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INTRODUCTION

Historically, the pedagogical literature [START_REF] Galamian | Contemporary Violin Technique[END_REF][START_REF] Bronstein | The Science of Violin Playing[END_REF][START_REF] Flesch | Problems of Tone Production in Violin Playing[END_REF][START_REF] Stoeving | The Mastery of the Bow and Bowing Subtleties[END_REF][START_REF] Starr | The Suzuki Violinist[END_REF][START_REF] Menuhin | Violin and Viola[END_REF][START_REF] Lafosse | A Collation of the Leading Pedagogical Approaches to Violin Technique[END_REF] on bowing technique for playing string instruments has focused on the physiological aspects of bowing, emphasizing the kinesthetic sensations of the player and incorporating adjustments that can be made to accommodate the physiological differences of individuals. While these issues are important in understanding the demands on the body and in adjusting for individual needs, this approach has traditionally ignored the laws of physics, which are identical for everyone. The result is that string pedagogy on bowing technique is sometimes based on false assumptions or poor descriptions of physically correct technique, in some cases leading to an inefficient method placing unnecessary demands on the body. The analysis presented here is concerned mainly with the components of forces, communicated to the bow by the fingers and thumb, involved in sound production, and not with the complex physiology in the entire body of the player that is required to develop these forces.

The premise of this paper is that by applying the laws of Newtonian mechanics to an analysis of bowing, we can appreciate the fundamental nature of bowing. The understanding derived from this analysis, which is universally true for all individuals, provides a better basis for then considering how to adjust for the physiological differences of players. The objective is to develop an understanding of bowing technique that allows our bodies to efficiently achieve the desired musical goals while being in complete harmony with the physical laws of nature. To this end, after a brief discussion of Newton's laws, we apply these laws to the important special case of zero acceleration, corresponding to bowing in a straight line at constant speed. This analysis leads to an immediate clarification of certain important and previously misunderstood aspects of string pedagogy. Building on this understanding, a method for playing with least effort is given that uniquely determines the roles of the fingers and thumb, except for a small region of transition in the stroke. The resulting method utilizes the smallest forces in the fingers and thumb, thereby producing the least damping to the coupled violin and bow system.

NEWTON'S LAWS

Before applying Newton's laws to the mechanics of bowing, we first review the basic concepts of force and moment. A force represents the action of one body on another and is characterized by its point of contact, magnitude and direction or line of action [START_REF] Beer | Vector Mechanics for Engineers[END_REF]. While this concept has intuitive appeal in our everyday world of experience, the idea of a moment is more elusive. The moment of a force is a measure of the tendency of that force to induce rotation about a point of reference. The mathematical definition of the moment of a force is given by the product of the magnitude of the force and the perpendicular distance or moment arm of the line of action of the force to the point of reference for the moment. For example, if you push perpendicular to the spokes of a bicycle wheel supported only by its axle, it rotates in the direction implied by the moment of the force. If the line of action of the force goes through the reference point, the moment is zero. This would be analogous to trying to turn the wheel by pushing only at the center of the axle. The farther the line of action of the force is from the axle, the greater the moment and therefore the more leverage the same force has in causing rotation. A special kind of moment is that produced by two forces equal in magnitude and opposite in direction. Such a pair of forces is called a couple and produces the same moment with respect to every point of reference. While a single force tends to cause both translation and rotation, the pure moment of a couple tends to produce only rotation. This is the kind of moment applied in turning a screw.

Newton's laws of mechanics [START_REF] Halliday | Fundamentals of Physics[END_REF][START_REF] Beer | Vector Mechanics for Engineers[END_REF] express the relationship between the external forces and moments applied to a body and the resulting motion as a function of time.

Second Law: The sum of all external forces equals the product of the mass and acceleration.

Third Law: Every action has an equal and opposite reaction.

The mass is a measure of a body's resistance to a change in its motion under the applied forces. Although mass is a single number, force and acceleration are vectors, composed of several numbers or components usually in mutually perpendicular directions. Since this work is restricted to the important special case of bowing in a straight line at constant speed, the motion lies in a vertical plane and the accelerations are zero, thereby greatly simplifying the analysis. The second law in a plane with zero acceleration, produces both translational and rotational forms given by a) The vector sum of all external forces is zero. b) The sum of all external moments with respect to any point is zero.

Finally, an important point for the analysis that follows is the concept of equivalent systems of forces. It can be shown [START_REF] Beer | Vector Mechanics for Engineers[END_REF] that any system of forces can be replaced by a single vector force acting at a point and a pure couple moment. Therefore, the system of forces of the fingers and thumb applied by the hand to the bow is mathematically equivalent to components of force parallel and perpendicular to the bow at the contact point of the thumb, together with an applied couple moment. Through this mathematical device, the initial analysis of the bow using Newton's laws is simplified by first determining the required net force and moment of the hand as a function of bow position and the desired playing force of the hair on the string.

EQUATIONS OF MOTION OF THE BOW

This work is restricted to the important special case of bowing in a straight line at constant speed where the motion lies in a vertical plane and the accelerations are zero. A free-body diagram of the bow is given by
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with the following definitions:

N force of the string on the hair perpendicular to the bow f effective frictional force associated with the stick-slip mechanism [START_REF] Beer | Vector Mechanics for Engineers[END_REF] of string vibration V force of the hand perpendicular to the bow H force of the hand parallel to the bow M moment of the hand relative to the point of contact of the thumb  angle of the force of gravity with a line perpendicular to the bow W weight of the bow x distance of the string contact point from the contact point of the thumb X distance of the center of mass from the contact point of the thumb.

Since the friction force f always opposes the motion, this diagram is shown for an up-bow motion. For this analysis, the small moments of the forces along the line of the bow resulting from the fact that they are not exactly on the same line of action, are neglected. When bowing in a straight line at constant speed, neglecting the small accelerations from the vibration and flexibility of the bow, the sum of the external forces and moments are zero, leading to the equations
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   sin W f H , ( 2 
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It is important to note that this analysis is in the vertical plane of the bow and that while the additional forces perpendicular to that plane supplied by the hand are needed in holding the bow, they are not directly relevant in developing the force of the hair on the string. The components of force V and H, together with the couple moment M constitute the equivalent force and couple moment of the forces of the fingers and thumb.

IMPLICATIONS OF NEWTON'S LAWS

Consider the important case where a constant bow force N is required for a uniform sound throughout the bow stroke moving in a straight line. Since W and  are constants, equation ( 1) unambiguously leads to the conclusion that constant N implies constant V, yielding the first important pedagogical result: Result 1: A uniform sound when bowing in a straight line at constant speed, requires that the net force of the hand perpendicular to the bow is a constant throughout the bow stroke. Furthermore, by similar reasoning from equation ( 3), since W,  and X are constant, it follows that the net applied torque or moment of the hand is a linear function of x, giving the result: Result 2: A uniform sound when bowing in a straight line at constant speed, requires that the net torque or moment of the hand is a linear function of bow position.

Much of the existing literature on violin technique is flawed in its attempts to describe this situation. While some may simply be the result of poor descriptions of valid kinesthetic sensations, most are based on the following experiment and lead to false conclusions. The literature suggests that when the bow is placed on the string at the tip and held only with the thumb and middle finger with zero torque, the resulting large increase in bow force N as the frog is approached occurs because the bow is lighter at the tip than at the frog. It is then argued that it is necessary to add weight at the tip and remove weight at the frog to produce a uniform sound. Unfortunately, this experiment with zero applied torque inescapably leads to both increasing N and V as x decreases as can be easily seen from equations ( 1) and ( 3) with M = 0.

x cos W X N   , x cos W ) x X ( V    .
It is the player in this experiment, tacitly applying an increasing V as x decreases while approaching the frog in order to balance the bow with zero moment M, that causes the increase in bow pressure. The existence of this effect has absolutely nothing whatsoever to do with the mass distribution in the bow. A simple experiment refuting the conventional wisdom on this point is to repeat the above experiment with zero torque while holding the bow at the tip, producing a similar and even more raucous increase in bow force as the tip is approached! An important point in the bow stroke is where the moment M changes sign (i.e., when M=0). From equation (3), the x coordinate, z, of this point is given by

N cos W X z   , (4) 
It is important to note that the location of this point depends on the angle of the bow, the bowing force of the hair on the string, the weight of the bow, and the location of its balance point. The applied forces and moment of the hand required to develop a uniform sound at constant speed in a straight line can be described simply as follows:

The desired constant bow force N uniquely determines a net constant force V of the hand. If no torque or moment M were applied, the bow would rotate as a result of the sum of the moments of the weight and V. At the frog, the moment M is a maximum in a clockwise sense, decreases linearly eventually changing sign at the point z, and then increases linearly reaching a maximum in a counterclockwise sense at the tip.

Physically, the increasing counterclockwise moment required when approaching the tip is facilitated by pronation of the forearm and the sensation of this mechanically, should not be confused with a need to increase the net force V of the hand. Whatever increase in the forces of the fingers is needed to develop this increasing moment must be accompanied by an identical increase in the force of the thumb so that V remains constant. The technical challenge for the player in producing a uniform sound is to develop the control to correctly change the moment linearly throughout the bow stroke without changing V.

If the required moment of the hand is produced inefficiently, the inexperienced player, not able to produce the required moment at the tip, instinctively lowers V in order to keep the bow moving in a straight line, resulting in loss of sound.

BOWING WITH THE LEAST EFFORT

Although the desired bow force N, required by the given playing situation, uniquely determines the net force V of the hand perpendicular to the bow, and the applied torque or moment M of the hand, such V and M can be produced in an infinite number of ways by the hand through the forces of the fingers and the thumb. Consider a free-body diagram of the forces of the fingers and thumb on the bow. F , 2 F , 3 F , and 4 F are the perpendicular forces in the index through little fingers respectively, T is the perpendicular force of the thumb, and 1

x , 2 x , 3

x , 4

x are the positive distances of the lines of action of their corresponding forces from the thumb contact point at x=0. It is important to note that although the bow is typically held with the thumb and middle finger opposing each other, pronation of the forearm leads to the qualitative lines of action of the forces of the fingers as described in the diagram. Clearly, to obtain the required values of V and M, it follows that

V = 1 F + 2 F + 3 F + 4 F -T, (5) 
M = 1 x 1 F + 2 x 2 F -3 x 3 F -4 x 4 F . (6) 
Suppose for the given required V and M, there exists an optimal method of selecting 1 F , 2 F , 3 F , 4 F and T, and assume that all the forces of the fingers and thumb as directed in the figure are greater than or equal to zero. This simply precludes pulling up on the bow with any of the fingers or pulling down with the thumb, an assumption completely consistent with standard violin and viola technique, but somewhat restrictive in the case of cello or bass where pulling up with some of the fingers is sometimes utilized to gain mechanical advantage. Since equation [START_REF] Bronstein | The Science of Violin Playing[END_REF] implies that increasing the forces of any of the fingers away from their optimal values requires an increase in the thumb force, and conversely, increasing the thumb force requires an increase of the net force of the fingers, resulting in unnecessary squeezing of the bow, it is evident that the optimal method utilizing the least effort is simply that of minimum thumb force, together with minimum opposing forces in the fingers.

Result 3: Developing the required bow force N with least effort is obtained by the combination of 1 F , 2 F , 3 F , and 4 F , utilizing the minimum thumb force T.

There are compelling reasons supporting this approach. From a physiological standpoint, least effort results in both improved flexibility and efficiency as a consequence of a complete elimination of any effort spent in simply squeezing the bow. This is of paramount importance in developing a relaxed bow style, together with the ability to play for long periods, even at levels requiring large bow forces. Another important consideration is the effect of least effort on sound production. The violin and bow are coupled vibrating systems through the interaction of the string and the hair. Any unnecessary squeezing of the bow will inhibit its ability to vibrate, effectively adding damping to the output of the coupled instrument and bow system, thereby deteriorating overall performance. Although the net forces and moment of the hand required by the playing situation can be produced in an infinite number of ways by the forces of the fingers and thumb, it can be shown (Appendix) that minimum thumb force throughout the stroke leads to an essentially unique solution for the forces of the fingers and thumb as functions of x, leading to the pedagogically remarkable result: Result 4: Bowing with least effort leads to essentially unique roles of the fingers and thumb as a function of bow position, and is independent of bowing direction.

The solution to this problem is most conveniently described in the two cases based on the sign of V. In the case where V is negative and therefore directed upward, the desired force N of the the hair on the string is less than the component of the weight of the bow so weight must be removed. For V positive and directed downward, the force N is greater than the component of the weight so weight must be added. It is important to note that the terms up and down used in this context, are directions perpendicular to the line of the bow and correspond to a vertical line relative to the player only when the bow is horizontal. In what follows, these two cases are referred to as soft playing and loud playing, respectively.

QUALITATIVE DESCRIPTION OF BOWING WITH LEAST EFFORT

The method for bowing with least effort presented here describes the precise roles of the fingers and thumb corresponding to the simple case of bowing in a straight line at constant speed with uniform bow pressure. As mentioned above, the method results in two distinct procedures based on the sign of V. Although it is helpful to view the bow as horizontal for the purpose of this description, the qualitative roles of the fingers and thumb do not change with bow angle.

In the case of soft playing, when the weight of the bow would produce too much bow pressure, the net force of the hand perpendicular to the bow is upward with the thumb force greater than the net force of the fingers. The bow stroke is divided into two regions determined by the location of the point z, somewhere beyond the balance point of the bow. As the desired uniform bow pressure decreases, this point z, where the net moment of the hand changes sign, moves closer to the tip. From the frog to the transition point z, only the fourth finger and thumb are involved in applying vertical forces to the bow. From the point z to the tip, only the first finger and thumb are needed. Starting at the frog, both the upward thumb force and the downward force of the fourth finger decrease until the point z where force of the fourth finger reaches zero. Throughout this portion of the stroke, the net moment of the hand has been clockwise from the player's perspective. Proceeding beyond the point z toward the tip, the moment is now required to be counterclockwise, utilizing only the first finger and thumb. Both the thumb force and the force of the first finger now increase as the tip is approached. It is important to note that to achieve a uniform sound throughout the stroke, the player in case must lessen the effect of the weight of the bow by the same amount during the stroke. Although this requires changing forces of the fingers and thumb, their difference is always constant.

I: N <  cos W , V < 0, z > X , 2 F = 3 F = 0, soft playing
Qualitative roles of fingers and thumb for least effort In the case of loud playing, when the weight of the bow is not sufficient to produce the desired bow pressure, the net force of the hand perpendicular to the bow is downward with the thumb force less than the net force of the fingers. The bow stroke is divided into three regions, with the regions nearest the frog and nearest the tip qualitatively similar to the soft playing case, but now separated by a small transition region guaranteed to be below the balance point of the bow and never larger in width than the spread of the grip in the player's hand on the bow. Although the solution is unique outside of this transition region, during the transition, the vertical component of the thumb force is zero, and the simplest feasible solution involves only adjacent pairs of fingers. Starting at the frog, both the upward thumb force and the downward force of the fourth finger decrease until the point 4 z where force of the thumb reaches zero. Proceeding beyond the point 4 z toward the point 1 z , the forces roll through adjacent pairs of fingers, first using third and fourth, then second and third and finally first and second to finish the transition at the point 1 z . The force of the thumb is zero during this transition. Both the thumb force and the force of the first finger now increase as the tip is approached. Again it is important to note that to achieve a uniform sound throughout the stroke, the player in this case must add to the effect of the weight of the bow by the same amount during the entire stroke. Although this requires changing forces of the fingers and thumb, again their difference is always constant.

II: N >  cos W , V > 0, z < X , loud playing
Qualitative roles of fingers and thumb for least effort The qualitative graphical representation presented here has greatly exaggerated the width of the transition region for clarity. The above solution to the least effort problem is easily realizable, and utilizes only the first finger and thumb or fourth finger and thumb over most of the bow stroke. While the middle fingers are not used in the soft playing case, they play a role in smoothly passing through a small region of transition in the loud playing case. The width of the transition gets smaller as V decreases, actually shrinking down to a point at the balance point of the bow when V is zero. The location and size of this region is also affected by the angle of the bow, moving closer to the frog as the bow becomes more vertical. In the extreme case if the bow is actually vertical, the point z is at the thumb and the fourth finger portion of the stroke is never realized. In general, in a down bow motion, the forces in the fingers begin at the back of the hand in the fourth finger and then roll through the hand toward the first finger. This gesture of the forces through the fingers does not necessarily imply actual movement of the fingers, however some of the finest players actually lift fingers off the bow when they are not needed. An interesting point surrounding this gesture of the forces in the fingers in a down bow is in the playing of chords. On the cello, both the bow and the rolling of forces through the fingers have a counterclockwise motion, whereas on the violin and viola the bow rotates clockwise. These juxtaposed aspects of playing chords on the upper strings is physically not intuitive, explaining why chords are sometimes performed so poorly.

CONCLUSIONS

Newton's laws of mechanics applied to the problem of bowing with constant speed in a straight line have led to a more precise understanding of the role of the forces and moment applied by the hand. In particular, in the case of uniform sound production, the net force of the hand perpendicular to the bow is a constant, and the moment varies linearly with bow position. Furthermore, an analysis of the roles of the fingers and thumb has obtained the essentially unique solution to the problem of how to produce the net forces and moment of the hand with the least effort. This approach provides the least physical burden on the player and improves sound production by minimizing damping applied to the bow by the fingers and thumb. Although some of these results are contrary to conventional wisdom, they follow unambiguously from applying the basic laws of physics to the problem of bowing, leading to universal insights that transcend the physiological aspects of playing.

APPENDIX

The values of V and M, uniquely determined by the required bow force N, can be produced in an infinite number of ways by the fingers and thumb as seen by equations ( 5) and ( 6). As described above, we seek to determine the roles of the fingers and thumb under the assumption of the principle of least effort, namely, minimum thumb force T.

To that end, we analyze the problem in two mutually exclusive cases of V < 0 and V > 0, under the assumption described above that 1 F , 2 F , 3 F , 4 F , and T are all greater than or equal to zero, in the sense of the above figure, together with the constraints

0 < 2 x < 1 x , 0 < 3 x < 4 x . (A1)
These assumptions are a consequence of the order of the fingers on the bow, where the line of action of 2 F is constrained to be at or to the left of the thumb, and that of 3 F to be at or to the right of the thumb. Obviously, the thickness of the fingers places additional restrictions, but this does not affect the overall argument presented below. The problem of minimizing T, subject to the constraints implied by ( 5) , ( 6) and (A1), leads to a classical linear programming problem. Because of the simple nature of this problem, the following direct analytical argument is presented. I: V < 0, soft playing In this case, since the thumb force T is always greater than zero, the solution is unique. a) M > 0 min T implies that 3 F = 4 F = 0, since otherwise, an increase in 3 F and 4 F in (6) causes an increase in 1 F and 2 F thereby increasing T by [START_REF] Bronstein | The Science of Violin Playing[END_REF]. We then obtain

T = 1 F (1 -1 x / 2 x ) -V + M / 2 x , 2 F = (M -1 x 1 F ) / 2 x .
Since from (A1) it follows that (1 -1 x / 2 x ) < 0, min T implies max 1 F and min 2 F , thereby yielding

2 F = 0, 1 F = M / 1 x , T = M / 1 x -V.
b) M < 0 min T implies that 1 F = 2 F = 0, since otherwise, an increase in 1 F and 2 F in ( 6) causes an increase in 3 F and 4 F thereby increasing T by [START_REF] Bronstein | The Science of Violin Playing[END_REF]. We then obtain

T = 4 F (1 -4 x / 3 x ) -V -M / 3 x , 3 F = -(M + 4 x 4 F ) / 3 x .
Since from (A1) it follows that (1 -4 x / 3 x ) < 0, min T implies max 4 F and min 3 F , thereby yielding 3 F = 0, 4 F = -M / 4

x , T = -M / 4 x -V.

II: V > 0, loud playing Since the force of the thumb can actually reach zero in this case, the analysis is more complicated. In a very small region of the bow stroke, the problem becomes indeterminate since T=0, and the solution is not unique. Outside of this region, the solution is unique and similar in form to the soft playing case. It is important to note that in the case where V>0, the point z where the moment changes sign is below the balance point of the bow, z < X .

a) M > 1 x V min T implies that 3 F = 4 F = 0, since otherwise, an increase in 3 F and 4 F in [START_REF] Flesch | Problems of Tone Production in Violin Playing[END_REF] causes an increase in 1 F and 2 F thereby increasing T by [START_REF] Bronstein | The Science of Violin Playing[END_REF]. We then obtain

T = 1 F (1 -1 x / 2 x ) -V + M / 2 x , 2 F = (M -1 x 1 F ) / 2 x .
Since from (A1) it follows that (1 -1 x / 2 x ) < 0, min T implies max 1 F and min 2 F , thereby yielding

2 F = 0, 1 F = M / 1 x , T = M / 1 x -V.
Although this solution is identical to the soft playing case, it is important to note that since V > 0, and T > 0, this is valid only when M > 1 x V, with T approaching zero as M approaches 1

x V. By straightforward calculations, the value of x 1 z  , corresponding to the point when T=0, is found to be

) X / z 1 ( x z z 1 1    . b) M < -4 x V
min T implies that 1 F = 2 F = 0, since otherwise, an increase in 1 F and 2 F in (6) causes an increase in 3 F and 4 F thereby increasing T by [START_REF] Bronstein | The Science of Violin Playing[END_REF]. We then obtain

T = 4 F (1 -4 x / 3 x ) -V -M / 3 x , 3 F = -(M + 4 x 4 F ) / 3 x .
Since from (A1) it follows that (1 -4 x / 3 x ) < 0, min T implies max 4 F and min 3 F , thereby yielding 3 F = 0, 4 F = -M / 4

x , T = -M / 4

x -V.

Again, this solution, identical to the soft playing case, is only valid when M < -4

x V as required by the constraints that V > 0 and T > 0. By similar analysis, the value of x 4 z  , corresponding to the point when T=0, is given by

) X / z 1 ( x z z 4 4    .
The solution so far has been uniquely determined in the region specified by x > 1 z and x < 4 z . The length of this transition region can now be determined as

) X / z 1 )( x x ( z z 4 1 4 1     .
It is important to note that since z < X and is the absolute distance between the contact points of the first and fourth fingers, this region is guaranteed to always be less than the width of the player's grip. As V approaches zero, this region gradually shrinks to zero and results in the soft playing solution with the transition occurring at a single point. In spite of the short length of the transition region, the solution is not unique within this interval and therefore more conditions may be added. Although many solutions would exist for this transition, almost all of them are probably not feasible when considering how they might be implemented. Clearly, we would want to preclude discontinuous solutions, or those requiring convoluted permutations of the active fingers. Since continuous single finger solutions for the transition do not exist, the simplest approach seems to utilize only adjacent pairs of fingers. To that end, we consider the following cases: c) 0 < 2

x V < M < 1 x V Since M > 0, T = 0, and the contributions to M by 3 F and 4 F are negative, then we take 3 F = 4 F = 0, giving the result 1 F = (M -2 x V) / ( 1 x -2 x ), 2 F = (-M + 1 x V) / ( 1 x -2 x ).

Note that 1 F approaches zero as M approaches 2 x V, thereby naturally defining the limiting point 2 z given by

) X / z 1 ( x z z 2 2    . d) -3 x V < M < 2 x V
Since the sign of M changes in this interval and T = 0, continuity requires that we take 1 F = 4 F = 0, giving the result 2 F = (M + 3 x V) / ( 2 x + 3 x ), 3 F = (-M + 2 x V) / ( 2 x + 3 x ).

Since 2 F approaches zero as M approaches -3 x V, we determine the limiting point Given that 1 F approaches zero as M approaches -4 x V, we find the same limiting point 4 z as given above as required by our assumption of continuity.

The above solution for this small transition region is the simplest, resulting in the forces rolling through adjacent pairs of fingers during the transition. Over most of the bow stroke, the solution is similar to the soft playing case where 2 F and 3 F are zero with V equal to either 1 F -T, or 4 F -T. The non-uniqueness of the solution in the small transition region is a consequence of the underdetermined nature of the system when T=0.