabilistic structure is imposed
on the set

∏
t∈TWt whereas Rougé, Mathias and Deffuant require that it be

equipped with a probability distribution having a density (with respect to
an, unspecified, measure, likely the Lebesgue measure on a Euclidian space).

2.1.3 State and control paths

With the basic set T and the basic families of sets {Xt}t∈T and {Ut}t∈T, we
define

• the set
∏

t∈TXt of state paths, made of sequences {xt}t∈T where xt ∈ Xt

for all t ∈ T; tail state paths {xr}r∈s:t (starting at time s < t) are

elements of
∏t

r=sXr;

• the set
∏

t∈TUt of control paths, made of sequences {ut}t∈T where ut ∈
Ut for all t ∈ T; tail control paths {ur}r∈s:t (starting at time s < t) are

elements of
∏t

r=sUr.

Relevance for resilience. We introduce paths because, as stated in the
abstract, our (forthcoming) definition of resilience requires that, after any
perturbation, the system returns to an acceptable “regime”, that is, that the
state-control path as a whole must return to a set of acceptable paths (and
not only the state values must belong to an acceptable subset of the state
set). We introduce tail paths because resilience encapsulates the idea that
recovery is possible after some time, and that the system remains “normal”
after that time.

2.1.4 Dynamics/flow

We now introduce a dynamics under the form of a flow {φs:t}(s,t)∈T2 , that is,
a family of mappings

φs:t : Xs ×
t∏

r=s

Ur × Ω→
t∏

r=s

Xr . (2)

When s > t, all these expressions are void because s : t = ∅.
The flow φs:t maps an initial state x̄s ∈ Xs at time s, a tail control path

{ur}r∈s:t and a state of Nature ω towards a tail state path

{xr}r∈s:t = φs:t
(
x̄s, {ur}r∈s:t , ω

)
, (3)
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with the property that xs = x̄s.

Relevance for resilience. Our setting is more general than the one in [12]:
as illustrated below, we cover differential and stochastic differential systems,
in addition to iterated dynamics in discrete time (which is the scope of Rougé,
Mathias and Deffuant). Our approach thus allows for a general treatment of
resilience.

Cemetery point to take into account either analytical properties or
bounds on the controls. In general, a state path cannot be determined
by (3) for any state of Nature or for any control path, for analytical reasons
(measurability, continuity) or because of bounds on the controls. To circum-
vent this difficulty, one can use a mathematical trick and add to any state
set Xt a cemetery point ∂. Any time a state cannot be properly defined by
the flow by (3), we attribute the value ∂. The vocable “cemetery” expresses
the property that, once in the state ∂, the future state values, yielded by the
flow, will all be ∂. Therefore, the stationary state path with value ∂ will be
the image of those scenarios and control paths for which no state path can
be determined by (3).

Special case of an iterated dynamics in discrete time. In discrete
time, when T = N, the flow is generally produced by the iterations of a
dynamic

xt = x , xs+1 = Fs(xs, us, ws) , t ≥ s . (4)

How do we include control constraints in this setting? Suppose given a
family of nonempty set-valued mappings Us : Xs ⇒ Us, s ∈ T. We want
to express that only controls us that belong to Us(xs) are relevant. For this
purpose, we add to all the state sets Xs a cemetery point ∂. Then, when ur 6∈
Ur(xr) in (4) for at least one r ∈ s : t, we set φs:t

(
x̄s, {ur}r∈s:t , {wr}r∈s:t , γ

)
=

{∂}s∈t:T in (3).

Environmental illustration. In natural resource management, many pop-
ulation models (anmal, plants) are given by discrete time abundance-at-age
dynamical equations. Outside population models, many stock problems are
also based upon discrete time dynamical equations. This is the case of dam
management, where water stock balance equations are written at a daily scale
(possibly less like every eight hours, or possibly more like months for long

6



term planning); control constraints represent the properties that turbined
water must be less than the current water stock and bounded by turbine
capacity.

Special case of differential systems. In continuous time, the mapping
φs:t in (2) generally cannot be defined over the whole set

∏t
r=sUr × Ω. Tail

control paths and states of Nature need to be restricted to subsets of
∏t

r=sUr

and Ω, like the continuous ones for example when dealing with Euclidian
spaces. For instance, when T = R+ and the flow is produced by a smooth
dynamical system on a Euclidian space X = Rn

xt = x , ẋs = fs(xs, us) , s ≥ t , (5)

control paths {us}s∈t:T are generally restricted to piecewise continuous ones
for a solution to exist.

Special case of stochastic differential equations. Under certain tech-
nical assumptions, a stochastic differential equation

dXs = fs(Xs,Us,Ws)ds+ g(Xs,Us,Ws)dWs , (6)

where {Ws}s∈R+
is a Brownian motion, gives rise to solutions in the strong

sense. In that case, a flow can be defined (but not over the whole set∏t
r=sUr × Ω).

The case of the history flow. Any possible state derives from the so-
called history

ht =
(
{ur}r∈t0:t , ω

)
. (7)

In that case, the flow (3) is trivially given by {hr}r∈s:t =
(
hs, {ur}r∈s:t

)
.

We will use the notion of history when we compare our approach with the
viability approach to resilience.

2.2 Adapted and admissible strategies

A control ut is an element of the control set Ut. A policy (at time t) is a
mapping

λt : Xt × Ω→ Ut (8)

with image in the control set Ut. A strategy is a sequence {λt}t∈T of policies.
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Environmental illustration. In climate change mitigation, a strategy can
be an investment policy in renewable energies as a function of the past ob-
served temperatures. In epidemics control, a strategy can be quarantine
measures or vector control as a function of observed infected individuals.

2.2.1 Admissible strategies

Suppose given a family of nonempty set-valued mappings Ut : Xt × Ω ⇒
Ut, t ∈ T. An admissible strategy is a strategy {λt}t∈t0:T such that control
constraints are satisfied in the sense that, for all t ∈ T,

λt(xt, ω) ∈ Ut(xt, ω) , ∀(xt, ω) ∈ Xt × Ω . (9)

2.2.2 Adapted strategies

Suppose that the sample set Ω is equipped with a filtration {Ft}t∈T. Hence
each Ft is a σ-field and the sequence t 7→ Ft is increasing (for the inclusion
order). Suppose that each state set Xt, is equipped with a σ-field Xt.

An adapted policy is a mapping (8) which is measurable with respect to
the product σ-field Xt ⊗ Ft. An adapted strategy is a family {λt}t∈t0:T of
adapted policies.

Special case where the sample set is a set of scenarios. Consider the
case where Ω =

∏
t∈TWt and where each set Wt is equipped with a σ-field

Wt (supposed to contain the singletons). The natural filtration {Ft}t∈T is
given by

Ft =
⊗
r≤t

Wr ⊗
⊗
s>t

{∅,Ws} . (10)

Then, in an adapted strategy {λt}t∈t0:T , each policy can be identified with a
mapping of the form [3]

λt : Xt ×
t∏

r=t0

Wr → Ut . (11)

In that case, our definition of adapted strategy means that the DM can, at
time t, use no more than time t, current state value xt and past scenario
{ws}s∈t0:t to make his decision ut = λt(xt, {ws}s∈t0:t).
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Relevance for resilience. Though this is not the most general framework
to handle information (see [3] for a more general treatment of information),
we hope it can enlighten the notion of adaptive response often found in the
resilience literature.

Our setting is more general than the one in [12]: indeed, Rougé, Mathias
and Deffuant only consider state feedbacks, that is, Markovian strategies as
defined below. By contrast, our setting includes the case of corrupted and
partially observed state feedback strategies, that is, the case where strategies
have as input a partial observation of the state that is corrupted by noise.

Special case of Markovian or state feedback strategies. Markovian
or state feedback policies are of the form

λt : Xt → Ut . (12)

With this definition, we express that, at time t, the DM can only use time t
and current state value xt — but not the state of Nature ω — to make his
decision ut = λt(xt). In some cases (when dynamic programming applies
for instance), it is enough to restrict to Markovian strategies, much more
economical than general strategies.

2.3 Closed loop flow

From now on, when we say “strategy”, we mean “adapted and admissible
strategy”.

Given an initial state and a state of Nature, a strategy will induce a state
path thanks to the flow: this gives the closed loop flow as follows.

Let s ∈ T and t ∈ T, with s < t. Let {λt}t∈T be a strategy. We suppose
that, for any initial state x̄s ∈ Xs and any state of Nature ω, the following
system of (closed loop) equations

{xr}r∈s:t = φs:t
(
x̄s, {ur}r∈s:t , ω

)
(13a)

ur = λr(xr, ω) , ∀r ∈ s : t (13b)

has a unique solution
(
{xr}r∈s:t , {ur}r∈s:t

)
. Quite naturally, we define the

closed loop flow φλs:t by

φλs:t
(
x̄s, ω

)
=
(
{xs}s∈s:t , {us}s∈s:t

)
. (14)
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3 Resilience: a mathematical framework

Equipped with the material in Sect. 2, we now frame the concept of resilience
in mathematical garbs. For this purpose, we introduce the notion of recovery
regime. Compared to other definitions of resilience [8, 9, 10, 12], our defini-
tion requires that, after any perturbation, the state-control path as a whole
can be driven, by a proper strategy, to a set of acceptable paths (and not
only the state values must belong to an acceptable subset of the state set,
asymptotically or not). In addition, as state and control paths are contin-
gent on uncertainties, we require that they lay within an acceptable domain
of random processes, called recovery regimes.

Once again, as the reference [12] is the more mathematically driven paper
on resilience, we will systematically emphasize in what our approach differs
from that of Rougé, Mathias and Deffuant.

3.1 Robustness, resilience and random processes

The notion of robustness captures a form of stability to perturbations; it
is a static notion, as no explicit reference to time is required. By contrast,
the concept of resilience makes reference to time (dynamics), strategies and
perturbations. This is why, to speak of resilience — a notion that mixes time
and randomness — we find it convenient to use the framework of random
processes, although this does not mean that we require any probability.

From now on, we consider that the sample space Ω is a measurable set
equipped with a σ-field F (but not necessarily equipped with a probability).
When we consider a deterministic setting, Ω is reduced to a singleton (and
ignored). The set of measurable mappings from Ω to any measurable set Y
will be denoted by L0

(
Ω,Y

)
. Elements of L0

(
Ω,Y

)
are called random vari-

ables or random processes, although this does not imply the existence of an
underlying probability. Random variables are designated with bold capital
letters like Z. From now on, every state set Xt is a measurable set equipped
with a σ-field Xt, every control set Ut with a σ-field Ut, and, when needed,
every uncertainty set Wt with a σ-field Wt.

Fields are introduced when probabilities are needed. When they are not,
as with the robust setting, it suffices to equip all sets with their complete
σ-fields, made of all subsets. Then, measurable mappings L0

(
Ω,Y

)
from Ω

to any set Y are all mappings.
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3.2 Recovery regimes

Recovery regimes, starting from t ∈ T, are subsets of random processes of
the form

At ⊂ L0
(
Ω,

T∏
s=t

Xs ×
T∏
s=t

Us

)
. (15)

When there are no uncertainties, Ω is reduced to a singleton, so that At ⊂∏T
s=tXs ×

∏T
s=tUs, as in the two first following examples.

Example of recovery regimes converging to an equilibrium. Let
T = R+, Xt = Rn and Ut = Rm, for all t ∈ T. Let x̄ be an equilibrium
point of the dynamical system ẋs = f(xs, ū) when the control is stationary
equal to ū, that is, 0 = f(x̄, ū). The recovery regimes, starting from t ∈ T,
converging to the equilibrium x̄ form the set

At =
{(
{xs}s≥t , {us}s≥t

)
∈ X[t,+∞[ × U[t,+∞[ | xs →s→+∞ x̄

}
. (16)

In general, the equilibrium x̄ is supposed to be asymptotically stable, locally
or globally.

A more general definition would be

At =

{(
{xs}s≥t , {us}s≥t

) ∣∣∣∣ lim
s→+∞

xs exists

}
, (17)

and, to account for constraints on the values taken by the controls, we can
consider

At =

{(
{xs}s≥t , {us}s≥t

) ∣∣∣∣ lim
s→+∞

xs exists and us ∈ Us(xs) , ∀s ≥ t

}
,

(18)
where Us : Xs ⇒ Us, for all s ∈ T.

Example of bounded recovery regimes. Let T = R+, Xt = Rn and
Ut = Rm, for all t ∈ T. If B is a bounded region of X = Rn, we consider

At =
{(
{xs}s≥t , {us}s≥t

)
| xs ∈ B , ∀s ≥ t

}
. (19)

When B is a ball of small radius ρ > 0 around the equilibrium x̄, we obtain
state paths that remain close to x̄.
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Example of random recovery regimes. Suppose that the measurable
sample space (Ω,F) is equipped with a probability P. Let Xt = Rn and
Ut = Rm, for all t ∈ T. Letting B be a bounded region of X = Rn and
β ∈]0, 1[, the set

At ={
(
{Xs}s≥t , {Us}s≥t

)
∈ L0

(
Ω,

T∏
s=t

Xs ×
T∏
s=t

Us

)
|

P
[
∃s ≥ t | Xs 6∈ B

]
≤ β} (20)

represents state paths that get at least once outside the bounded region B
with a probability less than β.

If T is discrete, the set

At ={
(
{Xs}s≥t , {Us}s≥t

)
∈ L0

(
Ω,

T∏
s=t

Xs ×
T∏
s=t

Us

)
|

P
[
∃s1 ≥ t , s2 ≥ t , s3 ≥ t | Xs1 6∈ B , Xs2 6∈ B , Xs3 6∈ B

]
= 0}

(21)

represents state paths that get no more than two times outside the bounded
region B.

3.3 Resilient strategies and resilient states

Consider a starting time t ∈ T and an initial state x̄t ∈ Xt. We say that the
strategy λ is a resilient strategy starting from time t in state x̄t if the random

process
(
{Xs}s∈t:T , {Us}s∈t:T

)
given by

{Xs(ω)}s∈t:T = φλt:T
(
xt, ω

)
(22a)

Us(ω) = λs(Xs(ω), ω) , ∀s ∈ t : T , (22b)

where the closed loop flow φλt:T is given in (14), is such that(
{Xs}s∈t:T , {Us}s∈t:T

)
∈ At . (23)

Notice that we do not use the part {λr}r<t of the strategy λ = {λr}r∈t0:T .
With this definition, a resilient strategy is able to drive the state-control

random process into an acceptable regime. As a resilient strategy is adapted,
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it can “adapt” to the past values of the randomness but no to its future values
(hence, our notion of resilience does not require clairvoyance of the DM). Our
definition of resilience is a form of controlability for whole random processes
(regimes): a resilient strategy has the property to shape the closed loop
flow φλt:T so that it belongs to a given subset of random processes.

We denote by ΛR
t (x̄t) the set of resilient strategies at time t, starting from

state x̄t. The set of resilient states at time t is

XR
t =

{
x̄t ∈ Xt

∣∣ ΛR
t (x̄t) 6= ∅

}
. (24)

4 Illustrations

In Sect. 3, we have provided some illustrations in the course of the exposition.
Now, we make the connection between the previous setting and two other
settings, the resilience “à la Holling” [8] in §4.1 and the resilience-viability
framework [9, 10, 12] in §4.2.

4.1 Deterministic control dynamical system with at-
tractor

As the paper [8] does not contain a single equation, it is bit risky to force
the seminal Holling’s contribution into our setting. However, it is likely that
it corresponds to T = R+ and to recovery regimes of the form

At =
{(
{xs}s≥t , {us}s≥t

)
| xs converges towards an attractor

}
. (25)

Note that, as often in the ecological literature on resilience [1], the underlying
dynamical system is not controlled.

4.2 Resilience and viability

Some authors [9, 10, 12] propose to frame resilience within the mathematical
theory of viability [2].

Let Xt = X and Ut = U, for all t ∈ T. Let A ⊂ X denote a set made
of “acceptable states”. Let Us : X ⇒ U, s ∈ T be a family of set-valued
mappings that represent control constraints.
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4.2.1 Deterministic viability

Consider a starting time t ∈ T and the recovery regimes

At = {
(
{xs}s≥t , {us}s≥t

)
| xs ∈ A , us ∈ Us(xs) , ∀s ≥ t} . (26)

Then, a resilient strategy is one that is able to drive the state towards the
set A of acceptable states.

4.2.2 Robust viability

When there are no uncertainties, we just established a connection between
recovery regimes and viability. But, with uncertainties, as resilience requires
a form of stability “whatever the perturbations”, we are in the realm of robust
viability [4], as follows.

Let Ω ⊂ Ω, corresponding to the (nonempty) subset of states of Nature
with respect to which the DM expects the system to be robust. Consider a
starting time t ∈ T and the recovery regimes

At = {
(
{Xs}s∈t:T {Us}s∈t:T

)
∈ L0

(
Ω,

T∏
s=t

Xs ×
T∏
s=t

Us

)
|

∃τ ∈ L0
(
Ω,T

)
, ∀ω ∈ Ω ,

τ(ω) ≥ t , Xs(ω) ∈ A , Us(ω) ∈ Us(Xs(ω)) , ∀s ≥ τ(ω)} . (27)

Then, a resilient strategy is one that is able to drive the state towards the
set A of acceptable states, after a random time τ , whatever the perturbations
in Ω.

4.2.3 Robust viability and recovery time attached to a resilient
strategy

Let Ω ⊂ Ω, whose elements can be interpreted as shocks. Consider a starting
time t ∈ T and an initial state x̄t ∈ Xt. If λ = {λs}s∈t:T is a resilient strategy
for the recovery regimes (27), the recovery time is the random time defined
by

τ(ω) = inf{r ∈ t : T | {Xs(ω)}s∈t:T = φλt:T
(
x̄t, ω

)
Us(ω) = λs(Xs(ω), ω) , ∀s ∈ t : T

Xs(ω) ∈ A , Us(ω) ∈ Us(Xs(ω)) , ∀s ≥ r} , (28)
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for all ω ∈ Ω, with the convention that inf ∅ = +∞.
Thus, the resilient strategy drives the state towards the set A of acceptable

states, after the random time τ , whatever the perturbations (shocks) in Ω.
By contrast, the so-called time of crisis occurs before τ [6].

4.2.4 Stochastic viability

Suppose that the measurable sample space (Ω,F) is equipped with a proba-
bility P and let β ∈ [0, 1], represent a probability level. Consider a starting
time t ∈ T and the recovery regimes

At = {
(
{Xs}s∈t:T , {Us}s∈t:T

)
∈ L0

(
Ω,

T∏
s=t

Xs ×
T∏
s=t

Us

)
|

P
[
Xs ∈ A , Us ∈ Us(Xs) , ∀s ≥ t

]
≥ β} . (29)

With these recovery regimes, we express that the probability to satisfy state
and control constraints after time t is at least β [5].

4.2.5 Discussion and comparison with the viability theory ap-
proach for resilience.

Our setting is more general than the viability theory approach for resilience
as introduced in [9, 10, 12]. Indeed, the viability approach to resilience deals
with constraints time by time; our approach does not.

To illustrate our point, consider the deterministic case with discrete and
finite time, and scalar controls, to make things easy. It is clear that the
recovery regimes given by

At = {
(
{xs}s≥t , {us}s≥t

)
| min
s≥t

us ≤ 0} (30a)

= {
(
{xs}s≥t , {us}s≥t

)
| ∃s ≥ t , us ≤ 0} . (30b)

cannot be expressed as time by time constraints on the controls.
Of course, the viability approach could handle such a case, but at the

price of extending the state and the dynamics, to turn an intertemporal
constraint into a time by time constraint. For instance, with the history
state introduced at the end of §2.1.4, we can always express any recovery
regimes set as viability constraints. In the example above, we do not need
the whole history to turn the set At into one described by time by time
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constraints: it suffices to introduce an additional component to the state like∑
s≥t 1{us≤0} in discrete time and impose the final constraint that this new

part of an extended state be non zero.
To sum up, our approach to resilience covers more recovery regimes, de-

scribed with the original states and controls, than those captured by the
time by time constraints that make the specificity of the viability approach
to resilience.

5 Resilience and risk

We now sketch how concepts from risk measures (introduced initially in
mathematical finance [7]) can be imported to tackle resilience issues. This
again is a novelty with respect to the stochastic viability theory approach for
resilience as in [12]. Risk measures are potential candidates as indicators of
resilience.

5.1 Recovery regimes given by risk measures

We start by a definition of recovery regimes given by risk measures, then we
provide examples.

5.1.1 Definition of recovery regimes given by extended risk mea-
sures

Suppose that T ⊂ R is equipped with the trace T of the Borel field of R.
Then, T × Ω is a measurable space when equipped with the product σ-
field T ⊗ F. Then, any random process in L0

(
Ω,
∏T

s=tXs ×
∏T

s=tUs

)
can

be identified with a random variable in L0
(
t : T × Ω,

⋃T
s=tXs

⋃⋃T
s=tUs

)
.

We call extended risk measure any Gt that maps random variables in L0
(
t :

T × Ω,
⋃T
s=tXs

⋃⋃T
s=tUs

)
towards the real numbers [7]. The lower the risk

measure Gt, the better.
The basic example of a risk measure is the mathematical expectation

under a given probability distribution. A celebrated risk measure in mathe-
matical finance is the tail/average/conditional value-at-risk.

With Gt an extended risk measure and α ∈ R a given risk level, we define
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recovery regimes by

At = {
(
{Xs}s∈t:T , {Us}s∈t:T

)
∈ L0

(
Ω,

T∏
s=t

Xs ×
T∏
s=t

Us

)
|

Gt

[
{Xs}s∈t:T , {Us}s∈t:T

]
≤ α} . (31)

The quantity Gt

[
{Xs}s∈t:T , {Us}s∈t:T

]
measures the “risk” borne by the ran-

dom process
(
{Xs}s∈t:T , {Us}s∈t:T

)
. Therfore, recovery regimes like in (31)

represent a form of “risk containment” under the level α.

5.1.2 Robust viability and the worst case risk measure

The robust viability inspired definition of resilience in §4.2.2 corresponds
to (31) with α < 1 and the worst case risk measure

Gs

(
{Xs}s∈t:T , {Us}s∈t:T

)
= sup

s∈t:T
sup
ω∈Ω

1Ac

(
Xs(ω)

)
, (32)

where Ω ⊂ Ω. Indeed, Gt

[
{Xs}s∈t:T , {Us}s∈t:T

]
≤ α < 1 means that

1Ac

(
Xs(ω)

)
≡ 0, that is, the state

(
Xs(ω)

)
always belongs to A (as Ac

is the complementary set of A in X) for all ω ∈ Ω.
Here, the worst case risk measure captures that the state Xs(ω) belongs

to A both for all times — the core of viability, here handled by the term
sups≥t — and for all states of Nature in Ω — the core of robustness, here
handled by the term supω∈Ω.

5.1.3 Stochastic viability and beyond: ambiguity

The stochastic viability inspired definition of resilience in §4.2.4 corresponds
to (31) with α = 1− β and the risk measure

Gs

(
{Xs}s∈t:T , {Us}s∈t:T

)
= P

[
∃s ≥ t | Xs 6∈ A or Us 6∈ Us(Xs)

]
. (33)

Now, suppose that different risk-holders do not share the same beliefs and
let P denote a set of probabilities on (Ω,F). We can arrive at an ambiguity
viability inspired definition of resilience using the risk measure

Gs

(
{Xs}s∈t:T , {Us}s∈t:T

)
= sup

P∈P
P
[
∃s ≥ t | Xs 6∈ A or Us 6∈ Us(Xs)

]
.

(34)
Here, Gt

[
{Xs}s∈t:T , {Us}s∈t:T

]
≤ α = 1 − β means that P

[
Xs ∈ A , Us ∈

Us(Xs) , ∀s ≥ t
]
≥ β, for all P ∈ P .
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5.1.4 Random exit time and viability

Let µ be a measure on the time set T like, for instance, the counting measure
when T = N or the Lebesgue measure when T = R+. Then, the random
quantity

µ{s ≥ t , Xs 6∈ A or Us 6∈ Us(Xs)} (35)

measures the number of times that the state-control path
(
{Xs}s∈t:T , {Us}s∈t:T

)
exits from the viability constraints.

Using risk measures — like the tail/average/conditional value-at-risk [7]
— or stochastic orders [11, 14], we have differents ways to express that this
random quantity remains “small”.

5.1.5 The general umbrella of cost functions

All the examples above, and many more [13], fall under the general umbrella
of cost functions as follows.

Consider a starting time t ∈ T and a measurable function

Ψt :
T∏
s=t

Xs ×
T∏
s=t

Us × Ω→ R , (36)

that attachs a disutility or cost — the opposite of value, utility, payoff —
to any tail state and control path, starting from time t, and to any state of
Nature.

Let F be a risk measure that maps random variables on Ω towards the
real numbers. Then, an extended risk measure is given by

Gt

[
{Xs}s∈t:T , {Us}s∈t:T

]
= F

[
Ψt

(
{Xs(·)}s∈t:T , {Us(·)}s∈t:T , ·

)]
. (37)

5.2 Resilience and risk minimization

When the set ΛR
t (x̄t) of resilient strategies at time t in §3.3 is not empty, how

can we select one among the many? Here is a possible way that makes use
of risk measures for risk minimization purposes.
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5.2.1 Indicators of resilience

Let Gt be an extended risk measure. We can look for resilient strategies that
minimize risk, solution of

min
λ∈ΛR

t (x̄t)
Gt

[(
φλt:T (x̄t, ·), ·

)]
. (38)

The minimum of the risk measure is a potential candidate as an indicator of
resilience. Indeed, it is the best achievable measure of residual risk under a
resilient strategy.

5.2.2 Examples

Using cost functions as in §5.1.5, we can look for resilient strategies that
minimize expected costs

min
λ∈ΛR

t (x̄t)
E
[
Ψt

(
φλt:T (x̄t, ·), ·

)]
, (39)

or that minimize worst case costs, where Ω ⊂ Ω,

min
λ∈ΛR

t (x̄t)
sup
ω∈Ω

Ψt

(
φλt:T (x̄t, ω), ω

)
, (40)

or, more generally, that minimize

min
λ∈ΛR

t (x̄t)
F
[
Ψt

(
φλt:T (x̄t, ·), ·

)]
, (41)

where F is a risk measure that maps random variables on Ω towards the real
numbers [7].

For instance, in the robust viability setting of §4.2.3, an indicator of
resilience could be the minimum (over all resilient strategies) of the maximal
(over all states of Nature in Ω) recovery time.

6 Conclusion

Resilience is a rehashed concept in natural hazard management. Most of the
formalizations of the concept require that, after any perturbation, the state
of a system returns to an acceptable subset of the state set. Equipped with
tools from control theory under uncertainty, we have proposed that resilience
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is the ability for the state-control random process as a whole to be driven
to an acceptable “recovery regime” by a proper resilient strategy (adaptive).
Our definition of resilience is a form of controlability: a resilient strategy has
the property to shape the closed loop flow so that the resulting state and
control random process belongs to a given subset of random processes, the
acceptable recovery regimes.

We have proposed to handle risk thanks to risk measures1, by defining re-
covery regimes that represent a form of “risk containment”. In addition, risk
measures are potential candidates as indicators of resilience as they measure
the residual risk under a resilient strategy.

Our contribution is formal, with its pros and cons: by its generality, our
approach covers a large scope of notions of resilience; however, such generality
makes it difficult to propose resolution methods. For instance, the possibility
to use dynamic programing in stochastic viability relies upon a white noise
assumption that we have not supposed. Much would remain to be done
regarding applications and numerical implementation.
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