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Abstract. The diversity and complexity of Digital Musical Instruments
often lead to a reduced appreciation of live performances by the audi-
ence. This can be linked to the lack of familiarity they have with the
instruments. We propose to increase this familiarity thanks to a trans-
disciplinary approach in which signals from both the musician and the
audience are extracted, familiarity analyzed, and augmentations dynam-
ically added to the instruments. We introduce a new decomposition of
familiarity and the concept of correspondences between musical gestures
and results. This paper is both a review of research that paves the way
for the realization of a pipeline for augmented familiarity, and a call for
future research on the identified challenges that remain before it can be
implemented.
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1 Introduction

Whether as a musician or as a spectator, the experience of live music has very
particular characteristics. It is often immersive, both intimate and collective, im-
plies different modalities, both low and high level cognitive engagements. More-
over, musical experience is often a corporeal, aesthetic as well as an emotional
commitment and is therefore difficult to define. Despite their great diversity and
the parallel treatments they require, we assimilate all these aspects in a natural
way, without any apparent effort. We naturally build this intense feeling that
we all have experienced by attending a concert. Beyond the unfathomable sub-
jective part of this musical experience (i.e. tastes and colors), we can identify
objective characteristics that influence how we perceive live music, and among
these, the way musicians interact with their instrument and how we perceive
and integrate these interactions.

On the one hand, in the production of music with acoustic instruments,
gestures and sounds are intrinsically linked by the laws of physics or at least by
intuitive connections that do not need any prior explanation. Beside the music
they produce, every interaction is visible. Thereby the expressive intentions, as
well as the intensity of emotions, are particularly vivid and underline the role of
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a multimodal integration [25]. Along this line, the degree of perceived control,
influenced by the additional information usually extracted from the musician’s
interactions, participates to the emergence of the liveness of the performance.
On the other hand, the experience of live music produced by digital musical
instruments (DMIs) may suffer from a deterioration of this intuitive link between
the behavior of the musician, the inner mechanisms of the instrument and the
sounds actually produced. When what we hear is not directly linked to what
we see or what we may infer from a given gestural behavior, when music is
not the direct and causal consequence of the specific gestures of the musician,
then we may loose the multimodal integration that contribute to the immersive
experience of live music.

These considerations have led to recent research on measuring the audience
experience [2, 14], often used as a way to evaluate the instruments themselves
[27]. The less familiar we are with an instrument, the less we are able to perceive
the fine relationship musicians build with their instrument. This lack of coherence
in multimodal information might downgrade the attributed agency, that is the
perception of how much the musician is controlling their performance. Thus the
knowledge we have about a DMI or its obvious behavior are crucial features to
understand and integrate the interactions and thus fully experience live music.
How do we ensure familiarity with DMIs ?

1.1 Improving familiarity with Digital Musical Instruments

Several attempts have been made at solving this issue of familiarity. In this
section, we propose a quick review of these solutions and their limitations.

As mentioned before, familiarity is the knowledge we have about the behavior
and possibilities of an instrument. Quite naturally, a first way to increase the
familiarity of people with a particular instrument is to promote its use and
dissemination by building a repertoire of compositions around it. Once a
majority of spectators have seen the instrument played by many musicians in
different contexts, or even practiced it themselves, they are aware of its potential
for musical expression and of its behavior. Thereby, the familiarity issue does
not exist anymore. This kind of “natural familiarity” is definitely effective but
requires a large amount of time and energy to be achieved. Moreover, this method
is not compatible with the very idea behind DMIs and the exponential creativity
they embed. Whether a musician wants to evolve its instrument or let other
musicians modify it, as soon as the instrument changes, the whole process of
natural familiarity need to start all over again.

When the problem of familiarity lies partially in the understanding of the
operations of an instrument, demonstrating the behavior of the instrument can
be a valuable solution. Building the familiarity with a pedagogical method
is a simple way to make an audience understand what is going on on stage.
Before, after and even in breaks during the performance, the musicians can ex-
plain how their instrument works. Prior hands-on demos, where the audience
can actually play the instrument, are also a good way to increase the famil-
iarity. However, both these methods trigger some reservations as the technical
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understanding of an instrument is not necessarily linked to a better appreciation
of the performance. For example, Bin et al. [7] demonstrate that explanations
before the performance do improve the understanding of the instruments and
its mechanisms but do not increase either the appreciation or interest. Besides
these results, the audience may forget important details during the performance
and the demos may not be possible when dealing with a large audience.

Another strategy to increase the experience of spectators watching a musi-
cian playing an instrument they have never seen before lies in the design of the
instrument itself. The idea is to expose a clear link between the gestures and the
sound modifications operated by these gestures, what is called the mapping of an
instrument. The fluency of perception of these mappings is often called “trans-
parency”, and is defined by Fels et al. [9] as follows : For the lay audience, this
understanding is derived from cultural knowledge, including percepts of physical
causality relationships. Taking care of the transparency from the very first
steps of the design of a musical device can lead to “easier to perceive” instru-
ments. Following that lead, an interesting way to increase the transparency is the
use of metaphors [9]. In that case, the common background of inexperienced au-
dience, their general knowledge, are used as a mold to grow new knowledge about
an instrument mapping. For instance, the timbre of a sound can be modified as
the shape of an associated graphical representation that is getting sculpted. The
instruments designed according to these specifications tend to maintain the fa-
miliarity we have with acoustic instruments and physical laws. Thus, despite the
gain in transparency, this method may narrow the design possibilities usually
available for DMIs.

In more recent research, Berthaut et al. [4, 5] proposed to increase the fa-
miliarity by recreating a link of causality through visual augmentations of
the instruments. Based on the attribution of causality by spectators to a mu-
sic performance, the visual augmentations provide insights on the musician’s
interactions with its instrument. Animated 3D objects overlapping the device
reveal the relationship between the gestures and the musical result to the au-
dience. These augmentations are based on Wegner’s criteria of apparent mental
causation [26] (See 2.1). By exposing the details of the interactions, the setup
contributes to re-link the gestures of the artist to their intentions and expres-
siveness. Besides, the augmentations enable the distinction between automated
part and actual live music production. Such a discrimination between live and
pre-recorded music appears to be crucial in the experience of live music precisely
because it is supposed to be a live performance. However, these augmentations
do not take into account the audience reaction or their expertise. Indeed, the
familiarity with an instrument is a personal characteristic that cannot be gener-
alized. A concert in front of specialists or naive people does not imply the same
requirement of explanations or augmentations.

These different methods offer a rather effective way to increase the under-
standing of the behavior of DMIs. However they don’t fully cover a major aspect
of the music experience which is the real time multimodal integration of visual
and auditory cues. Furthermore, while the visual augmentations gave good re-



4 Capra et al.

sults but they do not take into account the audience expertise that may appeal
for specific levels of details in the augmentations. Moreover, in some cases, non-
visual augmentations may be more relevant. Thereby, we propose new insights
to improve the familiarity in a more adaptable and reliable way.

Our contribution is two-fold. First, we propose a conceptual pipeline to im-
prove the familiarity of the audience with DMIs in real-time by analyzing spec-
tators’ reactions, musicians’ actions, musical outputs and by augmenting the
instrument. To do so, we introduce the concept of correspondences. Second, for
each module of this pipeline, we briefly review relevant knowledge in computer
and cognitive sciences. We also identify interdisciplinary challenges that need to
be solved to reach a functional software implementation of the pipeline.

2 Toward augmented familiarity

In this section we propose a novel approach for improving familiarity, formalized
by a software pipeline. While it remains conceptual, it was designed so that it
could be implemented by addressing the challenges described in Section 2.2.

Here is a scenario that we envision with our pipeline :
Patricia attends an electronic music concert. At the entrance, she is given a
small device equipped with physiological sensors (a choice of either a bracelet or
a special glass that she holds). During the concert, she has trouble understanding
what is happening, in particular what the musician’s action on the sound is. The
device senses a change in a set of physiological signals, that corresponds to a loss
in familiarity, and sends the data to a server. Patricia may also directly indicate
her loss in familiarity with a graphical slider on an app on her smartphone. Si-
multaneously, this server has been analyzing the musician’s gestures, the flow of
data inside the instrument and the musical output. When it receives Patricia’s
familiarity signals, the server, with settings defined by the musician, selects the
adequate augmentations to be displayed. They aim at compensating for the famil-
iarity disruption caused by the musical interaction context. Consequently, visual
augmentations are displayed around the musician either for Patricia alone or
for the group of people around her using a mixed-reality display. They provide
information that improve her degree of familiarity, allowing her for example to
perceive the link between the musician’s gesture and the resulting sound, and to
enjoy the performance to a larger extent.

2.1 General approach

To improve the liveness of music performances with DMIs, we suggest to increase
the familiarity thanks to a trans-disciplinary approach in which both human
and technological signals are analyzed. To achieve this goal, we first clarify the
notion of the familiarity. We then propose the concept of correspondences, which
describes musical interactions and the way they are perceived. Finally we present
a potential pipeline that would extract and process signals from the musician
and from the audience to compose augmentations.
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Familiarity dimensions As a high-level cognitive ability, familiarity is not a
unitary notion. It can be decomposed into components that differ by their na-
ture, their inner rules as well as the type of information they target. Besides,
familiarity relates to expertise or attention and thus impacts on brain and mo-
tor system activities. We will describe in Section 2.2 how previous research show
that these activities can be detected in more detail. Familiarity also relates to
parts of the musical interaction that is perceived. Spectators can be more or less
familiar with : musical gestures, relations between gestures and sound, instru-
ments capabilities or musical genres. All these factors contribute to the general
familiarity one has with an instrument. Taking this into account, our approach
is to decompose familiarity into dimensions that we can both evaluate and im-
prove. Based on results in HCI, NIME, and cognitive sciences that have explored
various aspects of familiarity, we propose to decompose familiarity in five com-
ponents : Causality, Instrumentality, Instrument expertise, Musical Culture and
Musical Genre Expertise. These in turn contain dimensions that can be evalu-
ated independently. Causality relates to the apparent mental causation, e.g. the
judgment of causality of one’s action, defined by Wegner et al [26], where each of
the three following dimensions are required to establish a judgment of causality
of one’s action: Priority - the thought should precede the action at a proper
interval; Consistency - the thought should be compatible with the action; Ex-
clusivity - The thought should be the only apparent cause of action. As proposed
in [4], we transpose this model from the perception of one’s own actions to the
perception of others’ actions. Instrumentality relates to common knowledge that
allows one to predict the range of sound possibilities of a musical instrument
from its appearance. It is composed of two dimensions : the composition, i.e.
shape and material, and behavior, i.e. mechanisms and degree of autonomy from
the musician’s actions. Instrument expertise relates to the exposure the specta-
tor has had to the instrument, from a first-time observer to an expert player.
Musical culture corresponds to a basic knowledge of musical theory, that can for
example be used to represent pitch as vertical position of a graphical element,
i.e. mimicking a staff. Finally, Musical Genre Expertise is composed of dimen-
sions that correspond to the familiarity with the specifics of a genre, such as of
structure and constraints. The effect of this category is obvious in the study by
Bin et al. [7], where the same instrument played in two genres has a different
impact on familiarity. Notice that each component has a specific weight on the
overall process. Furthermore, this model is consistent with the partial results
that previous strategies have achieved. Culture and expertise for the “building a
repertoire” and the “prior explanations” strategies, instrumentality and culture
for “the design for transparency” and mental apparent causation for the aug-
mentation strategy. This decomposition might evolve according to findings from
the implementation phase. Some dimensions could prove harder to evaluate or
others may emerge.

Correspondences In order to handle the heterogeneous data (physiological,
behavioral, musical, visual, mechanical) associated with the dimensions of fa-
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miliarity, we introduce the notion of correspondence : a conceptual object that
stands as a digital multidimensional representation of a musical interaction. This
object associates several properties : musical output (audio), gesture data (time
series of 3D coordinates), video of the movement, control data (time series of
sensor values) and the source of the interaction. This last property specifies the
author of the interaction. Indeed, interactions are not only produced by one
musician but can be triggered and mastered by another one in a collaborative
performance or, more usually, by autonomous prepared processes, e.g. automa-
tions or playlists.
Each property is composed of three elements : a raw extracted element, a seman-
tic element, and a classification element. The raw format element is a pointer to
a collection of relative files. For instance, the raw element of the visual property
of a clap correspondence is a pointer to a collection of short videos showing a clap
from different angles and velocities. The semantic element is composed of anno-
tated descriptors, including the taxonomies developed in the different analyses
of gesture and sound. The classification element is dedicated to the classification
of the raw part through machine learning methods. As an interaction may be
more complex and decomposed in a sequence of more basic interactions, a cor-
respondence can also be linked to other, simpler correspondences. In addition,
correspondences hold a score for each of the familiarity dimensions described
earlier (causality, instrumentality, ...). For example, two correspondences with
the same musical result property, e.g. the fade-in of an audio loop, can have dif-
ferent gesture and control properties depending on the mapping chosen for the
DMI. While a continuous gesture on a fader would have a high score (meaning,
the most natural way to fade) for the consistency dimension, a discrete tap on a
pad would have a low one, since the effect would no be consistent with the cause
for a spectator, e.g. discrete input and continuous output.

Pipeline Our envisioned pipeline (Fig 1) is composed of five modules that han-
dle the extraction of the data from the musician and their instrument (EXT M )
, the extraction of physiological and subjective data from the audience (EXT A),
the processing of the data (IA) and the selection of fitting augmentations (AUG)
based on a database of correspondences (DB C ). The pipeline is used at three
different moments : before, during and after a performance.

Before the performance, correspondences, coming from a shared online database,
or recorded specifically for the instrument, are saved in the DB C module.
1 During the performance, IA receives musical interaction data extracted by

EXT M . This data consists of both dynamic values such as gestural parame-
ters, audio features and control values which will be used directly by IA, and
of physical (position of gestures and sensors), logical (tracks, effects, synthesiz-
ers, ...) and structural information about the musical interaction, which will be
used by AUG . 2 IA builds and manages a set of ongoing correspondences from
these signals. 3 Simultaneously, IA receives the familiarity evaluation (with
the identification of the sensed individual or group) from EXT A. If the famil-
iarity evaluation is low, 4 IA finds in DB C correspondences similar to the
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Fig. 1. The proposed pipeline with its main modules and data flows

ongoing one, and select the familiarity dimensions that need to be compensated
depending on their scores in these. IA then sends AUG the data required for
the augmentation : live correspondences, associated signals from EXT M with
dynamic and structural data and identification of the source of the familiarity
evaluation (in order to display the augmentations only to the correct person or
group). 5 AUG creates (or selects if it already exists) the augmentation that
matches the received structural data, for example a visual augmented-reality
link between the physical position of a sensor and a virtual representation of an
audio track. 6 Augmentations are then connected to EXT M and listen to the
signals required to update the augmentation, e.g. control values for the sensor,
loudness of the track. After the performance, the familiarity extracted from the
audience can be reused to refine the scores for the familiarity dimensions in each
detected correspondence of DB C .

2.2 Modules

Database of correspondences (DB C ) DB C manages all pre-existing cor-
respondences. These can be generic, or specific to an instrument or performance.
It receives queries from IA to select correspondences matching the ones detected
during the performance. A very promising approach in dealing with heteroge-
neous data is the use of databases. Even if the efficiency of machine learning and
analysis tools is still evolving, a numerous amount of initiatives, especially in



8 Capra et al.

analysis of emotion (DEAP[12], RECOLA[19]) but also in music-related actions
[10], contribute to shared databases that compile multimodal and synchronized
experimental data. The main goal of these databases is to predict complex and
abstract states, e.g. the emotional state of an individual, thanks to the analysis
of their physiological and behavioral signals such as face expression, electroder-
mal activity or heart rate variation. Most of the existing databases are composed
of 15 to 30 entries referencing data of diversified nature. To allow the gathering
of a more relevant amount of cross data, we first need to facilitate the indexing
thanks to the more and more intuitive and effective front-end technologies of
the web. We propose to develop a web interface that could provide the specific
tools to aggregate the data required to constitute the properties of a corre-
spondence. A typical correspondence would require a short video footage of a
gesture, the motion capture of this gesture, sensor value and audio output of
the instrument. Tags could also be manually added for each of these properties.
The interface could be accessible from an open web platform where artists as
well as researchers could populate the database, to constitute their own corre-
spondences and therefore optimize their pipeline with more personal choices of
gestures, mappings or sound processes. The same online platform can then be
used for crowdsourced online evaluation sessions in which correspondences are
exposed to participants with different levels of expertise. Their task is to indicate
their understanding, using a questionnaire along the familiarity dimensions, and
tag the correspondences.

Extraction of the musician’s interactions (EXT M ) As explained in Sec-
tion 2.1, EXT M extracts data from the instrument and musician’s gesture which
is then sent to IA in order to detect ongoing correspondences. At the instrument
level, EXT M extracts sensors states, mapping values as well as musical result
of the musician interactions. At the musician level, EXT M extracts the control
gestures, the body movements and physiological signals. In addition to these
signals, structural information needs to be provided for further use in the aug-
mentations, such as the position of the physical sensors of the DMI and the
position of the musician’s hands, the list of tracks, effects or other sound pro-
cesses with their names, or the mappings between sensors and sound parameters.
While some of these obviously need to be defined by the musician manually, or
sensed by devices external to the instrument, others can be extracted through a
trans-disciplinary approach. Regarding the instrument input, research on gesture
recognition, especially concerning hand gestures as demonstrated by Rautaray &
Agrawal [18], can be used to identify the performed musical gestures. Regarding
the instrument output, research in music information retrieval (MIR) provides
tools for segmenting music from the audio signal only [17] using spectral, tonal,
rhythmical descriptors and methods. We identify two main challenges for the im-
plementation of this module. The first is the access to the data from the DMIs.
In fact, while extraction from the audio signal provides many features that can
be used to detect correspondences, it might not be enough for precise analysis.
In order to access pre-mappings and post-mappings data, to differentiate be-
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tween manual and automated changes and to analyze the output of individual
tracks or other sound processes, one can not rely solely on the DMIs inputs and
outputs, i.e. additional software components will need to be integrated. In most
DMIs, plug-ins can be added at various stages of the instrument. However, the
API might not provide enough information on the instrument to a single plugin.
For example, one plugin per track might be needed to access and send the audio
output features for each separately. The integration of EXT M will be simpler
if DMIs are built using patching environments such as PureData or Max/MSP,
where the musician has more control over the architecture of the instruments.
The second challenge is to combine detailed but costly and slow analysis of fea-
tures for the detection of correspondences with maximum accuracy, and fast but
less accurate analysis of features for the update of augmentations in AUG .

Extraction of the audience familiarity (EXT A) The role of this module
is to extract the audience subjective and objective information in order to in-
form IA. It is now commonly accepted that the live music experience engages
multiple complementary processes of low level perception, en-action and em-
bodiment (see Leman & Maes for a review [15]), processing of hierarchical and
sequential information [16, 13], as well as strong affective and social aspects. This
perspective of complementarity is also included in recent studies relative to mu-
sic produced with DMIs [21]. The evaluation of such a rich experience triggers
multiple methodological difficulties. Subjective assessment is therefore a com-
mon method that can be conducted through post-performance questionnaires
or emotion rating during the concerts [22]. Post-performance questionnaires are
a good source of information but may be less precise than live subjective re-
ports. In addition, there are initiatives that do not require the participants to
directly communicate their introspective evaluation. These more objective mea-
surements require very specific equipment as eye trackers [3] and, to date, suffer
from a lack of out-of-the-lab physiological measurements. Familiarity is one of
the key aspects of the experience of live music and, as its other dimensions, relies
on multiple underlying mechanisms. Therefore, as the mentioned studies above,
and to initiate ecological (i.e. out of the lab, in “real life”) measurements of phys-
iological signals, we propose a dual methodology to extract the familiarity of the
audience. First, we base the subjective assessment on a familiarity application
for mobile phone. Its main purpose is to supply IA with data about the ongoing
familiarity of the audience, from a graphical familiarity slider that spectators
activate. We believe this continuous survey could be an answer to the reserva-
tions we exposed about questionnaires after the performance. The second part of
the extraction relies on physiological signals. Neuroscience studies show that the
expertise, a key component of familiarity, influences the perception of action [8].
Those findings, applied to music expertise, may lead to a better understanding
of its role in the live music experience. By measuring the peripheral signals, we
aim at discovering potential patterns that could correlate with the subjective
data we extract. Widely used in the emotion studies, and rather suitable to ex-
tract in natural condition, four signals are particularly interesting in our musical
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context : Heart rate variability [20], electrodermal activity [23] and oculometry
(eye tracking + pupillometry). The complementary analysis of extracted fea-
tures of these signals already gave interesting result in the emotion classification
by machine learning algorithms [11] and need to be further extended in music
experience studies. Moreover, these signals can already be acquired by wearable
devices and the quantified self movement [24] will surely provide more accurate
and affordable devices in the near future.

Integration and Analysis (IA) IA is the central hub that connects to all
the other modules. Its role is to : 1) compute the live correspondences with the
data extracted from the musician and their instrument; 2) match the computed
live correspondence with a correspondence from the database to calculate the
familiarity dimensions that need to be augmented; 3) supply the AUG module
with the information needed for the relevant augmentation selection; To fulfill
these tasks, the module can rely on the classification element of each property
of correspondences. Alongside the raw and the semantic parts, the classification
element is a machine learning model dedicated to the classification of raw data.
This model is pre-computed with the raw files registered in the correspondence.
Its goal is to discriminate new stimuli and detect those who match with the
recorded one. Considering the heterogeneity of the modalities, each property
might require a specific machine learning model and specific extracted features.
For example, MIR descriptors for a sound element and a deep convolutional
network for picture classification. The main idea is to use the set of models as a
global digital representation of the correspondence that can either be projected,
depending of the context, on a single and more easy to handle property or
be represented as a multidimensional vector that allows similarity comparison
of whole correspondences (the matching process). Considering the variety of
data and processes it has to handle, this module needs to be regularly updated
with recent findings in signal processing, machine learning or movement models.
Without a strongly modular structure of the available tools that the pipeline
has at its disposal, the framework may not be able to evolve and thereby join a
long list of deprecated initiatives.

Augmentation (AUG) This module manages both a database of available
augmentations and a set of active ones. When a correspondence needs to be
augmented, AUG receives the data required to create a new or select an exist-
ing augmentation, such as the physical position of the gesture and sensors and
logical components of the instruments, the familiarity dimensions that need to
be compensated, the destination of the augmentation (individual or group) and
the data from EXT M that the augmentation should listen to. The augmenta-
tions are selected from a database of augmentations designed to compensate the
various dimensions of familiarity.

A number of research have shown the opportunities opened by augmenta-
tions to provide information on DMIs to the audience. In previous work, we
proposed an augmented-reality (AR) approach where the visualizations are per-
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ceptually consistent with the physical instrument, e.g. visual links attached to
the physical sensors. We designed a display where multiple spectators can reveal
the augmentations [6] and all perceive them consistently. Finally, we proved the
effect of 3D visual augmentations on the causality aspect of familiarity [4], i.e.
the degree of control perceived by the audience. On the haptic side Armitage
[1] has experimented with using haptic feedback to provide information on mu-
sician’s interaction during a live-coding performance. We believe that the first
challenge is the creation of a framework that allows one to design augmentations
according to the specific dimensions of familiarity that they compensate. Rules
will need to be defined so that one can adapt an augmentation to the artistic
specificity of a particular performance. A second challenge is the design of aug-
mentations that provide just enough content to fill the multimodal gap without
distracting the audience from the musical performance because of a too heavy
cognitive load.

3 Conclusion

In this paper, we presented a novel approach for augmenting familiarity of the
audience with Digital Musical Instruments and reviewed associated research re-
sults and challenges. Among the perspectives, our first future work will be the
construction of the database of correspondences. This will also help to further
inform and refine the decomposition of familiarity and the structure of corre-
spondences. We hope that this paper will trigger exciting new research in both
NIMEs, computer science and cognitive science.
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