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Abstract

Resilience is a rehashed concept in natural hazard management —
resilience of cities to earthquakes, to floods, to fire, etc. In a word,
a system is said to be resilient if there exists a strategy that can
drive the system state back to “normal” (acceptable states) after a
shock. What formal flesh can we put on such malleable notion? We
propose to frame the concept of resilience in the mathematical garbs
of control theory under uncertainty. Our setting covers dynamical
systems both in discrete or continuous time, deterministic or subject
to uncertainties. Our definition of resilience extends others, be they “à
la Holling” or rooted in viability theory. Indeed, we require that, after
a shock, the system returns to an acceptable “regime”, that is, that
the state-control path as a whole must return to a set of acceptable
paths (and not only the state values must belong to an acceptable
subset of the state set). More generally, as state and control paths
are contingent on uncertainties, we require that their tails processes
must lay within acceptable domains of stochastic processes. We end
by pointing out how such domains can be delineated thanks to so
called risk measures.
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1 Introduction

Consider a system whose state evolves with time, being subject to a dynam-
ics driven both by controls and by external perturbations. Suddenly, those
perturbations jump out of their normal range and induce a shock. The sys-
tem is said to be resilient if there exists a strategy that can drive the system
state back to its normal regime. Basic references are [8, 10, 9, 1].

In Sect. 2, we introduce basic ingredients from the mathematical frame-
work of control theory under uncertainty. Thus equipped, we frame the
concept of resilience in mathematical garbs in Sect. 3. Then, in Sect. 4, we
provide illustrations of the abstract general framework.

2 Ingredients for an abstract control system

with uncertainties

We outline the mathematical formulations of time, uncertainties, controls,
states, flow (dynamics) and strategies.

2.1 Time

The time set T is a (nonempty) subset of the real line R. The set T holds a
minimal element t0 ∈ T and an upper bound T , which is either a maximal
element when T < +∞ (that is, T ∈ T) or not when T = +∞ (that is,
+∞ 6∈ T).

For any couple (s, t) ∈
(

R ∪ {+∞}
)2
, we use the following notation for

the segment that joins s to t:

s : t = {r ∈ T | s ≤ r ≤ t} . (1)

When s > t, s : t = ∅.

Special cases of discrete and continuous time. This setting includes
the discrete time case when T is a discrete set, be it infinite like T =
{t0 + k∆t, k ∈ N}, or finite like T = {t0 + k∆t, k = 0, 1, . . . , K} (with
K ∈ N). Of course, in the continuous time case, T is an interval of R, like
[t0, T ] when T < +∞ or [t0,+∞[ when T = +∞. But the setting makes it
possible to consider interval of continuous times separated by discrete times
corresponding to jumps.
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2.2 Uncertainties, controls, states and flow (dynamics)

At each time t ∈ T,

• the system under consideration can be described by an element xt of
the state set X,

• the decision-maker (DM) makes a decision ut, taken within a control

set U,

• an uncertainty wt affects the system, drawn within an uncertainty

set W.

With these three basic sets, we define

• the set UT of control paths, made of sequences from time T to U; tail
control paths (starting at time t) are elements of Ut:T ;

• the set W
T of scenarios, made of sequences from time T to W; tail

scenarios (starting at time t) are elements of Wt:T ;

We now introduce a dynamics under the form of a flow {φs:t}(s,t)∈T2 , that is,
a family of mappings

φs:t : X× U
s:t ×W

s:t → X
s:t . (2)

When s > t, all these expressions are void because s : t = ∅.
The flow maps an initial state x, a tail control path {us}s∈t:T and a tail

scenario {ws}s∈t:T towards a state path {xs}s∈t:T :

{xs}s∈t:T = φt:T

(

x, {us}s∈t:T , {ws}s∈t:T
)

. (3)

In general, a state path cannot be determined for any scenario or for any
control path, for analytical reasons (measurability, continuity) or because of
bounds on the controls. To circumvent this difficulty, one can add to the
state set X a cemetery point ∂. The stationary state path with value ∂ will
be the image of those scenarios and control paths for which no state path
can be determined.
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Special case of an iterated dynamics in discrete time. In discrete
time, when T = N, the flow is generally produced by the iterations of a
dynamic

xt = x , xs+1 = Fs(xs, us, ws) , t ≥ s . (4)

How do we include control constraints in this setting? Suppose given a
family of set-valued mappings Us : X ⇒ U, s ∈ T. Let us add to the state
set X a cemetery point ∂. Then, when ut 6∈ Ut(x), we set φt:T

(

x, {us}s∈t:T , {ws}s∈t:T
)

=
{∂}s∈t:T .

Special case of differential systems. In continuous time, the mapping
φs:t generally cannot be defined over the whole set Us:t × Ws:t. Tail control
paths and scenarios need to be restricted to subsets of Us:t and Ws:t, like the
continuous ones.

For instance, when T = R+ and the flow is produced by a smooth dy-
namical system on a Euclidian space X = Rn

xt = x , ẋs = fs(xs, us) , s ≥ t , (5)

control paths {us}s∈t:T are generally restricted to piecewise continuous ones
for a solution to exist.

Special case of stochastic differential equations. Under certain tech-
nical assumptions, a stochastic differential equation

dXs = fs(Xs,Us,Ws)ds+ g(Xs,Us,Ws)dWs , (6)

where {Ws}s∈R+
is a Brownian motion, gives rise to solutions in the strong

sense. In that case, a flow can be defined.

2.3 Adapted and admissible strategies

A control is an element of the control set U. A strategy is a mapping with
image in the control set U.

2.3.1 Adapted strategies

An adapted strategy is a family {λt}t∈t0:T of mappings where

λt : X×W
t0:t → U . (7)
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With this definition, we express that a DM can, at time t, use no more than
time t, current state value x and past scenario {ws}s∈t0:t to make his decision
ut = λt(x, {ws}s∈t0:t).

A tail adapted strategy (starting at time t) is a family {λs}s∈t:T of map-
pings where

λs : X×W
s:T → U , ∀s ∈ t : T . (8)

2.3.2 Admissible strategies

Suppose given a family of set-valued mappings Ut : X × Wt0:t ⇒ U, t ∈ T.
An admissible strategy is an adapted strategy {λt}t∈t0:T such that control
constraints are satisfied in the sense that, for all t ∈ T,

λt(x, {ws}s∈t0:t) ∈ Ut(x, {ws}s∈t0:t) , ∀(x, {ws}s∈t0:t) ∈ X×W
t0:t . (9)

From now on, when we say “strategy”, we mean “adapted and admissible
strategy”. We will restrict the strategies to certains subsets Λ of the set of
all strategies, and the same for tail strategies in Λt. With this, we are in
measure to describe different regimes of information [3].

Special case of Markovian or state feedback strategies. Markovian
or state feedback strategies are of the form

λt : X → U . (10)

With this definition, we express that, at time t, the DM can only use time t

and current state value x — but not the past scenario {ws}s∈t0:t — to make
his decision ut = λt(x). In some cases (when dynamic programming applies
for instance), it is enough to restrict to Markovian strategies, much more
economical than general strategies.

Special case of partially observed state feedback strategies. Par-
tially observed state feedback strategies form strict subsets of state feedback
strategies, depending on which part of the state is observed.

2.4 Closed loop flow

Starting from an initial state, a tail strategy will induce a state path, along
any tail scenario, thanks to the flow: this gives the closed loop flow.
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Let Λ be a subset of the set of all strategies, together with a family
{Λs}s∈T of tail strategies subsets. Let t ∈ T. We suppose that, to any initial
state x, tail strategy λ = {λs}s∈t:T ∈ Λt and tail scenario {ws}s∈t:T , we can
attach a unique tail state-control path

(

{xs}s∈t:T , {us}s∈t:T
)

solution of the
closed loop equations

{xs}s∈t:T = φt:T

(

x, {us}s∈t:T , {ws}s∈t:T
)

(11a)

us = λs(xs, {wr}r∈t:s) , ∀s ∈ t : T . (11b)

For flows given by dynamical systems in continuous or discrete time, unique-
ness is easily obtained. Quite naturally, we define the closed loop flow φλ

t:T

by
φλ
t:T

(

x, {ws}s∈t:T
)

=
(

{xs}s∈t:T , {us}s∈t:T
)

. (12)

3 Resilience: a mathematical framework

Equipped with the material in Sect. 2, we now frame the concept of resilience
in mathematical garbs. For this purpose, we introduce the notions of tail
shock scenarios and of acceptable tail state-control paths. Compared to other
definitions of resilience [8, 10, 9], our definition requires that, after a shock,
the state-control path as a whole must return to a set of acceptable paths
(and not only the state values must belong to an acceptable subset of the
state set, asymptotically or not).

3.1 Randomness

To speak of shocks, we follow the framework of stochastic processes. From
now on, the state set X is a measurable set equipped with a σ-field X, the
control set U with a σ-field U, and the uncertainty set W with a σ-field W.
We consider a sample space Ω, a measurable set equipped with a σ-field F

(but not necessarily equipped with a probability).
For any subset S ⊂ T and any measurable set Y, we denote by L0

(

S,Y
)

the set of stochastic processes {Yt}t∈S from Ω to Y.

3.2 Tail shock scenarios

We suppose given a family {St}t∈T of tail shock scenarios, where

St ⊂ L
0
(

t : T,W
)

, ∀t ∈ T . (13)
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Example of tail shock scenarios. Suppose that the sample space Ω is
equipped with a probability P, and that T = R+ and W = R. Let ∆t > 0
represent a small time period, W̄ a high value for uncertainties, and β < 1,
β ≈ 1 a probability level. The set

St = {{Ws}s≥t ∈ L
0
(

t : T,W
)

|Ws = 0 , ∀s > t +∆t ,

P
[

Ws ≥ W̄ , ∀s ∈ [t, t+∆t]
]

≥ β} (14)

contains stochastic process that, with high probability at least β, display
high values at least W̄ for times close to t.

3.3 Acceptable tail state-control paths

We suppose given a family {At}t∈T of acceptable tail state-control paths, where

At ⊂ L
0
(

t : T,X× U
)

. (15)

When there are no uncertainties, At ⊂ Xt:T ×Ut:T , as in the following exam-
ples.

Example of acceptable tail state-control paths converging to an
equilibrium. Let T = R+ and X = Rn. Let x̄ be an equilibrium point of
the dynamical system ẋs = f(xs, ū) when the control is stationary equal to ū,
that is, 0 = f(x̄, ū). The acceptable tail paths converging to the equilibrium x̄

form the set

At =
{(

{xs}s≥t , {us}s≥t

)

∈ X
[t,+∞[ × U

[t,+∞[ | xs →s→+∞ x̄
}

. (16)

In general, the equilibrium x̄ is supposed to be asymptotically stable, locally
or globally.

A more general definition would be

At =

{

(

{xs}s≥t , {us}s≥t

)

∣

∣

∣

∣

lim
s→+∞

xs exists

}

, (17)

and, to account for constraints on the values taken by the controls, we can
consider

At =

{

(

{xs}s≥t , {us}s≥t

)

∣

∣

∣

∣

lim
s→+∞

xs exists and us ∈ Us(xs) , ∀s ≥ t

}

,

(18)
where Ut : X ⇒ U, t ∈ T.
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Example of bounded acceptable tail state-control paths. Let T =
R+ and X = Rn. If B is a bounded region of X = Rn, we consider

At =
{(

{xs}s≥t , {us}s≥t

)

| xs ∈ B , ∀s ≥ t
}

. (19)

When B is a ball of small radius ρ > 0 around the equilibrium x̄, we obtain
state paths that remain close to x̄.

3.4 Resilient control paths and resilient states

Let Λ be a subset of the set of all strategies, together with a family {Λs}s∈T
of tail strategies subsets.

Consider a state x ∈ X and a time t ∈ T. We say that the tail strategy
λ = {λs}s∈t:T ∈ Λt is a resilient strategy starting from time t if, for any tail
shock scenario {Ws}s∈t:T ∈ St, one has that

{Xs}s∈t:T = φλ
t:T

(

x, {Ws}s∈t:T
)

(20a)

Us = λs(Xs, {Wr}r∈t:s) , ∀s ∈ t : T (20b)
(

{Xs}s∈t:T , {Us}s∈t:T

)

∈ At . (20c)

With this definition, a resilient strategy is able to drive the state-control
path into an acceptable regime, whatever the tail shock scenarios. As a
resilient control path is adapted, it can “adapt” to the past values of the
current tail shock scenario but no to its future values. Hence, our notion of
resilience does not require clairvoyance of the DM.

We denote by ΛR(t, x) ⊂ Λ the set of resilient strategies at time t. The
set of resilient states at time t is

X
R(t) =

{

x ∈ X
∣

∣ ΛR(t, x) 6= ∅
}

. (21)

3.5 Resilience and cost minimization

When the set of resilient strategies at time t is not empty, how can we select
one among the many? Here is a possible way.

3.5.1 Tail cost functions

Suppose we have a family {Ψt}t∈T of measurable functions

Ψt : X
t:T × U

t:T ×W
t:T → R , t ∈ T , (22)
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that attachs a disutility or cost — conversely, value, utility, payoff — to any
tail state, control and uncertainty path starting from time t.

To any tail strategy λ = {λs}s∈t:T ∈ Λt and tail scenario {ws}s∈t:T , we
can attach the tail cost evaluation

Ψλ
t

(

{ws}s∈t:T
)

= Ψt

(

{xs}s∈t:T , {us}s∈t:T , {ws}s∈t:T
)

∈ R , (23)

where, thanks to (12),

{xs}s∈t:T = φλ
t:T

(

x, {ws}s∈t:T
)

(24a)

us = λs(xs, {wr}r∈t:s) , ∀s ∈ t : T . (24b)

3.5.2 Aggregated costs minimization

Once we plug the random process {Ws}s∈t:T into the tail cost evaluation Ψλ
t

in (23), we obtain the random variable Ψλ
t

(

{Ws}s∈t:T
)

. To be able to min-
imize costs, we have to aggregate these random costs with respect to all
possible elements of the sample space Ω. Here are examples.

We can look for resilient strategies λ ∈ Λ that minimize expected costs

min
λ∈ΛR(t,x)

E
[

Ψλ
t

(

{Ws}s∈t:T
)]

, (25)

or that minimize worst case costs

min
λ∈ΛR(t,x)

sup
{Ws}s∈t:T∈St

Ψλ
t

(

{Ws}s∈t:T
)

, (26)

or, more generally, that minimize

min
λ∈ΛR(t,x)

F
[

Ψλ
t

(

{Ws}s∈t:T
)]

, (27)

where F is a risk measure that maps random variables towards the real num-
bers [7].

4 Illustrations

In Sect. 3, we have provided some illustrations in the course of the exposition.
Now, we make the connection between the previous setting and two other
settings, the resilience “à la Holling” [8] in §4.1 and the resilience-viability
framework [10, 9] in §4.2. We also sketch how concepts from risk measures
(introduced initially in mathematical finance [7]) could be imported to tackle
some resilience issues.
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4.1 Deterministic control dynamical system with at-
tractor

As the paper [8] does not contain a single equation, it is bit risky to force
the seminal Holling’s contribution into our setting. However, it is likely that
it corresponds to T = R+ and to acceptable tail state-control paths of the
form

At =
{(

{xs}s≥t , {us}s≥t

)

| xs converges towards an attractor
}

. (28)

Note that, as often in the ecological literature on resilience [1], the underlying
dynamical system is not controlled.

4.2 Resilience and viability

Some authors [10, 9] propose to frame resilience within the mathematical
theory of viability [2].

Let A ⊂ X denote a set made of “acceptable states”. Let Us : X ⇒ U,
s ∈ T be a family of set-valued mappings that represent control constraints.

4.2.1 Deterministic and robust viability

Consider the acceptable tail state-control paths

At = {
(

{xs}s≥t , {us}s≥t

)

| xs ∈ A , us ∈ Us(xs) , ∀s ≥ t} . (29)

With this set of tail state-control paths, a resilient control path is able to
drive the state towards the set A of acceptable states, whatever the tail shock
scenarios. When there are no uncertainties, the connexion can be made with
the viability kernel. But, with uncertainties, as the requirement is “whatever
the tail shock scenarios”, we are in the realm of robust viability [4].

4.2.2 Time of crisis

We can also consider the acceptable tail state-control paths

At = {
(

{xs}s≥t , {us}s≥t

)

|∃τ ∈ T , τ ≥ t ,

xs ∈ A , us ∈ Us(xs) , ∀s ≥ τ} . (30)
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In this context, the time of crisis is [6]

τ(t, x) = inf{τ ∈ t : T |∃λ = {λs}s∈t:T ∈ Λ , ∀ {Ws}s∈t:T ∈ St

{Xs}s∈t:T = φλ
t:T

(

x, {Ws}s∈t:T
)

Us = λs(Xs, {Wr}r∈t:s) , ∀s ∈ t : T

Xs ∈ A , Us ∈ Us(Xs) , ∀s ≥ τ} , (31)

with the convention that inf ∅ = +∞.

4.2.3 Stochastic viability

Suppose that the sample space Ω is equipped with a probability P, and let
β ∈ [0, 1], represent a probability level. With the following acceptable tail
state-control paths

At = {
(

{Xs}s∈t:T , {Us}s∈t:T
)

∈ L
0
(

t : T,X× U
)

|

P
[

Xs ∈ A , Us ∈ Us(Xs) , ∀s ≥ t
]

≥ β} , (32)

we express that the probability to satisfy state and control constraints after
time t are at least β [5].

4.3 Resilience and risk measures

Consider a family {Ft}t∈T of risk measures that map tail state-control random
processes towards the real numbers:

Ft : L
0
(

s : T,X× U
)

→ R . (33)

The quantity Ft

[

{Xs}s∈t:T , {Us}s∈t:T
]

measures the “risk” borne by the tail
random process

(

{Xs}s∈t:T , {Us}s∈t:T
)

. With α a level of risk, we introduce

At = {
(

{Xs}s∈t:T , {Us}s∈t:T
)

∈ L
0
(

t : T,X× U
)

|

Ft

[

{Xs}s∈t:T , {Us}s∈t:T
]

≤ α} . (34)

4.3.1 Robust viability

For instance, the robust viability inspired definition of resilience in §4.2.1
corresponds to (34) with α < 1 and the risk measure

Fs

(

{Xs}s≥t , {Us}s≥t

)

= sup
s≥t

sup
ω∈Ω

1Ac

(

Xs(ω)
)

. (35)
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Indeed, Ft

[

{Xs}s∈t:T , {Us}s∈t:T
]

≤ α < 1 means that 1Ac

(

Xs(ω)
)

≡ 0, that
is, the state

(

Xs(ω)
)

always belongs to A (as Ac is the complementary set
of A in X).

4.3.2 Stochastic viability and ambiguity

The stochastic viability inspired definition of resilience in §4.2.3 corresponds
to (34) with α = 1− β and the risk measure

Fs

(

{Xs}s≥t , {Us}s≥t

)

= P
[

∃s ≥ t | Xs 6∈ A or Us 6∈ Us(Xs)
]

. (36)

Now, suppose that different risk-holders do not share the same beliefs and
let P denote a set of probabilities on (Ω,F). We can arrive at an ambiguity

viability inspired definition of resilience using the risk measure

Fs

(

{Xs}s≥t , {Us}s≥t

)

= sup
P∈P

P
[

∃s ≥ t | Xs 6∈ A or Us 6∈ Us(Xs)
]

. (37)

Here, Ft

[

{Xs}s∈t:T , {Us}s∈t:T
]

≤ α = 1 − β means that P
[

Xs ∈ A , Us ∈
Us(Xs) , ∀s ≥ t

]

≥ β, for all P ∈ P.

4.3.3 Exit time

Let µ be a measure on the time set T like, for instance, the counting measure
when T = N or the Lebesgue measure when T = R+. Then, the random
quantity

µ{s ≥ t , Xs 6∈ A or Us 6∈ Us(Xs)} (38)

measures the number of times that the tail state-control path
(

{Xs}s∈t:T , {Us}s∈t:T
)

exits from the viability constraints.
Using risk measures [7] or stochastic orders [11, 12], we have differents

ways to express that this random quantity remains “small”.

5 Conclusion

Resilience is a rehashed concept in natural hazard management. Most of
the formalizations of the concept require that, after a shock, the state of a
system returns to an acceptable subset of the state set. Equipped with tool
from control theory under uncertainty, we have proposed that resilience is
the ability for the state-control path as a whole to return to an acceptable
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“regime”, including a containment on the residual risk. Our contribution is
formal. Much would remain to be done regarding applications and numerical
implementation.
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