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This paper deals with the modeling of the dynamics of nonstructural components in aeronautical structures. It is
shown how the overall response in the low to midfrequency is governed by a transfer of energy between the load-

experimental validation.

I.

N THE last century, the early decades of commercial aviation
were marked by a thriving evolution of flying machines in all
.possible technical aspects, giving birth to astonishing designs and
configurations. During this primal part of the history of aviation,
safety, endurance, speed, and size were the driving factors, whereas
comfort was retained to be a secondary requirement for new designs,
but now, together with low operating costs, it has taken the lead on
-What can make the difference on the decision of a potential customer.
Similar to the evolution of the automotive industry but with some
decades of delay, civil aircraft in the near future will be much more
comfortable and less expensive, while maintaining the cruise speed,
performance, and sizes already accomplished. Nowadays, reaching
the highest possible level of cabin comfort is one of the most
important targets for aircraft manufacturers. For example, control
laws are now implemented in the latest generation of aircraft to damp
structural modes at low frequencies of the fuselage that can be excited
by maneuvers or gusts. The satisfactory design of such mechanisms
relies on the comprehension and availability of models of the
dynamic response of the craft.

In the very-low-frequency spectrum, the most spread and suitable
-representation for structural dynamics predictions is made by finite
elements (FEs). However, it is well known that, when complex
assemblies are considered, FE models lose fidelity after a certain
frequency and are not effective anymore when approaching the
boundaries of midfrequency regimes. The transition between low and
midfrequency is characterized by an increase in modal density and
damping in the response in such a way that no single resonances can
-be identified. It is in this frequency region that engine vibrations can
excite the fuselage causing undesirable vibration levels. However, as
there is no model capable of depicting the response at these
frequencies, mechanical solutions on the aircraft have to be done ad
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carrying structure and the nonstructural components. The effect of these elements can be reproduced by using
averaged point transfer functions. A numerical model defined in the frequency domain, capable of depicting such
transmission and compatible with standard industrial finite element model, is presented together with an

posteriori causing unforeseen weight increases, delays, and higher
costs for new designs.

The more complex the machine considered is, the narrower is its
low-frequency regime and the sooner FE analysis will fail to depict
the vibration environment. This failure can be plainly explained by
the fact that, when going up in frequency, more and more components
constituting the assembled machine will vibrate and interact in a more
or less complicated way with the dynamics of the main structure.
When considering the thousands of parts and systems on an aircraft,
very rapidly the problem becomes untreatable by FE analysis.

Three decades ago, Soize [1] and Chabas et al. [2] introduced in
two papers a very powerful concept regarding these interactions. The
philosophy underlying the so-called theory of fuzzy structures
(method that shall not be mistaken with formal fuzzy logics) is that, in
the low to midfrequency, a complex structure can be divided into a
load-carrying structure, called master, and the fuzzy part that includes
all the nonstructural components (NSCs). If considered alone, the
master structure is assumed to be still responding on its own low-
frequency regime, and therefore, a deterministic FE model should be
suitable for its representation. On the other hand, because of its
complexity, the fuzzy part is better suited for a statistical description
relying on some mean quantities, such as active mass, mean damping,
and natural frequencies. Although originally triggered by the
problem of submarine dynamics, the idea quickly sparked interest
among the research community and different variants were proposed,
such as parametric or nonparametric models [3], with and without
spatial memory [4], with random matrices [5], and, for low-frequency
range, with numerous local modes [6]. The method has successfully
been applied from the automotive industry [7] to fuel pipes [8].

The theory of fuzzy structures triggered the study of a curious type
of linear systems, in which a main oscillator (also referred to as master
structure) is coupled to an elevated number of much smaller
oscillators (fuzzy structure). The peculiarity of such a system is that
the motion of the main body can seem to be heavily damped even with
a practical absence of viscous damping on the satellite systems. The
interest of such a phenomenon is twofold, as it helps to explain the
highly merged and damped responses typical of the medium
frequency range, but as well it opens the way to the conception and
design of new types of broadband linear vibration absorbers, referred
by some authors as linear energy sink [9].

This damping effect, commonly found in literature as “apparent
damping,” is a mechanism of energy exchange between the
components of the assembly, and under certain circumstances, the
energy can get trapped irreversibly in the system of secondary
oscillators. The effect has been noticed since the introduction of Soize
[1] theory, yet it started to be studied more in detail in the late 1990s
after Pierce et al. [10] noticed that the actual damping value of the
parasitic oscillators had a secondary effect on the overall response.
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Strasberg and Feit [11] and Weaver [12] presented similar works
shortly after the publication of the work of Pierce et al. In 1997, Nagem
-et al. [13] studied the problem proposing to treat the satellite of
oscillators as a continuous distribution of undamped SDOF systems.
@l These papers inspired a series of publications, in which the problem
was first carefully analyzed from an energetic perspective [14], andina
second paper [15], the ideal distribution of parameters was introduced
-to assess the viability of a damping device exploiting this linear energy
transfer. Few years later, Kog et al. introduced the concept of energy
sink together with the conditions necessary for irreversibility [9], as
well as a companion paper in which different experiments validated the
energy-transfer mechanism [16]. Carcaterra and Akay [17] and
Carcaterra [18] have studied continuously this type of systems, and in
recent years, a series of papers have been published by Roveri et al., in
which new phenomena have been studied, such as frequency
intermittencies [19] and energy equipartition given by particular
-distributions in frequency of the parasitic oscillators [20]. From another
school than the one of the previously mentioned authors, the
phenomenon has been studied in parallel by Vignola et al., in which
their objective has been to shape the frequency response of the master
system via the effect of apparent damping, and the different vibrational
-regimes of the assembled structure are presented as a function of the
number and overall mass of the satellite oscillators [21].

All of the latter research efforts are greatly justified by the
uncommonly rich behavior of these types of linear systems and the
potential development of passive broadband linear damping devices for
a much reduced weight penalty. However, though, the research
presented in this paper attempts to go back to the origins of these
systems and exploits what has been learned up to now as a modeling tool
of complex structures with a significant amount of assembled NSCs.

Firstly, the basic behavior of the previously discussed systems will
be presented, followed by a numerical proposal for an efficient
nonintrusive implementation in industrial FE models. Then, a
validation test bench is presented together with the obtained results.

II. Theoretical Development

Let us consider a linear time-invariant system, in which a main
oscillator, with stiffness damping and mass (K, C,;, M ;) is coupled
to N much smaller oscillators, each of them defined by its own mass,
stifftness, and damping, as shown in Fig. 1. The excitation force is
assumed to act only in the main vibrating body.

To get a better visibility on the dissipative forces, let us consider the
impedance Z(w) of the system. Following the approach of Vignola
et al. [22], the overall impedance of the assembly is found by adding
the single impedances of the main SDOF resonator and the N added
oscillators:

Z(w) = ZM (C()) + Zosc (w) (1)

When considering exclusively the main body without the parasitic
contributions, the mass M, stiffness K;, and viscous damping Cy,
work in parallel; thus, we can write the SDOF impedance as the sum of
the impedance of each element. This transfer function represents the
ratio between the input force F’ and the velocity of the master body V/y,:

Zy=g—=—-———+—"+Cy @
Jw

By considering the definition of damping ratio y,
Lme] [Me] [Ma]
?% LS
%; K F

Fig. 1 Schematics of the SDOF master system and the N coupled
B8 oscillators.

C
u = TRy, 3

the impedance of the master oscillator can be now written as

2
Zy = jMy (CU - 7) + 2loyMy 4)

As expected, it can be seen from Eq. (4) that the resistive part, or real
part of the impedance, is given only by the viscous-damping term, as
ideal springs and masses cannot dissipate energy.

By following an analogous reasoning, we can add all the
impedances of springs, masses, and dampers that constitute the
secondary oscillators:

| 4+ 2jCoew]o,
“’Z{ 2coscm/wn+j[(m/wn)2—1]} ©)

Here, the comprehension of the real and complex part of Eq. (5) is
less straightforward. It can be easily noticed how, in the absence of
dissipation ({,, = 0), the impedance is a highly discontinuous
function of the frequency, assuming infinite values for every
resonance of each oscillator. To ensure a modal overlap between each
of the resonances, a minimum value of damping must be applied to
each of the oscillators. This value will be a function of the number of
resonances and the bandwidth in which these resonances are
confined, such that (i min = f(N,wy — o). From a physical
standpoint, and for the wide majority of mechanical systems, itis very
unlikely to have a complete absence of dissipation, and a minimum
modal overlap is generally assured, especially if N is big. In this more
likely case, even a very small amount of damping ensures the
continuity of the impedance function. It has been shown by previous
authors that the sum of Eq. (5) can be replaced by an integral form, in
which a spectral density of mass m(w) is considered instead of the
discrete masses m,,. This replacement is conceptually easy to accept
for N — o0, and if Z is a continuous function of frequency, and yet it
has been proven that also for { . — 0, the replacement of the sum by
an integral form can be valid [12,23]. For the case of a continuous and
completely undamped fuzzy, the integral form of the impedance is
given by

T ) o0 Q

As said before, a small amount of dissipation suffices to guarantee
the necessary modal overlap to get a smooth impedance of the set of
secondary oscillators. To illustrate this, Fig. 2 shows the real parts of
Eq. (5) for two very small damping values and a very large number of
oscillators (N > 10,000). The bell shape evoking a normal
distribution, given by the repartition of the natural frequencies, will
be explained in the following lines.

The previously mentioned figure shows how the dissipation
created by the array of oscillators is not strongly dependent on the

: | . . . : .
£=0.001%
—C=1%
2
g
8
(]
['4
: . : . : ‘ ‘ ‘
0 02 04 06 08 1 12 14 16 18 2

Nondimensional Frequency
Fig. 2 Resistive part of impedance of the oscillators for two values of

B8 viscous damping (&, = 0.001A, &, = 1A).
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actual damping value, at least in an averaged sense. This conclusion is
of uttermost importance, as in structural dynamics dissipation is the
more challenging field for comprehension and modeling if compared
to stiffness or inertia-related phenomena. This characteristic of this
type of systems is remarkable, as the actual shape of the impedance of
the parasitic oscillators Z is driven by the distribution of its mass
and stiffness, or, without any loss of generality, its mass distribution
m,, and natural frequencies w,,. For Fig. 2, it has been assumed that
every oscillator has the same mass (m; = m, =---=m, = 1/N)
and that the natural frequencies follow a normal distribution with
mean 1 and standard deviation of 12% (u = 1, 0 = 0.12).

Now, having the impedances of both subsystems, the response of
the coupled assembly (master plus secondary oscillators) can be
analyzed. From Eq. (1), we can write

2
Z = jMy, (a) - ‘”—M) T 28wy My
()]

] + 2j§OSCw/wn } (7)

N
e Z{’" 2 ] 0, + jl(@]w,)? = 1]

As before, the real part of the impedance is shown in Fig. 3 together
with the contributions of both subsystems. In this particular case, a
constant damping ratio has been assumed for the master structure and
for all the frequencies without precluding the usage of other damping
models that can be a function of the frequency.

To assess the effect of this impedance on the main vibrating body,
we can write the compliance transfer function of the assembled

Re(Z) [Kg/s]

|
0.8 1 12
Nondimensional frequency

Fig. 3 Resistive part of impedance of the coupled system showing the
contribution of the master and the fuzzy attachment.

0.6

|FRF|
10° . . . :
—a=0
—a=1%
107 i
&, 00 0.5 1 15 2 25
= 10 T - . -
£ —a=0
o) —a=4%
g
® 102 ]
a 10 ‘ , . .
= 0 0.5 1 1.5 2 25
8 4 : : : :
—a=0
—a=10%
102} ]
0 0.5 1 15 2 25
Histogram of oscillators
1000 T -
500+ . 1
00 0.5 1 1. 2 25
Freaquency

system as the sum of the inverses of each dynamic stiffness, which
will provide an idea of the displacements of the primary mass in
function of the forcing frequency:

Xu

7= {MM(—w2 + 2jwwyly + @3y)

Qjoonloe + @) T\ o
_a)2 + zjwwngosc + 60%

N
+ Z my [zjwwngosc + w% -
1

The previous equation can take a wide variety of forms depending
on the definition of the secondary oscillators. To remain within the
scope of this research, we will assume that there is a small amount of
damping on each of the secondary oscillators ($ose.min < Cosc < 2%)
and that the number of oscillators is very high to have a stable
response on an averaged sense (NV>>1). For the numerical examples
presented hereunder, without losing generality, we will assume the
following nondimensional parameters: M, =1, K, = 42,
Cu = 2%, m, = aMy; /N, V¥n, {. = 1%, whereas for the natural
frequencies of the secondary SDOF systems, a normal distribution
will be assumed such that w, ~ N '(u, c), in which u and o are,
respectively, the mean and standard deviation of the normal
distribution . Under these assumptions, the only parameters that
can take a protagonistic role on the shape of the master response will
be the overall percentage of added mass compared to the mass of the
main system (a) and the probability density function (PDF) of the
natural frequencies [N (i, 6)].

A. Overall Mass Variation a

The total mass of the attached oscillators is written as a fraction of
the mass of the main vibrating body. Since the earliest stages of the
fuzzy-structure theory, it has been well known that the overall mass is
one of the ruling parameters of the phenomenon of apparent
damping. It is interesting to see how very few added mass can have a
considerable impact on the response of the main resonator. As it is
shown in Fig. 4, for increasing values of @, the main mode appears to
be more damped, yet as a single mode, but for further values of a, the
energy spreads over the neighboring pulsations where the natural
frequencies of the oscillators have been defined. In this case, these
two new peaks on the transfer function will originate a
nonexponential decay in the case of free vibrations due to a
broadband input as an impulse, for example, and a beat phenomenon
will dominate the transient response. This idea will be easier to grasp

Impulse response

O H
p . . . . .
0 5 10 15 20 25 30
0 L
'110 5 10 15 20 25 30
0 L
1 L L L L L
0 5 10 15 20 25 30
Time

Fig.4 Amplitude of FRFs and transient response to impulse excitation for varying values of «; on the bottom left, the histogram showing the frequencies

and amount of oscillators per frequency band.
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in the following paragraph, in which variations of the w, will be
considered.

A rough yet clear estimation can be done of the effective damping
factor of the assembled system if a decreasing exponential is fitted
through the maximum values of the peaks of the transient response
for different values of @. The damping ratio produced by this fitting
can be seen as a global parameter of the necessary time for vibration
decay, regardless of the nature (exponential or not) of the response.
Figure 5 shows this equivalent damping ratio for different values of
the total mass of the oscillators while keeping all the other parameters
constant. The dispersion is due to the finite number of added
oscillators N. It is of particular interest to notice how there is a clear
maximum damping value for a very small amount of added mass.

B. Variation of the Mean Value for the Oscillator Distribution u

The second parameter that plays a paramount role on the response
of the master motion is the location of the oscillators in the frequency
axis. As was already presented in Fig. 3, the resistive part of the
impedance increases only in the band that encompasses the natural
frequencies of the oscillators; therefore, it is to be expected that, in the
assembled system, the bigger the effect will be if these natural
frequencies are close to the eigenfrequency of the mode of the master
system, as shown in the following figure, in which different mean
values u are considered for the natural frequencies w,,.

Equivalent viscous damping
0.12 T T T T

Damping Ratiog

0 . L
0 0.1 0.2

0.7 0.8

I 1 I
0.3 0.4 0.5 0.6

Mass Ratio o = M
Master

Fuzzy/
Fig.5 Equivalent viscous damping of the master body in function of the

mass of the oscillators.

Figure 6 shows three different cases, in which the mean value of the
oscillator distribution varies. On the left-hand side is plotted the
response in frequency together with the corresponding histogram that
represents the oscillators, whereas on the right-hand side is found the
transient normalized response of the coupled system.

C. Variation of the Standard Deviation for the Oscillator Distribution
(2

The dispersion of the parasitic modes around the mean value is
important as for big dispersions natural frequencies far away from the
master mode will affect only the inertial characteristics of the
assembled system. On the other hand, if all the secondary resonances
are condensed in a very narrow band, the effect of apparent damping
will be clearly marked on the transfer function of the system.

It can be easily shown that, for ¢ — 0, all the oscillators resonate at
the same frequency, behaving as a single mass of value aM,, or in
other words, it becomes a classical mass damper. This limit can be as
well deduced from the transfer function of Eq. (7) by considering
W =w, ==, = wy. In this case, the beat phenomenon
between the two new peaks of the transfer function becomes very
clear, and the settling time of the assembly can be even higher than the
one of the main resonator alone.

As done previously for the overall mass of the array, we can fit the
transient response to the impulse by a decaying exponential and
estimate roughly an equivalent damping factor. In Fig. 8 can be seen
how, as in the case of the mass, there is a clear maximum of
dissipation in function of the dispersion of the natural frequencies.

III. Numerical Implementation

The idea of coupling stochastically defined impedances to a main
model of a complex machine is very attractive because, as shown
previously, it allows explaining the elevated values of damping that
are often seen in the low- to medium-frequency ranges while
providing an interpretation that is practically independent of the
actual dissipation rates and asymptotically stable.

Let us consider a generic complex assembly, intended as a master
load-carrying structure plus a large number of NSCs assembled
into it.

The objective is to have the capability of assessing vibration levels
in the main structure, while including the effects of the NSC and not
necessarily to determine directly the response upon these
components. A numerical model should not be penalized by the

|FRF| Impulse response
1
=08
" 05 ]
0 L
illly o8y '
§ -1
= 1
£ p=t
£
[0] ot
®
y illi
o -1
1 T T T - ;
=1.2
" 05 .
O L
i o5y -
0 0.5 1 15 2 2.5 -10 5 10 15 20 25 30
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Fig.6 Amplitude of FRFs and transient response to impulse excitation for varying values of x; on the bottom left, the histogram showing the frequencies

and amount of oscillators per frequency band.
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Fig.7 Amplitude of FRFs and transient response to impulse excitation for varying values of 6; on the bottom left, the histogram showing the frequencies

B2 and amount of oscillators per frequency band.

excessive amount of DOFs that would require a classical FE
approach. The NSC is assumed to be excited only by its interfaces
with the main structure, and therefore, the utilization of an effective
mass model is justified.

As a starting point, it is assumed that a rather satisfactory FE
representation of the main structure is available, which is often the
case for aeronautical structures. In this model, the nodes
corresponding to the source of excitation (S), receiver locations
(R), and interfaces with the NSC (I) are identified, and the modal

0.1

0.09-
0.08

up

L 007}

[}

X 0.06

2

< 005+

£ 004
0.03- 1

0.02 ;/ b

0.01 I ! I I
0 005 0.1 035 04

I I L ! L
015 02 025 03 045 05

Standard Deviation ¢
Fig.8 Equivalent viscous damping of the master body in function of the
dispersion of the oscillators in frequency (o).

A Receivers set
® |nterfaces set
Source set
Master Structure

=== Nonstructural Components

e

basis is computed on these points up to a frequency that allows to
synthesize transfer functions with feeble truncation errors with a
standard FE solver. These sets of nodes, shown schematically in
Fig. 9, are not required to be mutually exclusive. Following, the full
transfer-function matrix is synthesized out of the P modes included in
the analysis; in this case, such matrix represents an accelerance:

P
H(w) = Z -’ 5 di!

— 0] @? + 2j¢w, ;0

&)

ni

The computation of this matrix can require relatively high [

informatics resources, in computation time and storage size, because
it will be of the size Mg (R U S U I)? X Npyeqs, in Which 71, (X)
indicates the number of elements in set X, and N, the frequency
steps used for the analysis. It must be noticed as well that this matrix
has to be computed only once for all the future analysis and just
recalculated if the main FE model has been altered.

For the sake of notation, with the matrix A}S, we denote the
response on structure Str of the points in the X — Set caused by a
unitary harmonic excitation on each of the points of the Y — Set. The
global FRF matrix can be divided into the following symmetric
submatrices that describe the transfers occurring between each of the
included sets:

Effective mass model

mstatic

Fig. 9 Effective mass model schematics.



6 LOUKOTA ET AL.

A%/[Saster = (CR><S><NF,eqS
AI\R/IIasler € CRXIXNreqs
A%aster & CIXIXNreqs
A%\g{aster c (CIXSXNFM,

(10)

These matrices being issued exclusively from the main FE model
can be stored and loaded at each time for further analyses involving
different distributions of the NSC parameters.

Once the properties of the cloud of oscillators have been defined
[w, ~N(u,06), a] and their locations identified on the set of
interfaces, it is possible to write for each interface the point

-accelerance exerted by the oscillators linked to the interface node k as

the inverse of the apparent mass of the fuzzy structure:

1
A = —5— 11
k(a)) szp(w) ( )
in which
N .
M (o) = Z m, 1 + 2j¢u(w/w,) -
1 I+ 2]{,,(60/60,,) - (w/wn)
V nlinked to node k (12)

The coupled oscillators should not be intended as tiny resonating
physical systems; it is more logical to interpret their overall
impedance as an amount of resonating mass that is a continuous
function of frequency, as in Eq. (12). (Recall that modal overlap is
guaranteed by having a sufficient small amount of viscous damping
in the oscillators {5 > Cose.min-)

Equation (11) will yield as many accelerance functions as the
number of interfaces that were defined in the / set. These FRFs can be
-arranged in a diagonal matrix (ANSC € CPPVeess) just like the
transfer matrices, depending exclusively on the master FE model
[Eq. (10)]. Note that this matrix contains the functions representing
the resonating mass that the master structure is seeing from the fuzzy,
while being independent of the number N of modal contributions. Itis
because of this characteristic that a coupling in frequency domain has
been preferred over other modal substructuring possibilities, such as
component-mode-synthesis methods, in which the elevated number
of added parasitic modes (N) would be penalizing. The size of the
model is then given by the amount of interfaces and independent of
the quantity of coupled oscillators (V).

Now that all the matrices have been defined, the transfer functions
of the two substructures can be coupled to obtain the assembly
response through the original equation of Jetmundsen et al. [24] for
frequency-response-based substructuring, in which the response of
the assembled system, intended as master structure plus oscillators,
will be given by

Ag(s)ulﬂed — AI\R/Iélster _ (A%\flaster + AHSC)—IA{\éIaster (13)

The latter formula is issued by imposing at both subsystems a
spatial compatibility requirement on the interface DOFs and the
reciprocity condition on the forces created at each interface as equal
in modulus and of opposite signs. It must be noticed that this
formulation requires only the inversion of one matrix of size (I X I) at
each frequency step. This core matrix corresponds to the inverse of
the transfer function between interfaces on the main structure plus the
effects of the added parasitic dynamics. Being the matrix AN@ster
invariant and with a known inverse, the core matrix ANS¢ can be
interpreted as a first rank update of the original FE model matrix
A{‘I’[“‘C’; thus, for a very big number of interfaces, the inversion of the
core matrix can be improved from a numerical standpoint with the
implementation of the Sherman—Morrison formula [25], in which the
inverse of the sum of the two matrices is replaced by only vectorial
multiplication.

Among the benefits of the proposed method, we highlight the
possibility of replacing one or more of the matrices in Eq. (13) by
experimentally determined transfer functions, in which case a hybrid

model with numerical and experimental parts can be obtained. For the
sake of curiosity, the reader can refer to [26] for further information
on the topic.

IV. Experimental Setup and Model Validation

The first empiric trial has been focused on only one representative
category of NSCs to assess the viability of the model proposed.
Because of their amount, overall weight in typical aeronautical
structures, and spatial repartition, cable bundles are suitable
candidates to assess their impact on the primary structure.

The recreation of the encountered phenomena in a small and
controlled laboratory scale is not an easy task. The primary structure
has to be well known, implying that its representation suits a
deterministic treatment: its modal parameters are predictable through
classic FE analysis and measurable with standard experimental-
modal-analysis (EMA) techniques. As a consequence of the
previously presented numerical results, we expect an active mass of
the order of 1-5% of the mass of the main component, meaning that
the specimen that will serve as primary structure must have important
inertial properties to be able to respect this quantity while conforming
to the size, weight, and security constraints of the laboratory. Last, but
not least, the response of the primary structure must contain a
sufficient number of modes in the frequencies of interest to originate
the energy exchange under examination.

A helicopter blade has been chosen as primary structure because it
can be considered as a relatively big and massive structure whose
modal characteristics are measurable and predictable through EMA
and FE analysis, respectively (Fig. 10). The blade has been clamped
on one end and the measures have been performed through a
Polytec® PSV-400 scanning laser vibrometer. The results have been
posttreated in LMS Test. Lab® and the EMA accomplished with the
LMS PolyMAX® stabilization algorithm in the [5—150] Hz band.
Ten modes have been extracted with good modal quality indicators
[mode indicator function (MIF), mean phase collinearity (MPC), and
mean phase deviation (MPD)]. (MIF, MPC, and MPD are estimators
of the quality of a mode extracted through EMA. They indicate,
among other characteristics, how complex is the mode extracted.) For
this first set of measurements, a random input was used to excite the
structure. Measurements under harmonic excitation are currently
ongoing to assess the effect of nonlinearities.

As a starting point, the results obtained with the baseline FE model
of the blade have been compared to the measurements and the model
has been validated in the band of interest. The comparison of the
average amplitude of the transfer functions of all the points in the
receiver set is shown in Fig. 12.

Once the FE model of the master structure has been validated, on
one side of the blade, a considerable number of cable bundles have
been installed at known locations to represent the NSCs that will

Fig. 10 Helicopter blade used as primary structure.

Mode 3 at 17.33Hz Mode 6 at 52.04Hz

Fig. 11 Example of two experimental modes of the main structure.
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B2 (FE model) on receiver set for the unequipped structure. Fig. 14 Apparent masses and mean value of nominally identical cable
bundles; in the figure are shown the single measured functions for

different bundles (thin black lines) and their mean value (thick black
line); the third curve (dotted line) shows the numerical counterpart used

affect the dynamics of the main structure. The static mass of the set of
Y B8 for the simulation of the assembled system.

bundles has been chosen to be around 10% the mass of the blade,
which corresponds to nearly 3 kg of cables and supports. All the
bundles have been manufactured strictly in the same manner

- ¢ ! : - . lim,,_ o M*P(w) = mg,, shifting the main structure dynamics to
(meaning that weight, dimensions, assembly, and installation have

slightly lower frequencies, as the assembled structure is heavier and

een common to all the cables; the variation between the behavior of the mass is well spread along the surface. This result exemplifies well
each specimen will rise only from uncontrollable parameters) so to why, for very low frequencies, the lumped-mass representation is
restrict the uncertainties for this first empiric experience. convenient for the modeling of NSC. However, once the apparent
Preliminary tests on a shaker table were performed on different mass of each bundle starts increasing because getting closer to its
bundles to assess their response in the spectrum considered. Some of natural frequency, the leading consequence on the main structure is [ |
the characteristics already reported by other authors have been not only a frequency shift, but also, more importantly, an elevated
confirmed in the preliminary tests. The variability between nominally damping effect, as shown in Fig. 16, an effect that, for obvious
identical bundles is considerable; the first mode that corresponds to reasons, cannot be reproduced in a lumped-mass approach.
the first bending seems to be the only present on the band of interest Finally, to validate the numerical proposal, the parameters for the
even if its location in frequency is heavily dependent on the tension definition of the statistical part of the model need to be identified. The i
applied to the cable. reader must be reminded that these parameters are the PDF, which
In this laboratory experience, we can measure directly the point contains the natural frequencies and the overall amount of added
apparent mass of the bundles by installing the support of the cable mass (@). In this controlled laboratory experience, thanks to a series of
upon a force transducer between the shaker table and the support. In repeated measurements to the single cable bundles, an experimental

this way, direct measures of the force developed at each interface can
be performed as a function of frequency, and because the table is

. F i ¥ ’ =

piloted in acceleration, we can simply estimate the apparent mass of i 1 , , ) " ,

the cable as M(w) = F(w)/A(w). Recall that this is the transfer Y | |
NSC | |

function that should be in the diagonal of the coupling matrix Ay
The force transducers between the cable and the shaker table can be
seen in the overall setup in Fig. 13, whereas an example of
experimentally determined apparent masses of different bundles is
shown in Fig. 14.

Once these preliminary tests concluded, the cables were installed
on one side of the helicopter blade and the measurements on the
receiver set of points were repeated. The experimental results on the
average magnitude of these monitoring points before and after the
installation of the bundles are presented in Fig. 16.

It can be seen how, at the lowest frequencies, the cables act as a
lumped mass with a value equivalent to their static mass as Fig. 15 Cable bundles installed on the back of the blade.

Average Amplitude of measured Transfer Functions

T T T T T

1 0-3 AU | Unequipped Structure EXP
— Structure + Cables EXP

0 10 20 30 4b 50 60 70 80 90 100
Frequency [Hz]

Fig. 16 Impact of the cables upon the main structure highlighting the

Fig. 13 First preliminary tests to assess the first modes of the bundle lumped-mass effect (darker gray shade) and the apparent damping

candidates. phenomenon (lighter gray).




8 LOUKOTA ET AL.

log(|NUM]) - log(|EXP|)

3 35 4 4.5 5 5.5 6 6.5

Percentage of Active Mass (a)

Fig. 17 Logarithmic error of simulations for different active mass
values (@) with respect to the experimental measurements.
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Fig. 18 Average amplitude in the receiver set for numerical model

compared to experimental measurements.

mean apparent mass was assumed to be the target for the coupling
terms in matrix (ANSC). By testing different PDFs (normal, uniform,
beta), it was found that the distribution that suits the most the
reproduction of the test data is a beta distribution, such that
w, ~ Beta(2,5). An example of one of the numerical coupling terms
extracted from such distribution is shown in Fig. 14 together with the
mean experimental function used as objective. To determine the
quantity of resonating mass to be distributed within the oscillators (a)
just by looking at the logarithmic-error function between the test data
and the simulations with different values of e, a clear global minimum
near a = 5% can be identified, as shown in Fig. 17. A simple
optimization algorithm capable of dealing with local minimums
could establish this value automatically.

Figure 18 shows the final results obtained with the previously
determined parameters. Four averaged responses are presented: two
-experimental and two numerical. The experimental data are the same
of Fig. 16, whereas the two numerical curves correspond to the results
of the proposed model and to the industrial modeling standard, in
which the NSCs, in this case the cables, are assumed to act only as
lumped masses, and therefore, included exclusively in the mass
matrix of the master FE model.

The model proposed introduces physical mechanisms that are
capable of reproducing the measured response in the different
frequencies. On the first part of the spectrum, the classical lumped-
mass representation works well until the dynamics of the oscillators is
activated. In this band (30—40 Hz), the response appears heavily
damped, beyond reasonable values of damping factors if a viscous
damping is to be applied to the damped mode. Once the influence of
the oscillators has passed, the apparent mass of the secondary systems
is lower than its static mass, thus provoking a shift toward slightly
higher frequencies if compared to the lumped-mass idealization.

V. Conclusions

In this paper, a new numerical model conceived to reproduce the
effects of NSCs upon the load-carrying structure has been introduced.
Such a model is based on the theory of fuzzy structures and exploits

the effect of apparent damping as a modeling tool. This numerical
representation offers the advantage of being compatible with the vast
majority of standard industrial FE model; it can be interpreted as a
nonintrusive coupling of two different models, or in other words, as a
posttreatment of the original FE model.

As the transfer of energy between the two models, or apparent
damping, is mostly ruled by the amount of vibrating mass per
frequency band, the problem can be restated as finding the correct
spectral mass distribution that can substitute the vibrating NSCs as
seen by the master structure. This means finding the correct global
mass value of the fuzzy (a) and the PDF, which spreads this mass
along the frequency axis. Classical viscous damping is only required
in the secondary oscillators to avoid the singularities in the natural
frequencies; the actual value used is of little relevance. Through
substructuring in the frequency domain, millions of small dynamic
contributions can be taken into account in the numerical model at a
very modest numerical cost.

An experimental test bench that provided a valuable mean of
validation of the hypothesis underlying the model proposed has been
presented as well. In these experiments, it has been shown how the
NSCs used, in this case cable bundles, induced a behavior on the host
structure that was reproducible with the numerical approach
proposed.

This paper does not pretend to introduce the ultimate approach to
simulate vibrational environments in complex assemblies, but only to
demonstrate that the concept of apparent damping can be used as a
powerful modeling tool. The idea introduced by Soize et al. 30 years
ago still has a lot of potential in the low- to midfrequency barrier, and
particularly for the comprehension and prediction of cabin dynamics
in large commercial aircraft or other large and complex machines.
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