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Abstract

In this work, we develop a mortar method for the coupling of NURBS sub-

domains within a NURBS patch that keeps the benefit of using more regular

functions. The idea is to use two Lagrange multipliers to match, across the

coupling interface, the tractions coming from the discrete displacements in

addition to the discrete displacements. It results in a strategy that is suit-

able with the continuity of the physical solution: when the physical solution

is sufficiently smooth, the strategy enables to represent a C1 behavior; but,

when only a C0 displacement is expected, no additional errors are introduced

since only the traction force is continuous and not the whole derivative fields.

Lower stress jumps at the coupling interface can then be observed which

allows for a better transition of the information. As an application, a non-
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intrusive algorithm is also built for the proposed coupling method, which

enables simple and flexible local enrichments of NURBS patches without

loosing the interest of using more regular functions. A range of numerical

examples in two-dimensional linear elasticity are carried out along with com-

parisons with other published NURBS coupling techniques to demonstrate

the performance of the proposed coupling and its interest when combined to

a non-intrusive strategy.

Keywords: Isogeometric analysis, NURBS, Domain decomposition, Mortar

method, Non-intrusive coupling, Non-conforming geometries

1. Introduction

The IsoGeometric Analysis (IGA), which was first introduced in Hughes

et al. [1] and later developed in Cottrell et al. [2], relies on the use of the same

functions for the finite element analysis as those used to build the geome-

try of Computer-Aided Design (CAD) models. Thus, Lagrange polynomials

are replaced by Non-Uniform-Rational-B-Splines (NURBS) functions, which

constitute the most commonly used technology in CAD. This enables one to

deal with both design and analysis using exactly the same geometric models.

In addition to the geometric aspect, NURBS functions have a higher order

of continuity, namely C(p−1) through the knot-span elements of the mesh for

a polynomial degree p, which on a per-degree-of-freedom basis exhibits in-

creased accuracy in comparison to standard Finite Element Methods (FEM)

(see, e.g., [3] for a theoretical analysis, [4] for structural vibrations, [5] for

standard elasticity, [6] for embedded domain methods and [7, 8] for shell anal-

ysis). If the global accuracy of NURBS is now proved, difficulties are still

2
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encountered to integrate different discrete models in a NURBS patch. The

reason for this is the rigid tensor product structure of NURBS which neces-

sarily implies a structured quadrangular mesh. As a consequence, the local

mesh refinement is not possible directly with the NURBS technology. More

generally, the delimitation of a subregion of any shape within a NURBS

patch is far from trivial, which prevents from the simple modeling of any

specific local behaviors (e.g., introduction of an inclusion [9], crack propaga-

tion [11, 10], emergence of a plastic zone [12], ...). Indeed, the basic strategy

may involve a re-parametrization of the whole NURBS model, including the

splitting of the new geometry into several patches with C0 continuity at the

boundaries. This entails a considerable modeling effort which is often as com-

plex and time consuming as standard mesh generation and then, is opposed

to the core idea of IGA.

To answer the issue of local mesh refinement, numerous research works

have been dedicated to the construction of new splines these last years. To

start with, one may cite the hierarchical B-splines and NURBS [13, 14, 15].

These new splines are easy to implement but the local mesh refinement

still seems to spread for higher-order functions. With similar properties,

one may also cite the development of LRB-splines [16] and multigrids-based

NURBS [20]. Alternatively, another technology seems to have gathered an

important momentum from both the computational geometry and analy-

sis communities : the so-called T-splines [17, 18, 19]. In addition to be

efficient for local mesh refinement, the T-splines also appear suitable to ad-

dress trimmed multi-patch geometries. However, the implementation can

appear complex and additional efforts may be necessary for the more general

3



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

situations mentioned above (modeling of an inclusion, local fracture, local

plasticity).

To circumvent the problem, the purpose of this work is to develop a cou-

pling method that is able to connect different NURBS subdomains within

a global NURBS patch. Regarding NURBS coupling, many attempts have

been devoted these last five years to the connection of NURBS patches to

foster the study of multi-patch geometries. Certainly one of the first works

on the subject was that of Hesch and Betsch [21], who used a Lagrange

multiplier field to add the work performed by coupling tractions along the

interface to the weak form. In the framework of NURBS Lagrange multiplier

methods, one may also cite the work of Brivadis et al. [22] where several

choices of Lagrange multiplier spaces are investigated theoretically and nu-

merically. Then, a comparative numerical study in Apostolatos et al. [23]

showed the efficiency of a Nitsche-based technique for NURBS. Nitsche cou-

pling has subsequently been used for connecting 3D NURBS patches [9], for

3D-plate NURBS coupling [24, 25], and with NURBS immersed boundary

methods [26]. Even if it may appear interesting due to the absence of ad-

ditional degrees of freedom, the Nitsche method leads to a comparatively

high computational effort since an additional eigenvalue problem has to be

solved for the stabilizing term. As a result, Dornisch et al. [27] developed

a weak substitution method to simplify the implementation and reduce the

computational cost. From this overview, it may be noticed that most of the

coupling techniques elaborated for NURBS nowadays are dedicated to the

connection of NURBS patches, i.e., the coupling along a C0 interface. Unlike

these works, we are interested here in a method suitable for the coupling of

4
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NURBS subdomains within a NURBS patch, i.e., where the continuity of the

basis functions is expected to be higher than C0. As a result, the objective of

our work is to develop a coupling formulation that makes use of the higher-

order continuity achieved by the NURBS functions. In particular, the better

representation of the derivative fields offered by NURBS is of importance.

When applied to perform local enrichment, an interesting feature of a

coupling method may be its ability to be implemented using a non-intrusive

strategy. Roughly speaking, a method is said to be non-intrusive when its

implementation is very simple from existing techniques and numerical codes.

In the context of standard FEM, a group of global/local coupling methods,

classified as non-intrusive, has emerged these last years. Based on the idea

of Whitcomb [28] and formalized later in Gendre et al. [12] for the modeling

of local plasticity, these methods involve the definition of two finite element

models: a global coarse model of the whole structure and a local more de-

tailed ”submodel” meant to replace the global model in the area of interest.

An iterative coupling technique is used to perform the substitution in an

exact but non-intrusive way: only interface data are transmitted from one

model to the other and the global stiffness operator remains unchanged (in-

dependently from the shape of the local domain). The performance of such

a strategy has been highlighted in many applications (see, e.g., [11] for the

modeling of crack propagation, [29] for the modeling of localized uncertain-

ties, [30] for 3D-plate coupling and [31] for nonlinear domain decomposition).

More recently, an extension in the NURBS context has been proposed in

Bouclier et al. [32] and has proved to be a good candidate for NURBS local

enrichment. Among the advantages, one may cite the elimination of costly
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NURBS re-parametrization procedures for the global model (even if the lo-

cal area evolves), the possibility to assemble and factorize the global stiffness

operator only once, the good conditioning of the systems to be solved, and

the easy merging for a NURBS code with any other specific numerical codes.

However, the coupling method used in this contribution was the classical one

and thus, only a C0 continuity across the coupling interface was ensured. As

a result, the goal of the present work is not only to develop a coupling method

suitable with the higher-order continuity of NURBS, but also to be able to

implement it in a non-intrusive way to perform NURBS local enrichment.

In this context, we propose in this paper a coupling method in which the

tractions coming from the discrete displacements are matched, in addition to

the usual discrete displacements, across the coupling interface. It results in a

strategy able to represent a C1 behavior at the interface but also suitable to

capture a C0 displacement (such as in the case of bi-material structures for

example). The reason for this is that only physical quantities are transmitted

from one model to the other. To meet the non-intrusive aspect, a Lagrange

multiplier approach is followed. More precisely, two Lagrange multipliers

are introduced to ensure the two coupling constraints. We believe that the

proposed method is more consistent with the analysis properties of IGA since

it allows for a smoother representation of the solution across the coupling

interface.

The paper is organized as follows: first a brief review of IGA with NURBS

is given and the reference coupling problem to be solved is presented in

Section 2; after reviewing the classical NURBS approaches, the new cou-

pling method is constructed in Section 3; then, the associated iterative non-

6
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intrusive algorithm is built in Section 4; Section 5 presents a set of numerical

experiments in two-dimensional linear elasticity to assess the performance of

our methodology; finally, concluding remarks are formulated in section 6.

2. The reference NURBS domain decomposition problem

This section establishes the context of the study and introduces the cor-

responding notations. First, a brief review of the concept of NURBS-based

IGA is provided and the difficulty to integrate different discrete models in

different regions of a NURBS patch is highlighted. Then, the reference do-

main decomposition problem along with its governing equations and its weak

form is presented.

2.1. Isogeometric analysis based on NURBS

For the discretization of the problem, the recent concept of IGA based

on NURBS functions is used. Let us start by briefly reviewing the concept.

Only the fundamentals are given here. For further details, the interested

reader is referred to the references cited below.

The NURBS concept was first introduced in Hughes et al. [1] and formal-

ized more recently in the book by Cottrell et al. [2]. NURBS functions are

a generalized version of B-spline functions and have become a standard for

geometric modeling in CAD and computer graphics (see, for example, Cohen

et al. [33], Piegl and Tiller [34], Farin [35] and Rogers [36]). These functions

lend themselves to an exact representation of many shapes used in engineer-

ing, such as conical sections. They can be viewed as rational projections of

higher-order B-splines and, therefore, they possess many of the properties of

B-splines, the most interesting one being their high degree of continuity.

7
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For the presentation in this section, we consider a domain in 3D so as

to be general. If NA, A ∈ {1, 2, .., n} denote the n 3D NURBS functions,

ωA, A ∈ {1, 2, .., n} the associated weights and PA, A ∈ {1, 2, .., n} the asso-

ciated control points of coordinates xA in the global coordinate system, the

geometry of the structure is described through the position vector M defined

as:

M =
n�

A=1

NAxA, (1)

where the NURBS functions are obtained from the B-spline functionsNA, A ∈
{1, 2, .., n} such that:

NA =
NAwA�n
A=1 NAwA

. (2)

Now, all one needs to do in order to define the 3D B-spline functions NA

at control point PA is to perform the tensor product of the 1D B-spline

functions associated with this point in the three spatial directions. If one

denotes M1
i , i ∈ {1, 2, .., n1}, M2

j , j ∈ {1, 2, .., n2} and M3
k , k ∈ {1, 2, .., n3}

the n1, n2 and n3 1D B-spline functions associated with each of the three

spatial directions, this means that at control point PA, which corresponds to

the ith, jth and kth control points in these directions, one has:

NA = M1
i ×M2

j ×M3
k . (3)

The 1D B-spline functions are defined using a knot vector. Each knot vector

associated with a direction is defined in the parametric domain. For example,

for the first direction, one takes knot vector Ξ = {ξ1, ξ2, .., ξn1+p+1}, where
ξl ∈ R is the lth knot, with l being the knot index (l ∈ {1, 2, .., n1 + p+ 1})

8
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and p the polynomial degree of the functions M1
i , i ∈ {1, 2, .., n1}. The

knots divide the parametric space into knot-span elements. In the following,

the knot-span elements will be also simply denoted by the elements. The

interval [ξ1, ξn1+p+1] constitutes the NURBS patch. Thus, unlike standard

FEM where each element has its own parametrization, the parametric space

of B-Spline functions is localized onto the patch. The patch may be seen as

a macro-element. Many geometries utilized for academic test cases can be

modelled with a single patch. In two-dimensional topologies, a patch is a

rectangle in the parametric domain. In three dimensions it is a cuboid.

There can be more than one knot at a given location of the parametric

space. Ifm is the multiplicity of the considered knot, the functions have Cp−m

continuity at that location. Thus, for quadratic and higher-order NURBS,

the continuity at the elements boundaries at the interior of the NURBS

patch is expected to be higher than the classical C0 regularity encountered

in standard FEM. If the knots are evenly spaced, the knot vector is said to be

uniform. A knot vector whose first and last knots have multiplicity p + 1 is

said to be open. In this case, the basis is interpolating at the boundary nodes

of the interval, which facilitates the application of the boundary conditions.

Only open uniform knot vectors will be considered in this work. The 1D B-

spline basis functions for a given order p are defined recursively from the knot

vector using the Cox-de Boor recursion formula (see, for example, Cohen

et al. [33]). To take advantage of the superior approximation properties

of NURBS functions, we choose them to be at least of polynomial degree

two in the three spatial directions. As far as continuity is concerned, we

perform k-refinement, meaning that we add elements while keeping the higher

9
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degree of continuity of the NURBS functions, namely Cp−1 at the knot level.

The positions of the control points and the values of the associated weights

can be adjusted in order to build conical sections exactly, after which these

geometries are preserved through mesh refinement. For a good overview of

mesh generation and refinement, see Cottrell et al. [37].

The tensor product nature of NURBS shape functions (see Eq. (3)) makes

it difficult to handle localized phenomena within the NURBS patch. In

other words, we necessarily end up with a structured quadrangular mesh in a

NURBS patch. For example, this makes the local mesh refinement impossible

directly (see, e.g., [15] for completeness). More generally, this makes the

integration of a subregion (of any shape) within a NURBS patch far from

trivial. Indeed, since standard IGA technology requires a boundary fitted

discretization for the analysis, a re-parametrization of the whole NURBS

model taking into account the subregions may be required. This may lead to

the splitting of the new geometry into several patches with C0 continuity at

the boundaries. This entails a considerable modelling effort, which is often

as complex and time consuming as standard mesh generation. More details

regarding this issue can be found in [26, 32].

2.2. The NURBS domain decomposition problem

To circumvent the problem of the integration of subregions within a

NURBS patch, it is proposed in this work to develop a coupling method that

is able to connect different NURBS subdomains within a global NURBS

patch. The corresponding domain decomposition problem to be solved is

introduced in the following.

10
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2.2.1. Governing equations.

We consider in this work the case of multi-domain linear elasticity in Ω ⊂
Rd, d = 2 or 3 being the dimension of the problem. Domain Ω constitutes

the NURBS patch to be decomposed into subdomains. For simplicity in the

presentation, we assume that Ω is divided into only two disjoint, open and

bounded subsets Ω11 and Ω2 such that Ω = Ω11 ∪ Ω2 and Ω11 ∩ Ω2 = ∅.

Those two non-overlapping subdomains share a common interface denoted Γ

(see Fig. 1). Domains Ω11 and Ω2 are subjected to body forces fg11 and fg2 ,

respectively. Furthermore, forces Fg
11 and Fg

2 are associated to boundaries

ΓF11 and ΓF2 and, displacements ug
11 and ug

2 are prescribed over boundaries

Γu11 and Γu2 . The boundaries satisfy the following relations :





ΓFm ∪ Γum ∪ Γ = ∂Ωm

ΓFm ∩ Γum = ∅

ΓFm ∩ Γ = ∅

Γum ∩ Γ = ∅

with m = 11 and 2.

Remark 1. As subdomains are open, one would need to write Ω =

o� �� �
Ω11 ∪ Ω2

to be rigorous with the boundary Γ. In the paper, we decide to omit this

notation for the sake of readability.

Remark 2. Regarding the notation, the reason why we use Ω11 and Ω2 for

the subdomains instead of Ω1 and Ω2 will appear in section 4.

Regarding the NURBS discretization, domains Ω11 and Ω2 are composed

of several NURBS knot-span elements (or pieces of knot-span elements). In

11
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ug

F
g

11

f
g

11
2

22

11

Figure 1: Reference domain decomposition problem.

practice, these regions are built by extracting a central zone from a larger

NURBS patch made of open knot vectors (as it is done in hierarchical ap-

proaches [13, 14, 15, 20]). The principle of such constructions is illustrated in

Fig. 2 for the two-dimensional case. The figure shows the parametric spaces

of three different domain decomposition problems. On these examples, we

start by defining several discretizations of the global NURBS patch in Ω and

then, we extract the regions that compose the subdomains. The associated

one-dimensional case with quadratic B-Spline basis functions is added in

Fig. 2(a). For each subdomain, the control points that are associated to the

basis functions whose support is not in the subdomain are removed. We no-

tice that an identical procedure is used in Chemin et al. [20] to construct the

local NURBS grids of the multigrid algorithm. Depending on the NURBS

discretization of the two subdomains along the interface Γ, three coupling

situations are possible:

1. The coupling of matching meshes (see Fig. 2(a)): in this case, the inter-

face Γ is aligned with the edges of the elements in the two subdomains

and the meshes of the two subdomains along the interface are perfectly

aligned.

12
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2. The coupling of non-matching meshes (see Fig. 2(b)): in this case,

the interface Γ is aligned with the edges of the elements in the two

subdomains but the meshes of the two subdomains along the interface

are not aligned.

3. The coupling of non-conforming geometries (see Fig. 2(c)): in this case,

the interface Γ is not aligned with the edges of the elements which

means that some knot-span elements are overlapped.

From such constructions, it results that the continuity of the basis functions of

the two subdomains at the coupling interface Γ is higher than C0 (provided

quadratic (or higher-order) NURBS basis functions are used). This is in

contrast with the more usual situation of the coupling of IGA patches which

is achieved along C0 interfaces (see, e.g., [9, 22, 23, 26, 27]).

Remark 3. Starting with the whole global NURBS patch and then extract-

ing the discretizations of the subdomains as illustrated in Fig. 2 may not be

necessary in practice. Indeed, to ensure a higher-order continuity of the func-

tions at the coupling interface, only a few additional knot-span elements have

to be considered at the exterior of the interface coupling. For example, in

the case of conforming geometries (see Fig. 2(a) and 2(b)), only p additional

knot-span elements are required to reach a Cp−1 continuity at the interface.

Remark 4. Regarding local mesh refinement, it may be noted from the three

coupling cases presented above that we undertake to solve more general situ-

ations than the ones classically encountered with hierarchical B-Splines and

NURBS. Indeed, the usual IGA hierarchical approaches are often restricted

to the situation of conforming geometries.

13
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+

Extraction Extraction

(a) Coupling of matching meshes.

+

Extraction Extraction

(b) Coupling of non-matching meshes.

+

ExtractionExtraction

(c) Coupling of non-conforming geometries

Figure 2: NURBS discretizations of the domain decomposition problem: illustrations in
the parametric space. 14
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The problem to be solved is a classical two-domain linear elastic problem

in Ω11 ∪ Ω2. In each subdomain, the kinematic constraints, the equilibrium

equations and the constitutive relations have to be verified. Using the sub-

script m to denote a quantity that is valid over region Ωm, with m = 11 and

2, the corresponding governing equations read:





um = ug
m over Γum ;

div(σm) + fgm = 0 in Ωm ;

σm nm = Fg
m over ΓFm ;

σm = Cm ε (um) in Ωm.

(4)

For the sake of readability, we decided to use bold symbols for vectors while

we underline twice the second- and four times the fourth-order tensors. In

the above equations, ε (um) denotes the infinitesimal strain tensors, σm the

Cauchy stress tensors and Cm the Hooke tensors. n11 and n2 represent the

outward unit normals to Ω11 and Ω2, respectively. For the coupling interface,

the continuity of the displacements:

u11 − u2 = 0 on Γ ; (5)

and the equilibrium of the traction forces:

σ11n11 + σ2n2 = 0 on Γ ; (6)

have to be ensured. In the following, we will consider the unit normal vector

n over the interface Γ such that n = n11|Γ = −n2|Γ.

15
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2.2.2. Weak form of the problem.

Let us introduce the subspaces of [H1 (Ω)]
d
needed for the weak equilib-

rium of the complete domain Ω, namely:

U =
�
u ∈

�
H1 (Ω)

�d
, u|Γu11

= ug
11 and u|Γu2

= ug
2

�
;

V =
�
v ∈

�
H1 (Ω)

�d
, v|Γv11

= 0 and v|Γu2
= 0
�
.

(7)

Using the principle of virtual work, we obtain the variational form of the

elasticity problem (4)-(6), as follows:





Find u ∈ U such that:

a (u,v) = l (v) , ∀v ∈ V ,
(8)

where the bilinear form a and the linear form l read:





a (u,v) =
�

m=11,2

am (um,vm) =
�

m=11,2

�

Ωm

ε (vm) : Cm ε (um) dΩm ;

l (v) =
�

m=11,2

lm (vm) =
�

m=11,2

�

Ωm

vm · fgmdΩm +

�

ΓFm

vm · Fg
mdΓFm .

(9)

3. The proposed coupling method

In this part, the proposed coupling method is presented first under its

variational continuum form and then under its discrete form. For a better

understanding of the new method, we first recall in the variational setting

two strategies that have been classically used in IGA: the mortar coupling

(see, e.g., [22, 23]) and the Nitsche coupling (see, e.g., [23, 9, 24, 26, 25]). To

avoid confusion with the newly developed method, we denote these estab-

lished strategies by the ”classical mortar coupling” and the ”classical Nitsche

16
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coupling”, respectively.

3.1. The continuum version

We now regard the coupling problem (4)-(6) as a two-domain elasticity

problem with mutually influencing boundary conditions along the common

coupling interface Γ. We thus start by defining the functional spaces Um

and Vm over domain Ωm that will contain the solution and trial functions

respectively:

Um =
�
um ∈

�
H1 (Ωm)

�d
, um|Γum

= ug
m

�
; Vm =

�
vm ∈

�
H1 (Ωm)

�d
, vm|Γum

= 0
�
.

(10)

We recall that the subscript m ∈ {11, 2} denotes a quantity that is valid over

domain Ωm.

3.1.1. A review of the classical mortar approach.

In the context of mortar approaches or, in other words, in the context of

Lagrange multiplier methods, a mixed formulation is set up to impose the

coupling constraints (5) and (6). Classically, a single Lagrange multiplier λ ∈
M (where M is an appropriate space) is introduced, as the dual unknown,

to represent both of the interface traction forces, i.e., σ11n = σ2n = −λ in

Eq. (6). Then, the interface Dirichlet condition (5) is imposed in a weak

sense over Γ using the Lagrange multiplier. This leads to the formulation of

the following Lagrangian of the coupled problem:

Lbasic

�
(u11,u2),λ

�
=

1

2
a11 (u11,u11)+

1

2
a2 (u2,u2)−l11 (u11)−l2 (u2)+b (λ,u11 − u2) .

(11)

17
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Bilinear forms am and linear forms lm are given in Eq. (9) and bilinear form

b is defined such that:

b (µ,u) =

�

Γ

µ · udΓ. (12)

With above developments, we can finally obtain the classical mortar coupling

formulation of the reference problem as follows:

Find u11 ∈ U11, u2 ∈ U2, and λ ∈ M such that:




a11 (u11,v11) + b(λ,v11) = l11 (v11) , ∀v11 ∈ V11 ;

a2 (u2,v2)− b(λ,v2) = l2 (v2) , ∀v2 ∈ V2 ;

b(µ,u11 − u2) = 0, ∀µ ∈ M.

(13)

One advantage of such a formalism is that within its discrete form, it

enables to keep separated and unmodified the stiffness operators associated

to the subdomains. Indeed, the communication between the subdomains

is performed via the Lagrange multiplier only. This feature is the basis

of the non-overlapping domain decomposition methods developed for high

performance computing on parallel computer architectures (see, e.g., [38, 39,

40]). In the same idea, such a property enables to build non-intrusive coupling

algorithms for the modeling of local behaviors (see, e.g., [12, 11, 30, 31, 32]).

Several numerical codes can then be coupled in an iterative way with the

exchange of only interface data to carry out the global/local simulation.

However, the drawback of such a formulation is that a special care may

be required for the construction of the approximation space of M to avoid

undesirable energy-free oscillations (due to the non-satisfaction of the inf-sup

condition).

18



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3.1.2. A review of the classical Nitsche approach.

Conversely, in the Nitsche coupling technique, the stiffness operators of

the different subdomains are merged together which eliminates the need of

additional degrees of freedom. A connection between Nitsche and Lagrange

multiplier couplings can be made (see, e.g., [41, 42]). Starting with the

Lagrange multiplier method, the idea to obtain the Nitsche method is to

replace the Lagrange multiplier by the mean interface resultant force coming

from the displacement. We therefore define the average of the stresses and

of the virtual stresses on the interface as follows:





�
σ
�
=
�
γσ11 (u11) + (1− γ)σ2 (u2)

�
|Γ =

�
γC11 ε (u11) + (1− γ)C2 ε (u2)

�
|Γ

�
τ
�
=
�
γσ11 (v11) + (1− γ)σ2 (v2)

�
|Γ =

�
γC11 ε (v11) + (1− γ)C2 ε (v2)

�
|Γ

with γ ∈ [0, 1] .

(14)

We note that in most situations (particularly when the material properties

of the subdomains to couple are close), γ = 1/2 is considered. Denoting

now the jump of the displacements and of the virtual displacements on the

interface such as:

�u� = (u11 − u2)Γ and �v� = (v11 − v2)Γ , (15)

19
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we obtain the following Nitsche bilinear form:

aN

�
(u11,u2) , (v11,v2)

�
= a11 (u11,v11) + a2 (u2,v2)−

�

Γ

�u� ·
�
τ
�
ndΓ−

�

Γ

�
σ
�
n · �v�dΓ.

(16)

This bilinear form needs finally to be enriched with a stabilization term to

ensure the ellipticity of the boundary value problem. Denoting the stabiliza-

tion parameter by α, the stabilized variational formulation of the problem

using the classical Nitsche approach can be written as follows:

Find (u11,u2) ∈ U11 × U2, such that:

aN

�
(u11,u2) , (v11,v2)

�
+ α

�

Γ

�u� · �v�dΓ = l11 (v11) + l2 (v2) , ∀ (v11,v2) ∈ V11 × V2.

(17)

While in formulation (13) a suitable approximation space for the Lagrange

multiplier needs to be chosen, the Nitsche approach (17) requires the choice

of a suitable value for α. It has been shown that an estimation of α can be

obtained by solving a generalized eigenvalue problem [23, 9] (or several local

eigenvalue problems [26]) over the interface.

3.1.3. The newly-developed mortar approach.

In the two coupling formulations presented above, we notice that the prop-

erty of higher-order continuity of the NURBS basis functions at the interface

Γ has not been used. Indeed, if the continuity of the discrete displacement

is enforced across Γ, there is no reason with such formulations that the in-

terface traction force coming from the discrete displacement is continuous

through the interface. In other words, there is no reason that the discrete

20
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displacement solution satisfies:

�
σ11(u11)n− σ2(u2)n

�
|Γ =

�
C11 ε(u11)n− C2 ε(u2)n

�
|Γ = 0. (18)

However, it has to be noted that such an equality is verified by a single

NURBS patch solution and that such a constraint seems to have a physical

meaning according to Eq. (6) of our reference problem. As result, we propose

in this work to add constraint (18) in our solution space U and virtual space

V (see, eq. (7)). We emphasize that such a treatment seems to be consis-

tent here because the interpolated functions are more regular (at least C1),

which implies that the gradients of the displacement, and so the stresses and

tractions forces, are defined at the coupling interface.

To take into account the additional constraint in our coupling formula-

tion, we propose to follow a Lagrange multiplier strategy since the intended

application of this work is the non-intrusive local enrichment of NURBS

patches. Two Lagrange multipliers are thus introduced: λu ∈ Mu is devoted

to the displacement relation as in the classical approach and λσ ∈ Mσ is

devoted to the constraint (18). The associated new Lagrangian reads:

Lnew

�
(u11,u2), (λu,λσ)

�
=

1

2
a11 (u11,u11) +

1

2
a2 (u2,u2)− l11 (u11)− l2 (u2)

+ b (λu,u11 − u2)

+ b
�
λσ, σ11(u11)n− σ2(u2)n

�
,

(19)
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which enables to get the following variational formulation:

Find u11 ∈ U11, u2 ∈ U2, λu ∈ Mu and λσ ∈ Mσ such that:




a11 (u11,v11) + b(λu,v11) + b(λσ, σ11(u11)n) = l11 (v11) , ∀v11 ∈ V11 ;

a2 (u2,v2)− b(λu,v2)− b(λσ, σ2(u2)n) = l2 (v2) , ∀v2 ∈ V2 ;

b(µu,u11 − u2) = 0, ∀µu ∈ Mu ;

b(µσ, σ11(u11)n− σ2(u2)n) = 0, ∀µσ ∈ Mσ.

(20)

This formulation will be denoted ”new mortar coupling” in the following

of the paper. We will show in section 5 (Numerical results) that the addition

of constraint (18) for the coupling enables to represent a C1 displacement

across the interface while only a C0 solution can be described in the clas-

sical approaches. Furthermore, we insist on the fact that the additional

constraint considered has a physical meaning from the reference coupling

problem. Thus, the new coupling is also suited to describe a solution that

is not C1 across the interface (such as in the case of the coupling of differ-

ent materials for instance). When the intended solution is not C1, we will

see that no additional errors are introduced since only the interface traction

force coming from the discrete displacement is continuous (and not the whole

derivative fields of the discrete displacement).

3.2. The discrete version

We now construct the discrete operators associated to the new mortar

coupling formulation. To this end, let us introduce the NURBS functions

N11
A , A ∈ {1, 2, .., n11} and N2

B, B ∈ {1, 2, .., n2} that discretize domains Ω11

22
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and Ω2, respectively. Following the principle of isoparametric elements, the

basis (N11
A )A∈{1,2,..,n11} and (N2

B)B∈{1,2,..,n2} are used to build the finite ele-

ment spaces Uh
11 and Uh

2 corresponding to the discretization of U11 and U2,

respectively. As stated above, the discretization of spaces Mu and Mσ may

require special attention to avoid numerical problems. Nevertheless, we have

been able to obtain satisfactory results (i.e., that we never encountered in-

stabilities in our computations) with a very basic strategy. For the sake of

simplicity, we chose to use the same finite element space Mh for the two

Lagrange multipliers. Then, we adopted a classical strategy (see, e.g., [31]):

the trace along the coupling interface Γ of the NURBS functions of subdo-

main Ω2 (assumed to be descretized with the finer mesh) was considered for

Mh. The resulting one-dimensional functions are denoted
�
Nλ

D

�
D∈{1,2,..,nλ}.

We emphasize that other choices could also have been made: for instance,

the trace of the NURBS functions of domains Ω1 along the coupling interface

seems to produce equivalent results. By substituting the NURBS approxi-

mations in the weak form Eq. (20), we can obtain the following linear system

to be solved:




[K11] [0] [LA11]T [DA11]T

[0] [K2] − [LA2]T − [DA2]T

[LA11] − [LA2] [0] [0]

[DA11] − [DA2] [0] [0]








{U11}
{U2}
{Λu}
{Λσ}





=





{F11}
{F2}
{0}
{0}





.

(21)

Operators [K11] (respectively {F11}) and [K2] (resp. {F2}) are the classical

stiffness matrices (resp. vector forces) associated to domains Ω11 and Ω2.

[LA11] and [LA2] are the classical mortar coupling operators. [DA11] and

23
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[DA2] are the new mortar coupling operators that enable to enforce the

equilibrium of the tractions coming from the discrete displacement along Γ.

They are constructed as follows:

[LA11] =

�

Γ

[Nλ]
T [nn] [D11] [B11] dΓ ; [LA2] =

�

Γ

[Nλ]
T [nn] [D2] [B2] dΓ.

(22)

[B11] and [B2] are the standard strain-displacement matrices associated to

spaces Uh
11 and Uh

2 , [Nλ] represents the standard shape function matrix of

Mh and [D11] and [D2] constitute the discrete Hooke matrices. In addition,

matrix [nn] is introduced to perform the product between the stress ten-

sor and the outward unit normal (see [9, 26] for more details regarding the

construction of such operators).

Remark 5. Unlike the classical mortar approach, each of the two Lagrange

multipliers alone does not have a physical meaning in the proposed formula-

tion. Nevertheless, there exists a combination of the two Lagrange multipliers

that can be interpreted as the reaction forces between the two subdomains. In-

deed, considering for instance the first set of equations of system (21), we no-

tice that the reaction forces {R11} along Γ of subdomain Ω11 can be expressed

as follows:

{R11} = ([K11] {U11}− {F11}) = − [LA1]T {Λu}− [DA1]T {Λσ} . (23)

Remark 6. Even if presented in the case of elastic constitutive laws, one

may notice that the proposed coupling formulation holds for material non-

linearities (such as elastoplasticity). Only additional implementation efforts

24
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may be taken in this case due to the necessity of evaluating the discrete stress

tensor along the coupling interface.

4. Application: development of the non-intrusive coupling strategy

The coupling method developed above can be applied to any NURBS do-

main decomposition problems (provided higher-order continuity is available

at the interface). As an application, we build in this section a non-intrusive

algorithm to perform the local enrichment of a NURBS patch with the new

mortar coupling. The performance of a non-intrusive strategy for the model-

ing of local behaviors in a NURBS patch has been demonstrated in Bouclier

et al. [32]. The goal here is to combine the advantages of a non-intrusive

strategy with the property of higher-order continuity of the newly-developed

mortar coupling. Since the proposed coupling formulation is based on the use

of Lagrange multipliers, the derivation of a non-intrusive strategy is rather

straightforward. It is presented briefly in the following. For further details

regarding the non-intrusive strategy, we encourage the interested reader to

consult [32] and references cited therein.

4.1. The reference non-intrusive global/local problem

In this part, we consider that subdomain Ω2 represents a local region

where a refined model is required to correctly describe the local behavior

of the NURBS patch. In the remaining zone of the NURBS patch (i.e., in

Ω11), we assume that a coarser and simpler model is sufficient to represent

the global behavior of the solution. Rather than solving the system of equa-

tions (21) directly (i.e., in a monolithic way), we proceed in an iterative way

by involving a global model defined over the existing whole NURBS patch.
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The situation is illustrated in Fig. 3. In order to do so, domain Ω12 is intro-

duced to characterize the region in which the global model of Ω11 is fictively

prolonged. Ω12 is defined in such a way that the NURBS patch domain is

recovered with Ω11 ∪ Ω12. From here on, we refer to domain Ω1 = Ω11 ∪ Ω12

to characterize the global NURBS patch that contains the global model ev-

erywhere. The objective of the non-intrusive strategy is then to replace the

global model over Ω12 by the local one in Ω2 without actually modifying the

global NURBS patch operators over Ω1.

Global model: NURBS patch Local model

Substitution
11

2

Figure 3: The non-intrusive global/local problem.

4.2. The non-intrusive global/local algorithm

Let us start by introducing the NURBS functions N1
C , C ∈ {1, 2, .., n1}

that discretize domain Ω1. As a consequence, the basis functions (N
11
B )B∈{1,2,..,n11}

constitute the restricted part of the basis (N1
C)C∈{1,2,..,n1} to domain Ω11. To

derive the non-intrusive strategy, we perform a continuous prolongation of

the displacement solution from Ω11 to Ω12. We present the method in the

discrete case in the following.

We define {U1} the fictitious prolongation of {U11} to Ω1, so that {U1} |Ω11 =

{U11}. The prolonged part of the global solution {U1} to Ω12 is denoted
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{U12} (i.e., {U1} |Ω12 = {U12}). As well, we introduce the load vector

{F1} = {F11} + {F12} defined on Ω1. {F12} is constructed from body force

fg12 and surface traction Fg
12 that can be viewed as the fictitious prolonga-

tion of fg11 and Fg
11 to Ω12. In practice, we take fg12 = fg2 and Fg

12 = Fg
2 .

Then, we make use of the additivity of the integral with respect to domain

Ω1 = Ω11 ∪ Ω12, which gives us:

[K1] {U1} = [K11] {U1}+ [K12] {U1} . (24)

[K1] and [K12] are the classical stiffness operators related to domains Ω1 and

Ω12. The equality (24) is used to modify the first part of the equations (21).

More precisely, this offers the possibility to split Eq. (21) into two parts: one

for each domain Ω1 and Ω2. The solution of the coupled problem is finally

obtained through an iterative algorithm where the global and local models

are computed alternatively. A standard fixed point can be implemented for

that. For the nth iteration, we proceed as follows: starting with {U1}(0),
{Λu}(0) and {Λσ}(0), we look for {U1}(n), {U2}(n), {Λu}(n) and {Λσ}(n) such
that:

1. Resolution of the full global problem:

[K1] {U1}(n) = {F1}−[LA1]T {Λu}(n−1)−[DA1]T {Λσ}(n−1)+[K12] {U1}(n−1) .

(25)
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2. Resolution of the local problem:




[K2] − [LA2]T − [DA2]T

− [LA2] [0] [0]

− [DA2] [0] [0]








{U2}(n)

{Λu}(n)

{Λσ}(n)





=





{F2}
− [LA1] {U1}(n)

− [DA1] {U1}(n)





.

(26)

Thanks to the prolongation of the global model over Ω12, the whole stiffness

matrix of the global NURBS patch is now considered without any modifi-

cation. During the iterations, only displacement and force exchanges at the

interface Γ are required. In this sense, the strategy is said to be non-intrusive.

In our case of a NURBS discretization, this may highly facilitate the model-

ing of local behaviors since it avoids the complex task of constructing a new

NURBS parametrization of the global/local model (and of re-constructing

it each time the local region evolves). In addition, it has to be noted that,

regardless of the evolution of the shape of the local region, the global stiff-

ness operator is assembled and factorized only once and the system (25)

remains well-conditioned. The price to pay is the number of iterations but

this one can be deeply reduced by means of accelerations techniques, such

as based on an Aitken’s Delta Squared method or a Quasi-Newton method

(see, e.g., [31, 32]). Numerical experiments to account for this last point will

be carried out in section 5 (Numerical results).

Regarding the implementation, the convergence test usually used to stop

this algorithm relies on the discrete reaction equilibrium between the two

domains. In our case, the global reaction forces along Γ are defined as

{R11} = ([K11] {U11}− {F11}) |Γ and have to be compared to the local

reaction forces pulled back in Ω11, i.e.: {R2} = [LA1]T {Λu}+ [DA1]T {Λσ}.
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It leads to the following definition of the interface equilibrium residual:

η =
|| {R11}+ {R2} ||�

|| {F11} ||2 + || {F2} ||2
. (27)

Remark 7. It may be emphasized that we need to compute the reaction

forces over Γ of the fictitious part of the global model ( i.e., [K12] {U1}) to

make the algorithm work. In order to do so, we use the simple strategy pro-

posed in [32]: the quadrature rule coming from the local problem is transposed

within the global NURBS patch to estimate [K12]. We note that more sophis-

ticated strategies such as the ones elaborated for trimmed surfaces could have

been used here (see, e.g., [43, 44, 45]). In the same idea, we need also to

compute {R11} (involving [K11]) for the interface equilibrium residual (27).

The calculation is performed from the already computed stiffness [K12], i.e.:

[K11] = [K1]− [K12].

Remark 8. It may also be noted that the fictitious prolongation of the global

solution over Ω12 ( i.e., {U12}) has no physical meaning (it depends on the

initialization) and has to be replaced by the solution {U2}.

5. Numerical examples

To assess the performance of the developed method, four numerical ex-

amples are presented in this section. For each, a two-dimensional elastic

model under plane stress is considered. The first two test cases are devoted

to the study of the new coupling method presented in section 3 without

the non-intrusive aspect: the resolution is performed in a monolithic way

(i.e., the system of equations (21) is assembled and solved directly). In the
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last two numerical problems, the iterative algorithm (25)-(26) of section 4 is

implemented in view of performing the non-intrusive local enrichment of a

NURBS patch. Unless otherwise stated, we consider quadratic NURBS basis

functions with the maximum available continuity at the interior knots (i.e.

C1). From here on, the mesh composed of N elements along the first length

and M elements along the second length will be denoted N ×M .

5.1. Beam under shear load

5.1.1. Presentation and preliminary results.

The first example consists of a beam whose geometry and boundary con-

ditions are given in Fig. 4. This problem has become popular in NURBS

to evaluate a coupling method (see, e.g., [9, 24, 26]). The shear load at the

right side is parabolic. As a result of the equilibrium of the structure, shear

tractions of opposite signs and linearly varying normal tractions are found

at the other side. A reference analytical solution is available for the problem

in Zienckewich and Taylor [46]. For the coupling, we consider the situation

of Fig. 4. The interface Γ is located at the middle of the structure. On this

test case, we use the strategies illustrated in Figs. 2(a) and 2(b) to construct

different matching and non-matching NURBS discretizations of the domain

decomposition problem. We recall that this leads to basis functions of higher-

order continuity at the interface Γ. A set of numerical experiments are carried

out along with comparisons with classical published NURBS techniques on

this test case to show the properties of the proposed coupling approach.

To start with, we plot in Fig. 5 the numerical solution in terms of displace-

ment and von Mises stress for a two non-matching meshes model composed

of 5 (along the x-direction) ×3 (along the y-direction) elements in Ω11 and
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L

c

c

x

y

Figure 4: 2D solid beam under shear load: description and data of the problem.

5 × 5 elements in Ω2. We consider Young moduli E11 = E2 = 1000 and

Poisson coefficients ν11 = ν2 = 0.3. The solution appears to be in a good

agreement with references [9, 26]. In particular, the transition of the solution

from one model to the other appears very smooth.

(a) Displacement field (magnitude).

(b) Von Mises stress.

Figure 5: Solution obtained with the new mortar coupling for a two non-matching meshes
model (5× 3 and 5× 5 knot-span elements in Ω11 and Ω2, respectively).

5.1.2. Coupling of matching meshes.

To go further, we investigate more in details the transition across Γ of the

component σxx of the stress tensor. Note that σxx is also the first component

of the traction force that has to be continuous from one model to the other
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across the coupling interface Γ according to Eq. (6). First, a two matching

meshes model composed of 5× 4 elements in Ω11 and 5× 4 elements in Ω2 is

computed in Figs. 6 and 7. Here, we keep Young moduli E11 = E2 = 1000

and Poisson coefficients ν11 = ν2 = 0.3. More precisely, the distribution of

the exact error of the finite element model stress component σxxfe
, i.e. the

error with respect to the reference analytical solution σxxex provided in [46]:

Err−Sig−xx = |σxxfe
− σxxex |, (28)

is mapped around the interface in Fig. 6 (zoomed window: L/4 ≤ x ≤
3L/4 and −c ≤ y ≤ c). To better observe the behavior at the interface,

the jump of σxx across Γ with respect to the vertical coordinate y is then

plotted in Fig. 7. For comparison purpose, the solutions provided by the

basic mortar and basic Nitsche couplings are also computed and added to

the graphs. For the Nitsche coupling, the stability factor was set to 20 as

in [26]. Finally, reference C1 and C0 solutions are added to Fig. 6. The

reference C1 solution is the solution obtained by using a single quadratic C1

NURBS patch composed of 10×4 knot-span elements for the whole structure

(associated knot vector such that {0 0 0 0.1 0.2 . . . 0.5 . . . 0.9 1 1 1} for

the x-direction). For the reference C0 solution, the multiplicity of the middle

knot along x is increased in order to get a C0 continuity at the interface Γ

(knot vector {0 0 0 0.1 0.2 . . . 0.5 0.5 . . . 0.9 1 1 1} for the x-direction).

We clearly observe that only the new mortar coupling is able to correctly

represent the solution around the interface (see Fig. 6(a)). The error seems

to vanish around the interface in this situation. For the classical couplings,

error concentrations appear around the interface (see Figs. 6(b) and 6(c)).
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Interface

(a) New mortar coupling.

Interface

(b) Basic mortar coupling.

Interface

(c) Basic Nitsche coupling.

C   line1

(d) Reference C1 solution.

C    line0

(e) Reference C0 solution.

Figure 6: Distribution around the coupling interface of the exact error of the stress com-
ponent σxx for a two matching meshes model (4 × 5 knot-span elements in Ω11 and Ω2)
and comparison with reference C1 and C0 solutions.
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Figure 7: Jump of σxx along the coupling interface for the two matching meshes model.
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By comparing the coupling solutions to the reference C1 and C0 solutions

(Figs. 6(d) and 6(e)), we notice that a C1 behavior across the interface can

be captured with the new mortar coupling while only a C0 solution at the

interface can be described in the classical approaches. Even if it is only

observable for σxx in the presented figures, we emphasize that exactly the

same solutions (in terms of displacements, strains and stresses) are obtained

for the new mortar coupling (Fig. 6(a)) as for the equivalent single C1 patch

(Fig. 6(d)). In this sense, our method can be classified as a C1 coupling

method: the whole derivative fields of the coupled solution are continuous

across the interface. In the same idea, we can see in Fig. 7 that the jump

across Γ of σxx is null here with the new coupling whereas it increases at the

exterior boundaries for the usual coupling techniques. Such a result accounts

for the necessity of matching the interface tractions coming from the discrete

displacement to get a better transition of the information and so, to obtain

a better accuracy of the coupled solution.

5.1.3. Coupling at a bi-material interface.

To assess the performance of the proposed coupling method in situations

where the solution is not C1 across the interface, the same numerical experi-

ment as in the previous section is carried out but with different constitutive

materials for the subdomains. More precisely, we take E11 = 500 in Ω11 and

E2 = 1000 in Ω2 (and ν11 = ν2 = 0.3). Since the problem is isostatic, the

same reference solution in terms of stress as for the problem in [46] should

be reached. Fig. 8 shows the distribution of the exact error of σxx around

the coupling interface. As in the previous part, the results of the new mortar

coupling along with the classical couplings are given and reference C1 and
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C0 solutions are also added. For the reference solutions, exactly the same

parametrizations as previously are taken but this time, E11 = 500 is applied

on the right part of the patch and E2 = 1000 is applied in the remaining

left area. For completeness, the evolution of the exact error regarding σxx at

each side of the interface with respect to the vertical coordinate y is plotted

in Fig. 9. The jump of σxx across the coupling interface is not plotted for

this numerical experimentation since it can be observed in Fig. 9 with the

discrepancy between the left and right interface errors.

Interface

(a) New mortar coupling.

Interface

(b) Basic mortar coupling.

Interface

(c) Basic Nitsche coupling.

C   line1

(d) Reference C1 solution.

C   line0

(e) Reference C0 solution.

Figure 8: Distribution around the coupling interface of the exact error of the stress compo-
nent σxx for the modeling of a bi-material structure with matching meshes (5×4 knot-span
elements in Ω11 and Ω2) and comparison with reference C1 and C0 solutions.

This time, the reference C1 solution (Fig. 8(d)) does not allow for a cor-
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(a) New mortar coupling.
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(b) Basic mortar coupling.
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(c) Basic Nitsche coupling.

Figure 9: Evolution of the exact error of σxx along the coupling interface for the modeling
of a bi-material structure with matching meshes.
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rect representation of the behavior at the interface (note that the error scale

is multiplied by a factor of ten in contrast to the other solutions). Such a be-

havior was expected here since the whole derivative fields (i.e., all the strain

and stress components) are C0 at the interface for a C1 solution, which is

meaningless from a physical point of view. On the contrary, putting a C0 line

at the interface enables to significantly reduce the error (see Fig. 8(e)). As

before, we observe that the classical coupling approaches (Figs. 8(b) and 8(c))

are able to represent a C0 solution at the interface. Now, what is interesting

to observe here is that our proposed coupling approach seems to be efficient

as well to address bi-material interfaces (see Fig. 8(a)). This is due to the

fact that the quantities that are transmitted from one model to the other

(the discrete displacement and the traction coming from the discrete dis-

placement) are consistent with the initial mechanical problem. In the new

coupling solution (Fig. (8(a))), only these quantities are continuous but not

the whole derivatives as in the reference C1 solution. We therefore end up

with a coupled solution that is meaningful at a physical point of view, and

that enables a better transition of the information at the coupling interface,

which leads to a global diminution of the coupling error (see Fig. (9)).

5.1.4. Coupling of non-matching meshes.

The coupling of non-matching NURBS meshes is now investigated. For

that, the problem of Fig. 4 is computed again with E11 = E2 = 1000 for

a two non-matching meshes model composed of 5 × 3 elements in Ω11 and

5 × 5 elements in Ω2. The distribution of the exact error of σxx around the

coupling interface is shown in Fig. 10. The evolution of the exact error at

each side of the interface with respect to the vertical coordinate y is also
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plotted in Fig. 11 before showing the stress jump across Γ in Fig. 12.

Interface

(a) New mortar coupling.

Interface

(b) Basic mortar coupling.

Interface

(c) Basic Nitsche coupling.

Figure 10: Distribution around the coupling interface of the exact error of the stress
component σxx for a two non-matching meshes model (5 × 3 knot-span elements in Ω11

and 5× 5 in Ω2).

Some error concentrations can be observed at the coupling interface for

every method due to the use of non-matching meshes. Once again, it appears

that the proposed method results in lower error concentrations (particularly

at the exterior boundaries) due to lower stress jumps at the coupling interface.

5.1.5. Convergence behavior in strain energy.

As it has been done for classical mortar and Nitsche couplings (see, e.g., [9,

26, 23]), we finally check the convergence of the new mortar coupled solution

with respect to the refinement of the mesh. In order to do so, we consider

again the problem of Fig. 4 (with E11 = E2 = 1000) and we proceed as

in [46]: the convergence behavior in strain energy is studied. The relative
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(a) New mortar coupling.
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(b) Basic mortar coupling.
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(c) Basic Nitsche coupling.

Figure 11: Evolution of the exact error of σxx along the coupling interface for the two
non-matching meshes model.
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Figure 12: Jump of σxx along the coupling interface for the two non-matching meshes
model.
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energy error is computed as:

|Eex − Efe|
Eex

, (29)

where Efe denotes the strain energy of the NURBS finite element model and

Eex denotes the reference exact strain energy equals to 3296 according to [46].

The coupling of matching and non-matching meshes is investigated. For the

refinement, the meshes indicated in Tab. 1 are used. We recall that quadratic

NURBS meshes are considered, the continuity at the interior lines (and so,

at the interface) being C1. The convergence curves are finally plotted in

Fig. 13 with respect to the equivalent number of elements N el normalized by

the number of elements N el
1 of the equivalent single-patch coarsest mesh (see

left column of Tab. 1 for the associated values).

Number of elements Single-patch Two matching meshes Two non-matching meshes
(N el) mesh (Ω11 ∪ Ω2) (Ω11 ∪ Ω2)

40 (= N el
1 ) 10× 4 5× 4 ∪ 5× 4 5× 3 ∪ 5× 5

160 20× 8 10× 8 ∪ 10× 8 10× 6 ∪ 10× 10
640 40× 16 20× 16 ∪ 20× 16 20× 12 ∪ 20× 20
2560 80× 32 40× 32 ∪ 40× 32 40× 24 ∪ 40× 40

Table 1: Meshes considered to study the convergence behavior.

We observe that the convergence rate and the error constant of the cou-

pled discretizations are equivalent to the ones of the equivalent single-patch

discretization. As emphasized above, the solutions are exactly the same for

matching meshes (see Fig. 13(a)). For sure, a slight discrepancy appears

for non-matching meshes (see Fig. 13(b)) since in this case the single-patch

model cannot exactly represent the coupled model. These convergence curves

demonstrate that the developed coupling method does not interfere with the
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(a) Matching meshes.
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(b) Non-matching meshes.

Figure 13: Convergence of the strain energy for uniform refinement in both subdomains.

global increased accuracy achieved by the NURBS functions.

5.2. Plate composed of a trimmed B-spline patch and a circular NURBS

domain

With the next example, the coupling of non-conforming geometries is

investigated (see Fig. 2(c) as a reminder). The test case concerns an ho-

mogeneous rectangular plate subjected to constant in-plane tension (see

Fig. 14(a)). The geometric model of the plate consists of a quadratic trimmed

B-spline patch and a quadratic circular NURBS domain that are connected

via a circular NURBS curve (see Fig. 14(b) for illustration). Since the con-

necting curve is inside the quadratic B-spline patch, the continuity of the

basis functions of Ω11 along Γ is at least C1. To build the NURBS circular

domain Ω2, we extract it from a larger quadratic NURBS patch containing

an additional layer of two elements (following the strategy depicted in re-

mark 3). In this way, the continuity of the basis functions of Ω2 is C
1 at the

interface Γ. We finally make use of a fictitious domain method to compute

the solution on the grey part of the two NURBS entities.
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(a) Description and data of the problem.
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NURBS domain

(b) Discretization of the coupling problem.

Figure 14: Plate under uniaxial stress modeled by a trimmed B-spline patch and a circular
NURBS domain.
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The results in terms of displacement and stress of the two-domain problem

using the new mortar and classical mortar couplings are given in Fig. 15. The

correct displacement seems to be obtained with the two coupling strategies.

However, a discontinuity of the stresses can be observed with the classical

mortar coupling which leads to some error concentrations at Γ (see Fig. 15(d),

the desired stress being p = 10). The discontinuity seems to completely

disappear in the new mortar coupling solution, which goes with a diminution

of the maximum level of error.

5.3. Non-intrusive analysis of a frame

In the third example, the non-intrusive algorithm (25)-(26) is investigated

for the coupling of two non-matching meshes model. A plane frame analysis

is performed to this end. The numerical problem considered is taken from

Nguyen et al. [24] where a reference solution is provided. As an application

of the use of the non-intrusive coupling strategy, we propose to illustrate,

with this problem, the possibility of making non-intrusive NURBS local re-

finement.

The numerical model is described in Fig. 16. Due to symmetry, only half

of the problem is analysed with appropriate symmetric boundary conditions.

For the discretization of the problem, a C0 line is set up between the two

arms since the geometry at this location is C0. To get a good accuracy, a

quadratic NURBS patch composed of 2 elements into the thickness direction

has been considered for the global model. Into the length direction, we take

8 elements for the vertical arm and 4 elements for the horizontal one. The

local model, located into the corner, is composed of a quadratic mesh of

8 (thickness direction) ×4 (length direction) for both the vertical and the
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(a) New mortar coupling:
disp. uy.

(b) New mortar coupling:
VM stress σvm.

(c) Basic mortar coupling:
disp. uy.

(d) Basic mortar coupling:
VM stress σvm.

Figure 15: Coupled solution for the plate composed of a trimmed B-spline patch and a
circular NURBS domain (top: new mortar coupling, bottom: basic mortar coupling).
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horizontal arm. The continuity of the functions at the interior lines dividing

the patch into elements is C1 everywhere except at the corner line between

the two arms where it is C0. The aim of the non-intrusive algorithm is to

replace the global coarse solution at the corner by a local finer solution thanks

to the exchange of interface data only between the two models.

clamped

sym

F

t

L

L/2x

y

lineC0

2
Non-intrusive 
    coupling

global model

local model

lineC0

Figure 16: Non-intrusive plane frame analysis: problem description.

The deformed configurations obtained once the non-intrusive algorithm

with the new mortar coupling has converged are shown in Fig. 17(a). More

precisely, the global solution (with the fictitious prolongation over the local

area in the corner) and the local solution are plotted on the left while the

combination of the two solutions (the true coupled solution) is represented

on the right. As a reference for the refinement, we also compute in Fig. 17(b)
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=

 Global 
solution

 Local
solution

Coupled 
solution

(a) Converged solution of the non-intrusive algorithm with the new
mortar coupling.

 Global 
solution

 Local
solution

(b) Globally refined solution.

Figure 17: Deformed configuration (scale factor 8) : contour plot of σxy.
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the globally refined model composed of 8× 32 elements for the vertical arm

and 8× 16 elements for the horizontal arm. More precisely, the contour plot

of the stress component σxy is given. The global solution around the corner

of the frame has to be replaced by the solution of the local model to correctly

represent, in this area, the response of the structure.

In Figs. 18(a) and 18(b), the convergence of the non-intrusive strategy for

the new mortar coupling is investigated. The standard fixed point (formed

by Eqs. (25) and (26)) is implemented first. Then, the Aitken’s Delta squared

and Quasi-Newton acceleration techniques are applied to the present situa-

tion to reduce the number of iterations. As expected, we observe in Fig. 18(a)

that the equilibrium residual (see Eq. (27)) goes down to 0. In Fig. 18(b),

the strain energy of the coupled model is plotted during the iterations of the

algorithm. For comparison purpose, the strain energy obtained when per-

forming a monolithic resolution of the same coupled problem is added to this

figure. We see that the monolithic solution is reached by the converged itera-

tive solution which accounts for the accuracy of the non-intrusive algorithm.

Furthermore, we emphasize that the use of acceleration techniques enables

to deeply reduce the number of iterations of the algorithm. On our exam-

ple, a residual below 10−3 can be reached in a tenth of iterations with such

acceleration techniques (see Fig. 18(a)). From the convergence of the strain

energy in Fig. 18(b), it can actually be observed that only 4-5 iterations seem

to be necessary to reach the monolithic solution. Regarding NURBS local

refinement, the price to pay to get a non-intrusive strategy appears then rea-

sonable compared to an intrusive monolithic resolution. For completeness,

we also show the convergence behavior obtained, on the same problem, using
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a non-intrusive strategy with the classical mortar coupling (see Figs. 18(c)

and 18(d)). An equivalent behavior is observed between the two strategies

which means that we do not deteriorate the efficiency of the non-intrusive

algorithm with the new mortar coupling.
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Figure 18: Convergence of the non-intrusive algorithm (top: new mortar coupling, bottom:
basic mortar coupling).

However, the converged solutions differ between the new and classical

mortar couplings. A zoomed view of the converged coupled deformed con-

figuration around the top coupling interface has been done in Fig. 19 to

highlight the difference. In Fig. 19(a), the new mortar coupling is performed

while in Fig. 19(b), the basic mortar coupling is considered. We clearly see an
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undesirable discontinuity at the coupling interface with the basic approach

whereas the transition of the solution appears sufficiently smooth with the

new approach.

(a) New mortar coupling. (b) Basic mortar coupling.

Figure 19: Comparison between the new mortar coupling solution and the basic mortar
coupling solution: zoomed window of plot of σxy at the top interface of the two meshes.

5.4. Non-intrusive analysis of a plate with a center inclusion

The last numerical example concerns the non-intrusive modeling of a

center inclusion within a plate subjected to constant in plane tension (see

Fig. 20(a)). So as to be consistent with composite materials, the Young

modulus for the inclusion is chosen a hundred times larger than for the plate.

One may note that such types of test cases have already been computed

using an embedded Nitsche method (see, e.g., [9]), and that exactly the

same problem has been investigated in Bouclier et al. [32] with the classical

mortar non-intrusive approach. Here, we perform the computation with the

new mortar non-intrusive algorithm (25)-(26).

Regarding the coupled model, we consider that the local region Ω2 in-

cludes the inclusion along with, on the edge, an annulus of two elements
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(a) Description and data of the problem.
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(b) Discretization of the coupling problem.

Figure 20: Non intrusive study of a plate with a center inclusion.
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(into the radial direction) whose material behavior is the same as in the

plate (see, again, Fig. 20). This means that the same materials near the

circular interface Γ are connected in the global/local simulation which allows

for a better efficiency of the non-intrusive strategy (see [32] for a detailed

account regarding this point). For the sake of simplicity, we put a C0 line to

separate the two materials in the local model (see magenta line) but one may

note that our new mortar coupling could have been used instead. As in the

example 5.2, the local discretization is constructed from a larger quadratic

NURBS circular patch to get a C1 continuity of the local solution at Γ. More

precisely, the inclusion is composed of 64 (circumferential direction) ×16 (ra-

dial direction) elements and a mesh of 64 × 2 is considered for the annulus.

The global model constitutes the whole plate discretized using a 10 × 20

quadratic B-spline patch.

The results are given in Fig. 21. Figs. 21(a)-21(c) show, respectively,

the vertical displacement, the vertical strain and the von Mises stress. The

solution is globally in a good agreement with the solution computed in [32].

The stiffer behavior of the inclusion seems to be well captured: the vertical

strain is low while the von Mises stress is high in the inclusion. As in [32],

a residual below 10−3 for the non-intrusive algorithm has been reached in a

few tenths of iterations with the Newton acceleration technique on this test

case.

To finish, we make a comparison in Fig. 22 with the solution obtained us-

ing the classical mortar non-intrusive strategy. The vertical strain is plotted

around the interface Γ for the two mortar couplings. Once again, we observe

a discontinuity of the strain with the classical mortar solution around the
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(a) Converged solution:
disp. uy.

(b) Converged solution:
strain εyy.

(c) Converged solution:
VM stress σvm.

Figure 21: Non-intrusive analysis with the new mortar coupling of a plate with a center
inclusion.
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interface Γ at the top and at the bottom (see Fig. 22(b)). In contrast, the

solution appears to be perfectly smooth with the new mortar coupling (see

Fig. 22(a)). For completeness, the difference between the two solutions (i.e.:

|εyyC1
− εyyC0

| where εyyC1
and εyyC0

are the solutions associated the new

and classical mortar couplings, respectively) is plotted in Fig. 22(c). There-

fore, the proposed coupling method seems to respect the analysis properties

of IGA: it enables to get a smoother solution when it is meaningful from a

physical point of view.

6. Conclusion

In this paper, we have developed a new coupling method to connect differ-

ent NURBS subdomains within a NURBS patch. The objective is to address

the difficulty of integrating different discrete models in different regions of a

NURBS patch. The interest of the developed method is that it makes use

of the higher-order continuity offered by the NURBS basis functions. In or-

der to do so, we have proposed to match, across the coupling interface, the

traction forces coming from the discrete displacement as well as the usual

discrete displacements. Since the two quantities transmitted in the coupling

formulation are consistent with respect to the initial mechanical problem, we

end up with a strategy that is suitable with the continuity of the physical so-

lution: when the physical solution is sufficiently smooth, the strategy enables

to represent a C1 behavior; but, when only a C0 displacement is expected

(such as in the case of bi-material structures for instance), no additional er-

rors are introduced since only the traction force is continuous and not the

whole derivative fields. The performance of the developed method has been
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(a) New mortar coupling.

(b) Basic mortar coupling.

(c) Difference between the two couplings.

Figure 22: Comparison between the new mortar coupling solution and the basic mortar
coupling solution: zoomed window of plot of εyy around the interface.
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demonstrated on a set of numerical experiments involving the coupling of

matching meshes, non-matching meshes, and non-conforming geometries in

2D linear elasticity. It has been observed that the new coupling method re-

sults in lower stress jumps at the coupling interface than the classical NURBS

coupling techniques (basic mortar [23, 32] and Nitsche [9, 26, 23]), which al-

lows for a better transition of the mechanical information from one model to

the other. The developed approach appears then to us more consistent with

the analysis properties of IGA since it allows for a smoother representation

of the solution across the interface.

To ensure the two coupling constraints, a Lagrange multiplier approach

has been considered. As a consequence, we have introduced two Lagrange

multipliers: the first one is devoted to the continuity of the discrete dis-

placement as usual, and the second one enables to ensure the additional

constraint, i.e., the continuity of the traction force coming from the discrete

displacement. Since based on the use of Lagrange multipliers, we have been

able to build a non-intrusive algorithm for the resolution of the new coupling

formulation. As demonstrated in [32], a non-intrusive methodology appears

well-suited for the local enrichment of NURBS patches. The main advantages

are: the elimination of costly NURBS re-parametrization procedures for the

global model (even if the local area evolves), the possibility to assemble and

factorize the global stiffness operator only once, and the good conditioning

of the systems to be solved. Therefore, the combination of a non-intrusive

approach with the developed coupling method offers the possibility to simply

model local behaviors within a NURBS patch, with the additional benefit of

a smoother transition of the solution between the global and local models.
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Even if the numerical experiments have been limited to two-dimensional

linear elasticity in this work, the proposed coupling method may easily ap-

ply to three dimensions and nonlinear models (see, e.g., [31] in the context

of standard non-intrusive FEM). This opens the door to tackle more realistic

engineering applications. Furthermore, it has to be noted that the non-

intrusive local enrichment of NURBS patches may not be the only applica-

tion of such a method. Indeed, taking advantage of the Lagrange multipliers

approach, the proposed methodology seems to be adapted to the develop-

ment of more regular non-overlapping domain decomposition methods to

be used for high performance computing on parallel computer architectures

(see, e.g., [38, 39, 40] for the elaboration in the context of classical FEM).

In addition, in the same idea of what is performed in [47], such a coupling

may also serve as a basis to develop a strategy that could connect different

NURBS patches while ensuring a C1 continuity at the interface. This would

enable to construct full C1 multi-patch geometries.
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[11] J.C. Passieux, J. Réthoré, A. Gravouil, M.C. Baietto, Local/global non-

intrusive crack propagation simulation using multigrid XFEM solver,

Computational Mechanics 52 (2013) 1381-1393.

[12] L. Gendre, O. Allix, P. Gosselet, F. Comte, Non-intrusive and exact

global/local techniques for structural problems with local plasticity,

Computational Mechanics 44 (2009) 233-245.

[13] C. Rabut, Locally tensor product functions, Numerical Algorithms 39

(2005) 329-348.

[14] A.V. Vuong, C. Giannelli, B. Juttler, B. Simeon, A hierarchical approach

to adaptive local refinement in isogeometric analysis, Computer Methods

in Applied Mechanics and Engineering 200 (2011) 3554-3567.

[15] D. Schillinger, L. Dede, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank,

T.J.R. Hughes, An isogeometric design-through-analysis methodology

based on adaptive hierarchical refinement of NURBS, immersed bound-

ary methods, and T-spline CAD surfaces, Computer Methods in Applied

Mechanics and Engineering 249-252 (2012) 116-150.

58



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

[16] T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally re-

fined box-partitions, Computer Aided Geometric Design 30 (2013) 331-

356.

[17] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R Hughes, S. Lip-

ton, Isogeometric analysis using T-splines. Computer Methods in Applied

Mechanics and Engineering 199 (2010) 229-263.

[18] M.A. Scott, X. Li, T.W. Sederberg, T.J.R. Hughes, Local refinement

of analysis-suitable T-splines, Computer Methods in Applied Mechanics

and Engineering 213-216 (2012) 206-22.

[19] L. Beirão da Veiga, A. Buffa, D. Cho, G. Sangalli, Analysis-suitable T-

splines are dual-compatible, Computer Methods in Applied Mechanics

and Engineering 249 (2012) 42-51.

[20] A. Chemin, T. Elguedj, A. Gravouil, Isogeometric local h-refinement

strategy based on multigrids, Finite Elements in Analysis and Design

100 (2017) 77-90.

[21] C. Hesch, P. Betsch, Isogeometric analysis and domain decomposition

methods, Computer Methods in Applied Mechanics and Engineering

213-216 (2012) 104-112.

[22] E. Brivadis, A. Buffa, B. Wohlmuth, L. Wunderlich, Isogeometric Mortar

methods, Computer Methods in Applied Mechanics and Engineering 284

(2015) 292-319.

[23] A. Apostolatos, R. Schmidt, R. Wuchner, K.U. Bletzinger, A Nitsche-

type formulation and comparison of the most common domain decom-

59



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

position methods in isogeometric analysis, International Journal for Nu-

merical Methods in Engineering 97 (2014) 473-504.

[24] V.P. Nguyen, P. Kerfriden, S. Claus, S.P.A. Bordas, Nitsche’s method

method for mixed dimensional analysis: conforming and non-conforming

continuum-beam and continuum-plate coupling, arXiv:1308.2910v1.

[25] Y. Guo, M. Ruess, Nitsche’s method for a coupling of isogeometric thin

shells and blended shell structures, Computer Methods in Applied Me-

chanics and Engineering 284 (2015) 881-905.
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