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In this work, we develop a mortar method for the coupling of NURBS sub-
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domains within a NURBS patch that keeps the benefit of using more regular
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functions. The idea is to use two Lagrange multipliers to match, across the
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coupling interface, the tractions coming from the discrete displacements in
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addition to the discrete displacements. It results in a strategy that is suit-
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able with the continuity of the physical solution: when the physical solution
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is sufficiently smooth, the strategy enables to represent a C!' behavior; but,
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when only a C° displacement is expected, no additional errors are introduced
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since only the traction force is continuous and not the whole derivative fields.
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Lower stress jumps at the coupling interface can then be observed which
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allows for a better transition of the information. As an application, a non-
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intrusive algorithm is also built for the proposed coupling method, which
enables simple and flexible local enrichments of NURBS patches without
loosing the interest of using more regular functions. A range of numerical
examples in two-dimensional linear elasticity are carried out along with com-
parisons with other published NURBS coupling techniques to demonstrate
the performance of the proposed coupling and its interest when combined to
a non-intrusive strategy.

Keywords: Isogeometric analysis, NURBS, Domain decomposition, Mortar

method, Non-intrusive coupling, Non-conforming geometries

1. Introduction

The IsoGeometric Analysis (IGA), which was first introduced in Hughes
et al. [1] and later developed in Cottrell et al. [2], relies on the use of the same
functions for the finite element analysis as those used to build the geome-
try of Computer-Aided Design (CAD) models. Thus, Lagrange polynomials
are replaced by Non-Uniform-Rational-B-Splines (NURBS) functions, which
constitute the most commonly used technology in CAD. This enables one to
deal with both design and analysis using exactly the same geometric models.
In addition to the geometric aspect, NURBS functions have a higher order
of continuity, namely C'»~1 through the knot-span elements of the mesh for
a polynomial degree p, which on a per-degree-of-freedom basis exhibits in-
creased accuracy in comparison to standard Finite Element Methods (FEM)
(see, e.g., [3] for a theoretical analysis, [4] for structural vibrations, [5] for
standard elasticity, [6] for embedded domain methods and [7, 8] for shell anal-

ysis). If the global accuracy of NURBS is now proved, difficulties are still
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encountered to integrate different discrete models in a NURBS patch. The
reason for this is the rigid tensor product structure of NURBS which neces-
sarily implies a structured quadrangular mesh. As a consequence, the local
mesh refinement is not possible directly with the NURBS technology. More
generally, the delimitation of a subregion of any shape within a NURBS
patch is far from trivial, which prevents from the simple modeling of any
specific local behaviors (e.g., introduction of an inclusion [9], crack propaga-
tion [11, 10], emergence of a plastic zone [12], ...). Indeed, the basic strategy
may involve a re-parametrization of the whole NURBS model, including the
splitting of the new geometry into several patches with C° continuity at the
boundaries. This entails a considerable modeling effort which is often as com-
plex and time consuming as standard mesh generation and then, is opposed
to the core idea of IGA.

To answer the issue of local mesh refinement, numerous research works
have been dedicated to the construction of new splines these last years. To
start with, one may cite the hierarchical B-splines and NURBS [13, 14, 15].
These new splines are easy to implement but the local mesh refinement
still seems to spread for higher-order functions. With similar properties,
one may also cite the development of LRB-splines [16] and multigrids-based
NURBS [20]. Alternatively, another technology seems to have gathered an
important momentum from both the computational geometry and analy-
sis communities : the so-called T-splines [17, 18, 19]. In addition to be
efficient for local mesh refinement, the T-splines also appear suitable to ad-
dress trimmed multi-patch geometries. However, the implementation can

appear complex and additional efforts may be necessary for the more general
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situations mentioned above (modeling of an inclusion, local fracture, local
plasticity).

To circumvent the problem, the purpose of this work is to develop a cou-
pling method that is able to connect different NURBS subdomains within
a global NURBS patch. Regarding NURBS coupling, many attempts have
been devoted these last five years to the connection of NURBS patches to
foster the study of multi-patch geometries. Certainly one of the first works
on the subject was that of Hesch and Betsch [21], who used a Lagrange
multiplier field to add the work performed by coupling tractions along the
interface to the weak form. In the framework of NURBS Lagrange multiplier
methods, one may also cite the work of Brivadis et al. [22] where several
choices of Lagrange multiplier spaces are investigated theoretically and nu-
merically. Then, a comparative numerical study in Apostolatos et al. [23]
showed the efficiency of a Nitsche-based technique for NURBS. Nitsche cou-
pling has subsequently been used for connecting 3D NURBS patches [9], for
3D-plate NURBS coupling [24, 25|, and with NURBS immersed boundary
methods [26]. Even if it may appear interesting due to the absence of ad-
ditional degrees of freedom, the Nitsche method leads to a comparatively
high computational effort since an additional eigenvalue problem has to be
solved for the stabilizing term. As a result, Dornisch et al. [27] developed
a weak substitution method to simplify the implementation and reduce the
computational cost. From this overview, it may be noticed that most of the
coupling techniques elaborated for NURBS nowadays are dedicated to the
connection of NURBS patches, i.e., the coupling along a C? interface. Unlike

these works, we are interested here in a method suitable for the coupling of
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NURBS subdomains within a NURBS patch, i.e., where the continuity of the
basis functions is expected to be higher than C°. As a result, the objective of
our work is to develop a coupling formulation that makes use of the higher-
order continuity achieved by the NURBS functions. In particular, the better
representation of the derivative fields offered by NURBS is of importance.
When applied to perform local enrichment, an interesting feature of a
coupling method may be its ability to be implemented using a non-intrusive
strategy. Roughly speaking, a method is said to be non-intrusive when its
implementation is very simple from existing techniques and numerical codes.
In the context of standard FEM, a group of global/local coupling methods,
classified as non-intrusive, has emerged these last years. Based on the idea
of Whitcomb [28] and formalized later in Gendre et al. [12] for the modeling
of local plasticity, these methods involve the definition of two finite element
models: a global coarse model of the whole structure and a local more de-
tailed ”submodel” meant to replace the global model in the area of interest.
An iterative coupling technique is used to perform the substitution in an
exact but non-intrusive way: only interface data are transmitted from one
model to the other and the global stiffness operator remains unchanged (in-
dependently from the shape of the local domain). The performance of such
a strategy has been highlighted in many applications (see, e.g., [11] for the
modeling of crack propagation, [29] for the modeling of localized uncertain-
ties, [30] for 3D-plate coupling and [31] for nonlinear domain decomposition).
More recently, an extension in the NURBS context has been proposed in
Bouclier et al. [32] and has proved to be a good candidate for NURBS local

enrichment. Among the advantages, one may cite the elimination of costly
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NURBS re-parametrization procedures for the global model (even if the lo-
cal area evolves), the possibility to assemble and factorize the global stiffness
operator only once, the good conditioning of the systems to be solved, and
the easy merging for a NURBS code with any other specific numerical codes.
However, the coupling method used in this contribution was the classical one
and thus, only a C° continuity across the coupling interface was ensured. As
a result, the goal of the present work is not only to develop a coupling method
suitable with the higher-order continuity of NURBS, but also to be able to
implement it in a non-intrusive way to perform NURBS local enrichment.

In this context, we propose in this paper a coupling method in which the
tractions coming from the discrete displacements are matched, in addition to
the usual discrete displacements, across the coupling interface. It results in a
strategy able to represent a C'* behavior at the interface but also suitable to
capture a C° displacement (such as in the case of bi-material structures for
example). The reason for this is that only physical quantities are transmitted
from one model to the other. To meet the non-intrusive aspect, a Lagrange
multiplier approach is followed. More precisely, two Lagrange multipliers
are introduced to ensure the two coupling constraints. We believe that the
proposed method is more consistent with the analysis properties of IGA since
it allows for a smoother representation of the solution across the coupling
interface.

The paper is organized as follows: first a brief review of IGA with NURBS
is given and the reference coupling problem to be solved is presented in
Section 2; after reviewing the classical NURBS approaches, the new cou-

pling method is constructed in Section 3; then, the associated iterative non-
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intrusive algorithm is built in Section 4; Section 5 presents a set of numerical
experiments in two-dimensional linear elasticity to assess the performance of

our methodology; finally, concluding remarks are formulated in section 6.

2. The reference NURBS domain decomposition problem

This section establishes the context of the study and introduces the cor-
responding notations. First, a brief review of the concept of NURBS-based
IGA is provided and the difficulty to integrate different discrete models in
different regions of a NURBS patch is highlighted. Then, the reference do-
main decomposition problem along with its governing equations and its weak

form is presented.

2.1. Isogeometric analysis based on NURBS

For the discretization of the problem, the recent concept of IGA based
on NURBS functions is used. Let us start by briefly reviewing the concept.
Only the fundamentals are given here. For further details, the interested
reader is referred to the references cited below.

The NURBS concept was first introduced in Hughes et al. [1] and formal-
ized more recently in the book by Cottrell et al. [2]. NURBS functions are
a generalized version of B-spline functions and have become a standard for
geometric modeling in CAD and computer graphics (see, for example, Cohen
et al. [33], Piegl and Tiller [34], Farin [35] and Rogers [36]). These functions
lend themselves to an exact representation of many shapes used in engineer-
ing, such as conical sections. They can be viewed as rational projections of
higher-order B-splines and, therefore, they possess many of the properties of

B-splines, the most interesting one being their high degree of continuity.

7
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For the presentation in this section, we consider a domain in 3D so as
to be general. If Ng, A € {1,2,..,n} denote the n 3D NURBS functions,
wa, A € {1,2,..,n} the associated weights and P4, A € {1,2,..,n} the asso-
ciated control points of coordinates x4 in the global coordinate system, the
geometry of the structure is described through the position vector M defined

as:

M= Naxa (1)

A=1
where the NURBS functions are obtained from the B-spline functions N 4, A €

{1,2,..,n} such that: o
NAwA

Y Nawa

Now, all one needs to do in order to define the 3D B-spline functions N 4

N (2)

at control point P4 is to perform the tensor product of the 1D B-spline
functions associated with this point in the three spatial directions. If one
denotes M} i € {1,2,..,m}, M7,j € {1,2,..,no} and M}, k € {1,2,..,ns}
the ny, ny and nz 1D B-spline functions associated with each of the three
spatial directions, this means that at control point P4, which corresponds to

the it", j® and k™ control points in these directions, one has:
Na =M x M x M. (3)

The 1D B-spline functions are defined using a knot vector. Each knot vector
associated with a direction is defined in the parametric domain. For example,
for the first direction, one takes knot vector = = {&,&s, .., &n +pt1}, Where

& € R is the I*! knot, with [ being the knot index (I € {1,2,..,n, +p+1})
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and p the polynomial degree of the functions M},i € {1,2,..,n;}. The
knots divide the parametric space into knot-span elements. In the following,
the knot-span elements will be also simply denoted by the elements. The
interval [£1, &, +p+1] constitutes the NURBS patch. Thus, unlike standard
FEM where each element has its own parametrization, the parametric space
of B-Spline functions is localized onto the patch. The patch may be seen as
a macro-element. Many geometries utilized for academic test cases can be
modelled with a single patch. In two-dimensional topologies, a patch is a
rectangle in the parametric domain. In three dimensions it is a cuboid.
There can be more than one knot at a given location of the parametric
space. If m is the multiplicity of the considered knot, the functions have CP~™
continuity at that location. Thus, for quadratic and higher-order NURBS,
the continuity at the elements boundaries at the interior of the NURBS
patch is expected to be higher than the classical C° regularity encountered
in standard FEM. If the knots are evenly spaced, the knot vector is said to be
uniform. A knot vector whose first and last knots have multiplicity p + 1 is
said to be open. In this case, the basis is interpolating at the boundary nodes
of the interval, which facilitates the application of the boundary conditions.
Only open uniform knot vectors will be considered in this work. The 1D B-
spline basis functions for a given order p are defined recursively from the knot
vector using the Cox-de Boor recursion formula (see, for example, Cohen
et al. [33]). To take advantage of the superior approximation properties
of NURBS functions, we choose them to be at least of polynomial degree
two in the three spatial directions. As far as continuity is concerned, we

perform k-refinement, meaning that we add elements while keeping the higher
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degree of continuity of the NURBS functions, namely CP~! at the knot level.
The positions of the control points and the values of the associated weights
can be adjusted in order to build conical sections exactly, after which these
geometries are preserved through mesh refinement. For a good overview of
mesh generation and refinement, see Cottrell et al. [37].

The tensor product nature of NURBS shape functions (see Eq. (3)) makes
it difficult to handle localized phenomena within the NURBS patch. In
other words, we necessarily end up with a structured quadrangular mesh in a
NURBS patch. For example, this makes the local mesh refinement impossible
directly (see, e.g., [15] for completeness). More generally, this makes the
integration of a subregion (of any shape) within a NURBS patch far from
trivial. Indeed, since standard IGA technology requires a boundary fitted
discretization for the analysis, a re-parametrization of the whole NURBS
model taking into account the subregions may be required. This may lead to
the splitting of the new geometry into several patches with C° continuity at
the boundaries. This entails a considerable modelling effort, which is often
as complex and time consuming as standard mesh generation. More details

regarding this issue can be found in [26, 32].

2.2. The NURBS domain decomposition problem

To circumvent the problem of the integration of subregions within a
NURBS patch, it is proposed in this work to develop a coupling method that
is able to connect different NURBS subdomains within a global NURBS
patch. The corresponding domain decomposition problem to be solved is

introduced in the following.

10
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2.2.1. Governing equations.

We consider in this work the case of multi-domain linear elasticity in {2 C
R?, d = 2 or 3 being the dimension of the problem. Domain ) constitutes
the NURBS patch to be decomposed into subdomains. For simplicity in the
presentation, we assume that €2 is divided into only two disjoint, open and
bounded subsets ; and 2, such that © = Q;; Uy and Q;; N Qy = &.
Those two non-overlapping subdomains share a common interface denoted I
(see Fig. 1). Domains Q;; and €, are subjected to body forces 2 and f¥,
respectively. Furthermore, forces F$; and F§ are associated to boundaries
I'r, and I'g, and, displacements uf; and u§ are prescribed over boundaries

I'y,, and I'y,. The boundaries satisfy the following relations :

T'p UL, UT =00,

FFm ﬂFum — @
with m = 11 and 2.
I'p NI'=9

I, NT =2

o

"
Remark 1. As subdomains are open, one would need to write 2 = Q1 U s

to be rigorous with the boundary I'. In the paper, we decide to omit this

notation for the sake of readability.

Remark 2. Regarding the notation, the reason why we use 211 and Qs for

the subdomains instead of 01 and Qo will appear in section 4.

Regarding the NURBS discretization, domains €2;; and {2, are composed

of several NURBS knot-span elements (or pieces of knot-span elements). In

11
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Fuu

1

Figure 1: Reference domain decomposition problem.

practice, these regions are built by extracting a central zone from a larger
NURBS patch made of open knot vectors (as it is done in hierarchical ap-
proaches [13, 14, 15, 20]). The principle of such constructions is illustrated in
Fig. 2 for the two-dimensional case. The figure shows the parametric spaces
of three different domain decomposition problems. On these examples, we
start by defining several discretizations of the global NURBS patch in €2 and
then, we extract the regions that compose the subdomains. The associated
one-dimensional case with quadratic B-Spline basis functions is added in
Fig. 2(a). For each subdomain, the control points that are associated to the
basis functions whose support is not in the subdomain are removed. We no-
tice that an identical procedure is used in Chemin et al. [20] to construct the
local NURBS grids of the multigrid algorithm. Depending on the NURBS
discretization of the two subdomains along the interface I', three coupling

situations are possible:

1. The coupling of matching meshes (see Fig. 2(a)): in this case, the inter-
face I is aligned with the edges of the elements in the two subdomains
and the meshes of the two subdomains along the interface are perfectly

aligned.

12
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2. The coupling of non-matching meshes (see Fig. 2(b)): in this case,
the interface I' is aligned with the edges of the elements in the two
subdomains but the meshes of the two subdomains along the interface
are not aligned.

3. The coupling of non-conforming geometries (see Fig. 2(c)): in this case,
the interface I' is not aligned with the edges of the elements which

means that some knot-span elements are overlapped.

From such constructions, it results that the continuity of the basis functions of
the two subdomains at the coupling interface T is higher than C° (provided
quadratic (or higher-order) NURBS basis functions are used). This is in
contrast with the more usual situation of the coupling of IGA patches which

is achieved along C? interfaces (see, e.g., [9, 22, 23, 26, 27]).

Remark 3. Starting with the whole global NURBS patch and then extract-
ing the discretizations of the subdomains as illustrated in Fig. 2 may not be
necessary in practice. Indeed, to ensure a higher-order continuity of the func-
tions at the coupling interface, only a few additional knot-span elements have
to be considered at the exterior of the interface coupling. For example, in
the case of conforming geometries (see Fig. 2(a) and 2(b)), only p additional

knot-span elements are required to reach a CP~' continuity at the interface.

Remark 4. Regarding local mesh refinement, it may be noted from the three
coupling cases presented above that we undertake to solve more general situ-
ations than the ones classically encountered with hierarchical B-Splines and
NURBS. Indeed, the usual IGA hierarchical approaches are often restricted

to the situation of conforming geometries.

13
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Extrah r ;4raction

Q11 P2

(a) Coupling of matching meshes.

Extra$\ A4action

Oy NiF)

(b) Coupling of non-matching meshes.

Extractio\* ‘E/

xtraction

Ql NIS)

(c) Coupling of non-conforming geometries

Figure 2: NURBS discretizations of the domain decomposition problem: illustrations in
the parametric space. 14
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The problem to be solved is a classical two-domain linear elastic problem
in 11 Uy. In each subdomain, the kinematic constraints, the equilibrium
equations and the constitutive relations have to be verified. Using the sub-
script m to denote a quantity that is valid over region €2,,, with m = 11 and

2, the corresponding governing equations read:

For the sake of readability, we decided to use bold symbols for vectors while
we underline twice the second- and four times the fourth-order tensors. In
the above equations, ¢ (um) denotes the infinitesimal strain tensors, oy, the

Cauchy stress tensors and C, the Hooke tensors. mny; and ny represent the

outward unit normals to Q;; and (s, respectively. For the coupling interface,

the continuity of the displacements:
u; —u=0 on I'; (5)
and the equilibrium of the traction forces:

oung +on; =0 on I'; (6)

have to be ensured. In the following, we will consider the unit normal vector

n over the interface I' such that n = ny;|r = —ns|r.

15
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2.2.2. Weak form of the problem.
Let us introduce the subspaces of [H' (€2)]* needed for the weak equilib-

rium of the complete domain 2, namely:

U= {u € [H' (Q)}d, ulp, = uf, and ulp,, = ug} ;
(7)
V= {v € [H' (Q)}d, vlr,,, =0and v, = O} :

Using the principle of virtual work, we obtain the variational form of the

elasticity problem (4)-(6), as follows:

Find u € U such that:

a(u,v)=1(v), VYweV,

where the bilinear form a and the linear form [ read:

a(u,v)= Z Ay, (W, Vi) = Z / g(vm):%g(um)de;

m=11,2 m=11,2

(V)= > ()= > / Vi - FEAQ,, + /F Vi - FEAT

m=11,2 m=11,2

9)

3. The proposed coupling method

In this part, the proposed coupling method is presented first under its
variational continuum form and then under its discrete form. For a better
understanding of the new method, we first recall in the variational setting
two strategies that have been classically used in IGA: the mortar coupling
(see, e.g., [22, 23]) and the Nitsche coupling (see, e.g., 23,9, 24, 26, 25]). To
avoid confusion with the newly developed method, we denote these estab-

lished strategies by the ”classical mortar coupling” and the ”classical Nitsche
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coupling”, respectively.

3.1. The continuum wversion

We now regard the coupling problem (4)-(6) as a two-domain elasticity
problem with mutually influencing boundary conditions along the common
coupling interface I'. We thus start by defining the functional spaces U,
and V,, over domain €2, that will contain the solution and trial functions

respectively:

Uy, = {um e [H' (Qm)]d, Unlr, = urgn} VY, = {Vm e [H' (Qm)]d

(10)
We recall that the subscript m € {11, 2} denotes a quantity that is valid over

domain €2,,.

3.1.1. A review of the classical mortar approach.

In the context of mortar approaches or, in other words, in the context of
Lagrange multiplier methods, a mixed formulation is set up to impose the
coupling constraints (5) and (6). Classically, a single Lagrange multiplier A €
M (where M is an appropriate space) is introduced, as the dual unknown,
to represent both of the interface traction forces, i.e., c;yn = gyn = —X in
Eq. (6). Then, the interface Dirichlet condition (5) is imposed in a weak
sense over I' using the Lagrange multiplier. This leads to the formulation of

the following Lagrangian of the coupled problem:

1

1
Lbasic((un, 112), A) = Zan <u11, 1111)‘1‘5@2 (UQ, uz)—ln (1111)—12 (U2)+b (>\7 Ui — 112) .

2
(11)
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Bilinear forms a,, and linear forms [,,, are given in Eq. (9) and bilinear form

b is defined such that:
b(p,u) = /u ~udl. (12)
r

With above developments, we can finally obtain the classical mortar coupling

formulation of the reference problem as follows:

Find u;; € Uy, up € Uy, and A € M such that:
an (11117 Vll) + b()\, V11) =1In (Vll) . Vv € Vi ; (13)
Qo (llQ, V2) — b()\, V2) = l2 (Vz) s VVQ S Vz 3

b(p, a1 —uz) =0, Vp e M.

One advantage of such a formalism is that within its discrete form, it
enables to keep separated and unmodified the stiffness operators associated
to the subdomains. Indeed, the communication between the subdomains
is performed via the Lagrange multiplier only. This feature is the basis
of the non-overlapping domain decomposition methods developed for high
performance computing on parallel computer architectures (see, e.g., [38, 39,
40]). In the same idea, such a property enables to build non-intrusive coupling
algorithms for the modeling of local behaviors (see, e.g., [12, 11, 30, 31, 32]).
Several numerical codes can then be coupled in an iterative way with the
exchange of only interface data to carry out the global/local simulation.
However, the drawback of such a formulation is that a special care may
be required for the construction of the approximation space of M to avoid
undesirable energy-free oscillations (due to the non-satisfaction of the inf-sup

condition).

18
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3.1.2. A review of the classical Nitsche approach.

Conversely, in the Nitsche coupling technique, the stiffness operators of
the different subdomains are merged together which eliminates the need of
additional degrees of freedom. A connection between Nitsche and Lagrange
multiplier couplings can be made (see, e.g., [41, 42]). Starting with the
Lagrange multiplier method, the idea to obtain the Nitsche method is to
replace the Lagrange multiplier by the mean interface resultant force coming

from the displacement. We therefore define the average of the stresses and

() I

(vi) + (1 - 7) 2g(V2)) o

of the virtual stresses on the interface as follows:

s

I1on

{g = (’7011 (uin) + (1 - 7)2(“2)) Ir = (’7011 g(un) + (11—~

—~
N
Il
VS
2
Q
<
_|_
=
|
2
q
[ \)
2
N
N———
CH
Il
7 N
2
0
I1on

(14)

We note that in most situations (particularly when the material properties
of the subdomains to couple are close), v = 1/2 is considered. Denoting
now the jump of the displacements and of the virtual displacements on the

interface such as:

[u] = (w1 —ug)p and [v] = (vi1 — va)p, (15)
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we obtain the following Nitsche bilinear form:

aN<(u11, u), (VH,VQ)) = ayy (U171, vi1) + a2 (ug, vo) — /F[[u]] . {;} ndl’ — /F {g} n - [v]dl.

(16)

This bilinear form needs finally to be enriched with a stabilization term to
ensure the ellipticity of the boundary value problem. Denoting the stabiliza-
tion parameter by «, the stabilized variational formulation of the problem

using the classical Nitsche approach can be written as follows:

Find (uy1,u2) € Uy X Uy, such that:

aN((uu,ug),wu,vQ)) ta /F [u] - [V]dT = L (Vi) + 1s (va), ¥ (vi1, Vo)

S V11 X VQ.

(17)

While in formulation (13) a suitable approximation space for the Lagrange
multiplier needs to be chosen, the Nitsche approach (17) requires the choice
of a suitable value for a. It has been shown that an estimation of o can be
obtained by solving a generalized eigenvalue problem [23, 9] (or several local

eigenvalue problems [26]) over the interface.

3.1.3. The newly-developed mortar approach.

In the two coupling formulations presented above, we notice that the prop-
erty of higher-order continuity of the NURBS basis functions at the interface
I' has not been used. Indeed, if the continuity of the discrete displacement
is enforced across I', there is no reason with such formulations that the in-
terface traction force coming from the discrete displacement is continuous

through the interface. In other words, there is no reason that the discrete
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displacement solution satisfies:

(2u(uin = ga(us)n) r = (% E(unn - G g(uz)n> r=0. (18)

However, it has to be noted that such an equality is verified by a single
NURBS patch solution and that such a constraint seems to have a physical
meaning according to Eq. (6) of our reference problem. As result, we propose
in this work to add constraint (18) in our solution space U and virtual space
V (see, eq. (7)). We emphasize that such a treatment seems to be consis-
tent here because the interpolated functions are more regular (at least C*),
which implies that the gradients of the displacement, and so the stresses and
tractions forces, are defined at the coupling interface.

To take into account the additional constraint in our coupling formula-
tion, we propose to follow a Lagrange multiplier strategy since the intended
application of this work is the non-intrusive local enrichment of NURBS
patches. Two Lagrange multipliers are thus introduced: A, € M, is devoted
to the displacement relation as in the classical approach and A, € M, is

devoted to the constraint (18). The associated new Lagrangian reads:

1

1
Lnew((ull) 112>> ()\m Aa)) = 5(111 (1111, u11) + §Cl2 (1127 u2) — (1111) — (112)

+ b ()\u» up; — UQ)

+ b <Ag, 0‘11(1111)1'1 — 2(112)1’1) s

(19)
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which enables to get the following variational formulation:

Find uy; € Uy1, ug € Uy, A, € M, and A, € M, such that:
ar (ag1, vin) + b( Ay, vin) + b(Aa,g(un)n) =l (vi1), Vv € Vip;

a9 (UQ,VQ) — b()\u, V2> — b()\g,g(ug)n) = l2 (Vg) y VVQ c VQ 3

b(#’ua Uy — 112) = 0’ vl”’u S MU ;

( O(1to, o (win)n — aa(uz)n) = 0, Vi, € M.

(20)

This formulation will be denoted "new mortar coupling” in the following
of the paper. We will show in section 5 (Numerical results) that the addition
of constraint (18) for the coupling enables to represent a C'! displacement
across the interface while only a C° solution can be described in the clas-
sical approaches. Furthermore, we insist on the fact that the additional
constraint considered has a physical meaning from the reference coupling
problem. Thus, the new coupling is also suited to describe a solution that
is not C! across the interface (such as in the case of the coupling of differ-
ent materials for instance). When the intended solution is not C*, we will
see that no additional errors are introduced since only the interface traction
force coming from the discrete displacement is continuous (and not the whole

derivative fields of the discrete displacement).

3.2. The discrete version

We now construct the discrete operators associated to the new mortar
coupling formulation. To this end, let us introduce the NURBS functions

NIt A€ {1,2,..,n,1} and N3, B € {1,2,..,ny} that discretize domains €,
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and €y, respectively. Following the principle of isoparametric elements, the
basis (N3) scq1o, niy @04 (N3) (10, npy are used to build the finite ele-
ment spaces U and UL corresponding to the discretization of Uy and Uy,
respectively. As stated above, the discretization of spaces M, and M, may
require special attention to avoid numerical problems. Nevertheless, we have
been able to obtain satisfactory results (i.e., that we never encountered in-
stabilities in our computations) with a very basic strategy. For the sake of
simplicity, we chose to use the same finite element space M" for the two
Lagrange multipliers. Then, we adopted a classical strategy (see, e.g., [31]):
the trace along the coupling interface I' of the NURBS functions of subdo-
main {2, (assumed to be descretized with the finer mesh) was considered for
M?". The resulting one-dimensional functions are denoted (N7) De(1.2,.my)"
We emphasize that other choices could also have been made: for instance,
the trace of the NURBS functions of domains €2y along the coupling interface
seems to produce equivalent results. By substituting the NURBS approxi-
mations in the weak form Eq. (20), we can obtain the following linear system

to be solved:

ka0 A" pan)” | [ (o) ( (A1)
[0] (K] —[LA2]" —[DA2]" {02} _ {F2}
[LA11]  —[LAZ2] [0] [0] {A} {0}
(DAL —[DA2) (o] o | o] | o

(21)
Operators [K71] (respectively {F11}) and [Ky] (resp. {Fb}) are the classical
stiffness matrices (resp. vector forces) associated to domains €21; and Q.

[LA11] and [LA2] are the classical mortar coupling operators. [DA11] and

23
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[DA2] are the new mortar coupling operators that enable to enforce the
equilibrium of the tractions coming from the discrete displacement along I'.

They are constructed as follows:

[LA11] = / [N\]" [nn] [Dyy] [Bu]dl ; [LA2] = / [N\ [nn] [Dao] [B,]dr.
r r (22)
[B11] and [Bs] are the standard strain-displacement matrices associated to
spaces Uy and UY, [N,] represents the standard shape function matrix of
M" and [Dy1] and [D,] constitute the discrete Hooke matrices. In addition,
matrix [nn| is introduced to perform the product between the stress ten-
sor and the outward unit normal (see [9, 26] for more details regarding the

construction of such operators).

Remark 5. Unlike the classical mortar approach, each of the two Lagrange
multipliers alone does not have a physical meaning in the proposed formula-
tion. Nevertheless, there exists a combination of the two Lagrange multipliers
that can be interpreted as the reaction forces between the two subdomains. In-
deed, considering for instance the first set of equations of system (21), we no-
tice that the reaction forces { Ry} along I' of subdomain Q1 can be expressed

as follows:
{Ru} = ([Ku] {Uun}—{Fu}) = — [LAI"{A,} — [DAL]" {A,}. (23)

Remark 6. FEven if presented in the case of elastic constitutive laws, one
may notice that the proposed coupling formulation holds for material non-

linearities (such as elastoplasticity). Only additional implementation efforts

24



O JOo Ul WN R

oo oo oo Ut uUTUTUTULE R BB BB DMDEDBEPRELWLOWWLWWWWWWLWNDNDNMNDNDMNMDMNDNMNNMMNRRRRPRPRRRRRE
O WNPFPOWVWOJAOAUPE WNRPFPOWOWOJIOANUIE WNRPOWOJOUIP WNRPOWOTIOANUIPEE WNEPEOWOOJOUxWNRE oW

may be taken in this case due to the necessity of evaluating the discrete stress

tensor along the coupling interface.

4. Application: development of the non-intrusive coupling strategy

The coupling method developed above can be applied to any NURBS do-
main decomposition problems (provided higher-order continuity is available
at the interface). As an application, we build in this section a non-intrusive
algorithm to perform the local enrichment of a NURBS patch with the new
mortar coupling. The performance of a non-intrusive strategy for the model-
ing of local behaviors in a NURBS patch has been demonstrated in Bouclier
et al. [32]. The goal here is to combine the advantages of a non-intrusive
strategy with the property of higher-order continuity of the newly-developed
mortar coupling. Since the proposed coupling formulation is based on the use
of Lagrange multipliers, the derivation of a non-intrusive strategy is rather
straightforward. It is presented briefly in the following. For further details
regarding the non-intrusive strategy, we encourage the interested reader to

consult [32] and references cited therein.

4.1. The reference non-intrusive global/local problem

In this part, we consider that subdomain €2, represents a local region
where a refined model is required to correctly describe the local behavior
of the NURBS patch. In the remaining zone of the NURBS patch (i.e., in
211), we assume that a coarser and simpler model is sufficient to represent
the global behavior of the solution. Rather than solving the system of equa-
tions (21) directly (i.e., in a monolithic way), we proceed in an iterative way

by involving a global model defined over the existing whole NURBS patch.
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The situation is illustrated in Fig. 3. In order to do so, domain €25 is intro-
duced to characterize the region in which the global model of €2y, is fictively
prolonged. 25 is defined in such a way that the NURBS patch domain is
recovered with €17 U €)15. From here on, we refer to domain ; = Q1 U 45
to characterize the global NURBS patch that contains the global model ev-
erywhere. The objective of the non-intrusive strategy is then to replace the
global model over €215 by the local one in €2y without actually modifying the
global NURBS patch operators over €.

Global model: NURBS patch Local model

Substltutlon

Figure 3: The non-intrusive global/local problem.

4.2. The non-intrusive global/local algorithm

Let us start by introducing the NURBS functions N}, C' € {1,2,..,n;}
that discretize domain €. As a consequence, the basis functions (N3') gee1 o0 iy
constitute the restricted part of the basis (Né)Ce{l,zn,m} to domain €2y;. To
derive the non-intrusive strategy, we perform a continuous prolongation of
the displacement solution from €2;; to ;5. We present the method in the
discrete case in the following.

We define {U, } the fictitious prolongation of {Uy; } to €2y, so that {U;} |o,, =
{U11}. The prolonged part of the global solution {U;} to Qi is denoted
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{U2} (ice., {Ui}]a,, = {Ui2}). As well, we introduce the load vector
{F1} = {F11} + {Fi12} defined on Q. {Fi5} is constructed from body force
2, and surface traction F%, that can be viewed as the fictitious prolonga-
tion of ff and F§, to Qip. In practice, we take ff, = f§ and F§, = F%.
Then, we make use of the additivity of the integral with respect to domain

Q1 = Q11 U Qq9, which gives us:
(K1 {U} = [Ku|{U1} + [Ki2] {U} (24)

(K] and [K2] are the classical stiffness operators related to domains €2; and
5. The equality (24) is used to modify the first part of the equations (21).
More precisely, this offers the possibility to split Eq. (21) into two parts: one
for each domain §2; and €25. The solution of the coupled problem is finally
obtained through an iterative algorithm where the global and local models
are computed alternatively. A standard fixed point can be implemented for
that. For the n'* iteration, we proceed as follows: starting with {Ul}(o),
(AN and {A,}?, we look for {U}™, {U-}™, {A,}™ and {A,}™ such
that:

1. Resolution of the full global problem:

(K] {0 = {F =LA {A "D = [DANT {A " V[ K] {U 3.

(25)
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2. Resolution of the local problem:

K —[pA2" —paz” | [ g™ (F)}
—1zA7 [0 0] (A = {0 —[zar o™
~[DA7 [0 0] A} ~ [DA1] (U}

(26)

Thanks to the prolongation of the global model over €215, the whole stiffness
matrix of the global NURBS patch is now considered without any modifi-
cation. During the iterations, only displacement and force exchanges at the
interface I' are required. In this sense, the strategy is said to be non-intrusive.
In our case of a NURBS discretization, this may highly facilitate the model-
ing of local behaviors since it avoids the complex task of constructing a new
NURBS parametrization of the global/local model (and of re-constructing
it each time the local region evolves). In addition, it has to be noted that,
regardless of the evolution of the shape of the local region, the global stiff-
ness operator is assembled and factorized only once and the system (25)
remains well-conditioned. The price to pay is the number of iterations but
this one can be deeply reduced by means of accelerations techniques, such
as based on an Aitken’s Delta Squared method or a Quasi-Newton method
(see, e.g., [31, 32]). Numerical experiments to account for this last point will
be carried out in section 5 (Numerical results).

Regarding the implementation, the convergence test usually used to stop
this algorithm relies on the discrete reaction equilibrium between the two
domains. In our case, the global reaction forces along I' are defined as
{Rn} = ([Ku] {Un}—{Fu})|r and have to be compared to the local
reaction forces pulled back in Qyy, .e.: {Ry} = [LA1]" {A,} + [DA1]" {A,}.
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It leads to the following definition of the interface equilibrium residual:

. [{Bu} + {2}l
VIHFHP+ [P

(27)

Remark 7. It may be emphasized that we need to compute the reaction
forces over ' of the fictitious part of the global model (i.e., [Ki2]{U1}) to
make the algorithm work. In order to do so, we use the simple strategy pro-
posed in [32]: the quadrature rule coming from the local problem is transposed
within the global NURBS patch to estimate [K15]. We note that more sophis-
ticated strategies such as the ones elaborated for trimmed surfaces could have
been used here (see, e.g., [43, 44, 45]). In the same idea, we need also to
compute {Ry1} (involving [K11]) for the interface equilibrium residual (27).
The calculation is performed from the already computed stiffness K12, i.e.:

(K] = [Ki] — [Kia].

Remark 8. It may also be noted that the fictitious prolongation of the global
solution over Qo (i.e., {Ui2}) has no physical meaning (it depends on the

initialization) and has to be replaced by the solution {Us}.

5. Numerical examples

To assess the performance of the developed method, four numerical ex-
amples are presented in this section. For each, a two-dimensional elastic
model under plane stress is considered. The first two test cases are devoted
to the study of the new coupling method presented in section 3 without
the non-intrusive aspect: the resolution is performed in a monolithic way

(i.e., the system of equations (21) is assembled and solved directly). In the
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last two numerical problems, the iterative algorithm (25)-(26) of section 4 is
implemented in view of performing the non-intrusive local enrichment of a
NURBS patch. Unless otherwise stated, we consider quadratic NURBS basis
functions with the maximum available continuity at the interior knots (i.e.
C'). From here on, the mesh composed of N elements along the first length

and M elements along the second length will be denoted N x M.

5.1. Beam under shear load

5.1.1. Presentation and preliminary results.

The first example consists of a beam whose geometry and boundary con-
ditions are given in Fig. 4. This problem has become popular in NURBS
to evaluate a coupling method (see, e.g., [9, 24, 26]). The shear load at the
right side is parabolic. As a result of the equilibrium of the structure, shear
tractions of opposite signs and linearly varying normal tractions are found
at the other side. A reference analytical solution is available for the problem
in Zienckewich and Taylor [46]. For the coupling, we consider the situation
of Fig. 4. The interface I' is located at the middle of the structure. On this
test case, we use the strategies illustrated in Figs. 2(a) and 2(b) to construct
different matching and non-matching NURBS discretizations of the domain
decomposition problem. We recall that this leads to basis functions of higher-
order continuity at the interface I'. A set of numerical experiments are carried
out along with comparisons with classical published NURBS techniques on
this test case to show the properties of the proposed coupling approach.

To start with, we plot in Fig. 5 the numerical solution in terms of displace-
ment and von Mises stress for a two non-matching meshes model composed

of 5 (along the z-direction) x3 (along the y-direction) elements in 2;; and
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Yy
L = 100
c 2
J {2 T F:—g - y|l ¢ = 10
c X Q1 4c c P = 80

L

Figure 4: 2D solid beam under shear load: description and data of the problem.

5 x 5 elements in 23. We consider Young moduli F; = E, = 1000 and
Poisson coefficients v1; = 1, = 0.3. The solution appears to be in a good
agreement with references [9, 26]. In particular, the transition of the solution

from one model to the other appears very smooth.

U Magnitude
41.5
[40
-30
f20

10
E

(a) Displacement field (magnitude).

SigmaVM
20

'100

75

lso

25
!

(b) Von Mises stress.

Figure 5: Solution obtained with the new mortar coupling for a two non-matching meshes
model (5 x 3 and 5 x 5 knot-span elements in ;7 and s, respectively).

5.1.2. Coupling of matching meshes.
To go further, we investigate more in details the transition across I" of the
component o, of the stress tensor. Note that o, is also the first component

of the traction force that has to be continuous from one model to the other
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across the coupling interface I' according to Eq. (6). First, a two matching
meshes model composed of 5 x 4 elements in 217 and 5 X 4 elements in €25 is
computed in Figs. 6 and 7. Here, we keep Young moduli F; = Ey = 1000
and Poisson coefficients 11, = 15 = 0.3. More precisely, the distribution of
the exact error of the finite element model stress component o, , i.e. the

error with respect to the reference analytical solution o, , provided in [46]:

, (28)

EI"I"_Sig_XX = |O-xxf6 — Ozzeq

is mapped around the interface in Fig. 6 (zoomed window: L/4 < x <
3L/4 and —c < y < ¢). To better observe the behavior at the interface,
the jump of o,, across I' with respect to the vertical coordinate y is then
plotted in Fig. 7. For comparison purpose, the solutions provided by the
basic mortar and basic Nitsche couplings are also computed and added to
the graphs. For the Nitsche coupling, the stability factor was set to 20 as
in [26]. Finally, reference C' and C° solutions are added to Fig. 6. The
reference C! solution is the solution obtained by using a single quadratic C*
NURBS patch composed of 10 x 4 knot-span elements for the whole structure
(associated knot vector such that {0000.10.2 ... 0.5 ... 09111} for
the z-direction). For the reference C° solution, the multiplicity of the middle
knot along x is increased in order to get a C° continuity at the interface I'
(knot vector {0000.10.2 ... 0.50.5 ... 0.9 11 1} for the a-direction).
We clearly observe that only the new mortar coupling is able to correctly
represent the solution around the interface (see Fig. 6(a)). The error seems
to vanish around the interface in this situation. For the classical couplings,

error concentrations appear around the interface (see Figs. 6(b) and 6(c)).
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(e) Reference C° solution.

Figure 6: Distribution around the coupling interface of the exact error of the stress com-
ponent o, for a two matching meshes model (4 X 5 knot-span elements in 11 and Q)

and comparison with reference C! and C° solutions.
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Figure 7: Jump of o, along the coupling interface for the two matching meshes model.
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By comparing the coupling solutions to the reference C! and C° solutions
(Figs. 6(d) and 6(e)), we notice that a C! behavior across the interface can
be captured with the new mortar coupling while only a C solution at the
interface can be described in the classical approaches. Even if it is only
observable for ., in the presented figures, we emphasize that exactly the
same solutions (in terms of displacements, strains and stresses) are obtained
for the new mortar coupling (Fig. 6(a)) as for the equivalent single C'* patch
(Fig. 6(d)). In this sense, our method can be classified as a C' coupling
method: the whole derivative fields of the coupled solution are continuous
across the interface. In the same idea, we can see in Fig. 7 that the jump
across I' of 0, is null here with the new coupling whereas it increases at the
exterior boundaries for the usual coupling techniques. Such a result accounts
for the necessity of matching the interface tractions coming from the discrete
displacement to get a better transition of the information and so, to obtain

a better accuracy of the coupled solution.

5.1.3. Coupling at a bi-material interface.

To assess the performance of the proposed coupling method in situations
where the solution is not C! across the interface, the same numerical experi-
ment as in the previous section is carried out but with different constitutive
materials for the subdomains. More precisely, we take F1; = 500 in €2;; and
E, = 1000 in Q5 (and vq; = v» = 0.3). Since the problem is isostatic, the
same reference solution in terms of stress as for the problem in [46] should
be reached. Fig. 8 shows the distribution of the exact error of o,, around
the coupling interface. As in the previous part, the results of the new mortar

coupling along with the classical couplings are given and reference C' and
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C° solutions are also added. For the reference solutions, exactly the same
parametrizations as previously are taken but this time, E7; = 500 is applied
on the right part of the patch and E; = 1000 is applied in the remaining
left area. For completeness, the evolution of the exact error regarding o,, at
each side of the interface with respect to the vertical coordinate y is plotted
in Fig. 9. The jump of o,, across the coupling interface is not plotted for
this numerical experimentation since it can be observed in Fig. 9 with the

discrepancy between the left and right interface errors.

Interface Err_Sig_xx Interface Err_Sig_xx
/ — — = —
— 2 l'l 2
1 1
:0.75 ;0.75
fos 0.5
l0.25 l0.25
— —
0 0
(a) New mortar coupling. (b) Basic mortar coupling.
/Interface E2rr_Sig_xxI /cl line érr_sig_xx
f ~r b
:0.75 e
fo.5 5
l0.25 a [’2 5
0 0
(c) Basic Nitsche coupling. (d) Reference C! solution.
¥ COline Err_Sig_xx

(e) Reference C° solution.

Figure 8: Distribution around the coupling interface of the exact error of the stress compo-
nent o, for the modeling of a bi-material structure with matching meshes (5 x 4 knot-span
elements in €7 and Q2) and comparison with reference C I and C? solutions.

This time, the reference C' solution (Fig. 8(d)) does not allow for a cor-
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Figure 9: Evolution of the exact error of o,, along the coupling interface for the modeling
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(¢c) Basic Nitsche coupling.

of a bi-material structure with matching meshes.

36



O JOo Ul WN R

oo oo oo Ut uUTUTUTULE R BB BB DMDEDBEPRELWLOWWLWWWWWWLWNDNDNMNDNDMNMDMNDNMNNMMNRRRRPRPRRRRRE
O WNPFPOWVWOJAOAUPE WNRPFPOWOWOJIOANUIE WNRPOWOJOUIP WNRPOWOTIOANUIPEE WNEPEOWOOJOUxWNRE oW

rect representation of the behavior at the interface (note that the error scale
is multiplied by a factor of ten in contrast to the other solutions). Such a be-
havior was expected here since the whole derivative fields (i.e., all the strain
and stress components) are C° at the interface for a C' solution, which is
meaningless from a physical point of view. On the contrary, putting a C° line
at the interface enables to significantly reduce the error (see Fig. 8(e)). As
before, we observe that the classical coupling approaches (Figs. 8(b) and 8(c))
are able to represent a C solution at the interface. Now, what is interesting
to observe here is that our proposed coupling approach seems to be efficient
as well to address bi-material interfaces (see Fig. 8(a)). This is due to the
fact that the quantities that are transmitted from one model to the other
(the discrete displacement and the traction coming from the discrete dis-
placement) are consistent with the initial mechanical problem. In the new
coupling solution (Fig. (8(a))), only these quantities are continuous but not
the whole derivatives as in the reference C* solution. We therefore end up
with a coupled solution that is meaningful at a physical point of view, and
that enables a better transition of the information at the coupling interface,

which leads to a global diminution of the coupling error (see Fig. (9)).

5.1.4. Coupling of non-matching meshes.

The coupling of non-matching NURBS meshes is now investigated. For
that, the problem of Fig. 4 is computed again with E;; = E, = 1000 for
a two non-matching meshes model composed of 5 x 3 elements in 2;; and
5 x 5 elements in €25. The distribution of the exact error of o,, around the
coupling interface is shown in Fig. 10. The evolution of the exact error at

each side of the interface with respect to the vertical coordinate y is also
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plotted in Fig. 11 before showing the stress jump across I' in Fig. 12.

Interface Err_Sig_xx Interface Err_Sig_xx

& 0.15 - 0.15
012 '0.12
0.08 0.08
0,04 0,04
i i
0 = 0

(a) New mortar coupling. (b) Basic mortar coupling.

Interface Ermr_Sig_xx
~ 0.15

0.12
{0.08
(0.04

0

(¢) Basic Nitsche coupling.

Figure 10: Distribution around the coupling interface of the exact error of the stress
component o, for a two non-matching meshes model (5 x 3 knot-span elements in 3
and 5 x 5 in Qy).

Some error concentrations can be observed at the coupling interface for
every method due to the use of non-matching meshes. Once again, it appears
that the proposed method results in lower error concentrations (particularly

at the exterior boundaries) due to lower stress jumps at the coupling interface.

5.1.5. Convergence behavior in strain energy.

As it has been done for classical mortar and Nitsche couplings (see, e.g., [9,
26, 23]), we finally check the convergence of the new mortar coupled solution
with respect to the refinement of the mesh. In order to do so, we consider
again the problem of Fig. 4 (with Fj; = FE; = 1000) and we proceed as

in [46]: the convergence behavior in strain energy is studied. The relative
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Figure 11: Evolution of the exact error of o,, along the coupling interface for the two
non-matching meshes model.
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Figure 12: Jump of o,, along the coupling interface for the two non-matching meshes
model.
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energy error is computed as:

|Eex - Efe|

29
E@Q? 7 ( )

where Ef. denotes the strain energy of the NURBS finite element model and
E., denotes the reference exact strain energy equals to 3296 according to [46].
The coupling of matching and non-matching meshes is investigated. For the
refinement, the meshes indicated in Tab. 1 are used. We recall that quadratic
NURBS meshes are considered, the continuity at the interior lines (and so,
at the interface) being C'. The convergence curves are finally plotted in
Fig. 13 with respect to the equivalent number of elements N normalized by
the number of elements N¢! of the equivalent single-patch coarsest mesh (see

left column of Tab. 1 for the associated values).

Number of elements | Single-patch | Two matching meshes | Two non-matching meshes
(Nel) mesh (Qll U QQ) (QH U QQ)
40 (= N 10 x 4 5x4Ubx4 5x3Ubx5H
160 20 x 8 10 x 8 U 10 x 8 10 x 6 U 10 x 10
640 40 x 16 20 x 16 U 20 x 16 20 x 12 U 20 x 20
2560 80 x 32 40 x 32 U 40 x 32 40 x 24 U 40 x 40

Table 1: Meshes considered to study the convergence behavior.

We observe that the convergence rate and the error constant of the cou-
pled discretizations are equivalent to the ones of the equivalent single-patch
discretization. As emphasized above, the solutions are exactly the same for
matching meshes (see Fig. 13(a)). For sure, a slight discrepancy appears
for non-matching meshes (see Fig. 13(b)) since in this case the single-patch
model cannot exactly represent the coupled model. These convergence curves

demonstrate that the developed coupling method does not interfere with the
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(a) Matching meshes. (b) Non-matching meshes.

Figure 13: Convergence of the strain energy for uniform refinement in both subdomains.
global increased accuracy achieved by the NURBS functions.

5.2. Plate composed of a trimmed B-spline patch and a circular NURBS

domain

With the next example, the coupling of non-conforming geometries is
investigated (see Fig. 2(c) as a reminder). The test case concerns an ho-
mogeneous rectangular plate subjected to constant in-plane tension (see
Fig. 14(a)). The geometric model of the plate consists of a quadratic trimmed
B-spline patch and a quadratic circular NURBS domain that are connected
via a circular NURBS curve (see Fig. 14(b) for illustration). Since the con-
necting curve is inside the quadratic B-spline patch, the continuity of the
basis functions of €;; along I' is at least C'. To build the NURBS circular
domain €2y, we extract it from a larger quadratic NURBS patch containing
an additional layer of two elements (following the strategy depicted in re-
mark 3). In this way, the continuity of the basis functions of €y is C* at the
interface I'. We finally make use of a fictitious domain method to compute

the solution on the grey part of the two NURBS entities.
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Figure 14: Plate under uniaxial stress modeled by a trimmed B-spline patch and a circular

NURBS domain.
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(b) Discretization of the coupling problem.

42



O JOo Ul WN R

oo oo oo Ut uUTUTUTULE R BB BB DMDEDBEPRELWLOWWLWWWWWWLWNDNDNMNDNDMNMDMNDNMNNMMNRRRRPRPRRRRRE
O WNPFPOWVWOJAOAUPE WNRPFPOWOWOJIOANUIE WNRPOWOJOUIP WNRPOWOTIOANUIPEE WNEPEOWOOJOUxWNRE oW

The results in terms of displacement and stress of the two-domain problem
using the new mortar and classical mortar couplings are given in Fig. 15. The
correct displacement seems to be obtained with the two coupling strategies.
However, a discontinuity of the stresses can be observed with the classical
mortar coupling which leads to some error concentrations at I' (see Fig. 15(d),
the desired stress being p = 10). The discontinuity seems to completely
disappear in the new mortar coupling solution, which goes with a diminution

of the maximum level of error.

5.3. Non-intrusive analysis of a frame

In the third example, the non-intrusive algorithm (25)-(26) is investigated
for the coupling of two non-matching meshes model. A plane frame analysis
is performed to this end. The numerical problem considered is taken from
Nguyen et al. [24] where a reference solution is provided. As an application
of the use of the non-intrusive coupling strategy, we propose to illustrate,
with this problem, the possibility of making non-intrusive NURBS local re-
finement.

The numerical model is described in Fig. 16. Due to symmetry, only half
of the problem is analysed with appropriate symmetric boundary conditions.
For the discretization of the problem, a C? line is set up between the two
arms since the geometry at this location is C°. To get a good accuracy, a
quadratic NURBS patch composed of 2 elements into the thickness direction
has been considered for the global model. Into the length direction, we take
8 elements for the vertical arm and 4 elements for the horizontal one. The
local model, located into the corner, is composed of a quadratic mesh of

8 (thickness direction) x4 (length direction) for both the vertical and the
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Figure 15: Coupled solution for the plate composed of a trimmed B-spline patch and a
circular NURBS domain (top: new mortar coupling, bottom: basic mortar coupling).
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horizontal arm. The continuity of the functions at the interior lines dividing
the patch into elements is C' everywhere except at the corner line between
the two arms where it is C°. The aim of the non-intrusive algorithm is to
replace the global coarse solution at the corner by a local finer solution thanks

to the exchange of interface data only between the two models.

C°line
F =
0p: ya |
C Iln\e I , Z (2o
X ‘
v A -
sym / / / Pt ] local model
/ / /r o >3 JJ F
Oy 0 -7 i Non-intrusive
12 7 coupling

global model

//
Q
L 1 L1
L = 10 L+
t = 1
E = 1000 L+
v = 03
F = 0.5 1

[y clamped
X -~
L/2 t
Figure 16: Non-intrusive plane frame analysis: problem description.

The deformed configurations obtained once the non-intrusive algorithm
with the new mortar coupling has converged are shown in Fig. 17(a). More
precisely, the global solution (with the fictitious prolongation over the local
area in the corner) and the local solution are plotted on the left while the
combination of the two solutions (the true coupled solution) is represented

on the right. As a reference for the refinement, we also compute in Fig. 17(b)
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(a) Converged solution of the non-intrusive algorithm with the new
mortar coupling.

(b) Globally refined solution.

Figure 17: Deformed configuration (scale factor 8) : contour plot of o4,.
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the globally refined model composed of 8 x 32 elements for the vertical arm
and 8 x 16 elements for the horizontal arm. More precisely, the contour plot
of the stress component o0, is given. The global solution around the corner
of the frame has to be replaced by the solution of the local model to correctly
represent, in this area, the response of the structure.

In Figs. 18(a) and 18(b), the convergence of the non-intrusive strategy for
the new mortar coupling is investigated. The standard fixed point (formed
by Egs. (25) and (26)) is implemented first. Then, the Aitken’s Delta squared
and Quasi-Newton acceleration techniques are applied to the present situa-
tion to reduce the number of iterations. As expected, we observe in Fig. 18(a)
that the equilibrium residual (see Eq. (27)) goes down to 0. In Fig. 18(b),
the strain energy of the coupled model is plotted during the iterations of the
algorithm. For comparison purpose, the strain energy obtained when per-
forming a monolithic resolution of the same coupled problem is added to this
figure. We see that the monolithic solution is reached by the converged itera-
tive solution which accounts for the accuracy of the non-intrusive algorithm.
Furthermore, we emphasize that the use of acceleration techniques enables
to deeply reduce the number of iterations of the algorithm. On our exam-
ple, a residual below 10~3 can be reached in a tenth of iterations with such
acceleration techniques (see Fig. 18(a)). From the convergence of the strain
energy in Fig. 18(b), it can actually be observed that only 4-5 iterations seem
to be necessary to reach the monolithic solution. Regarding NURBS local
refinement, the price to pay to get a non-intrusive strategy appears then rea-
sonable compared to an intrusive monolithic resolution. For completeness,

we also show the convergence behavior obtained, on the same problem, using
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a non-intrusive strategy with the classical mortar coupling (see Figs. 18(c)
and 18(d)). An equivalent behavior is observed between the two strategies
which means that we do not deteriorate the efficiency of the non-intrusive

algorithm with the new mortar coupling.
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(a) New mortar coupling: Convergence of (b) New mortar coupling: Convergence of
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Equilibrium residual

Standard fixed point

Standard fixed point 00611 —o— Aitken acceleration H

—o— Aitken acceleration Quasi-Newton acceleration
Quasi-Newton acceleration : — = = Monolithic it

o

10f °

10° 10f
Number of iterations Number of iterations

10°

(c) Basic mortar coupling: Convergence of  (d) Basic mortar coupling: Convergence of
the interface equilibrium residual. the strain energy.

Figure 18: Convergence of the non-intrusive algorithm (top: new mortar coupling, bottom:
basic mortar coupling).

However, the converged solutions differ between the new and classical
mortar couplings. A zoomed view of the converged coupled deformed con-
figuration around the top coupling interface has been done in Fig. 19 to
highlight the difference. In Fig. 19(a), the new mortar coupling is performed

while in Fig. 19(b), the basic mortar coupling is considered. We clearly see an
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undesirable discontinuity at the coupling interface with the basic approach

whereas the transition of the solution appears sufficiently smooth with the

new approach.

{/

Sigma_xy

Sigmaxy mamn e —
" " 0 25
0 25
(a) New mortar coupling. (b) Basic mortar coupling.

Figure 19: Comparison between the new mortar coupling solution and the basic mortar
coupling solution: zoomed window of plot of o, at the top interface of the two meshes.

5.4. Non-intrusive analysis of a plate with a center inclusion

The last numerical example concerns the non-intrusive modeling of a
center inclusion within a plate subjected to constant in plane tension (see
Fig. 20(a)). So as to be consistent with composite materials, the Young
modulus for the inclusion is chosen a hundred times larger than for the plate.
One may note that such types of test cases have already been computed
using an embedded Nitsche method (see, e.g., [9]), and that exactly the
same problem has been investigated in Bouclier et al. [32] with the classical
mortar non-intrusive approach. Here, we perform the computation with the
new mortar non-intrusive algorithm (25)-(26).

Regarding the coupled model, we consider that the local region €2y in-

cludes the inclusion along with, on the edge, an annulus of two elements
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Figure 20: Non intrusive study of a plate with a center inclusion.
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(into the radial direction) whose material behavior is the same as in the
plate (see, again, Fig. 20). This means that the same materials near the
circular interface I' are connected in the global /local simulation which allows
for a better efficiency of the non-intrusive strategy (see [32] for a detailed
account regarding this point). For the sake of simplicity, we put a C? line to
separate the two materials in the local model (see magenta line) but one may
note that our new mortar coupling could have been used instead. As in the
example 5.2, the local discretization is constructed from a larger quadratic
NURBS circular patch to get a C'! continuity of the local solution at I. More
precisely, the inclusion is composed of 64 (circumferential direction) x16 (ra-
dial direction) elements and a mesh of 64 x 2 is considered for the annulus.
The global model constitutes the whole plate discretized using a 10 x 20
quadratic B-spline patch.

The results are given in Fig. 21. Figs. 21(a)-21(c) show, respectively,
the vertical displacement, the vertical strain and the von Mises stress. The
solution is globally in a good agreement with the solution computed in [32].
The stiffer behavior of the inclusion seems to be well captured: the vertical
strain is low while the von Mises stress is high in the inclusion. Asin [32],
a residual below 1073 for the non-intrusive algorithm has been reached in a
few tenths of iterations with the Newton acceleration technique on this test
case.

To finish, we make a comparison in Fig. 22 with the solution obtained us-
ing the classical mortar non-intrusive strategy. The vertical strain is plotted
around the interface I" for the two mortar couplings. Once again, we observe

a discontinuity of the strain with the classical mortar solution around the
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Figure 21: Non-intrusive analysis with the new mortar coupling of a plate with a center
inclusion.
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interface I" at the top and at the bottom (see Fig. 22(b)). In contrast, the
solution appears to be perfectly smooth with the new mortar coupling (see
Fig. 22(a)). For completeness, the difference between the two solutions (i.e.:
l€yyey — Eyyeol Where gy, and e, are the solutions associated the new
and classical mortar couplings, respectively) is plotted in Fig. 22(c). There-
fore, the proposed coupling method seems to respect the analysis properties

of IGA: it enables to get a smoother solution when it is meaningful from a

physical point of view.

6. Conclusion

In this paper, we have developed a new coupling method to connect differ-
ent NURBS subdomains within a NURBS patch. The objective is to address
the difficulty of integrating different discrete models in different regions of a
NURBS patch. The interest of the developed method is that it makes use
of the higher-order continuity offered by the NURBS basis functions. In or-
der to do so, we have proposed to match, across the coupling interface, the
traction forces coming from the discrete displacement as well as the usual
discrete displacements. Since the two quantities transmitted in the coupling
formulation are consistent with respect to the initial mechanical problem, we
end up with a strategy that is suitable with the continuity of the physical so-
lution: when the physical solution is sufficiently smooth, the strategy enables
to represent a C! behavior; but, when only a C° displacement is expected
(such as in the case of bi-material structures for instance), no additional er-
rors are introduced since only the traction force is continuous and not the

whole derivative fields. The performance of the developed method has been
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Figure 22: Comparison between the new mortar coupling solution and the basic mortar
coupling solution: zoomed window of plot of €,, around the interface.
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demonstrated on a set of numerical experiments involving the coupling of
matching meshes, non-matching meshes, and non-conforming geometries in
2D linear elasticity. It has been observed that the new coupling method re-
sults in lower stress jumps at the coupling interface than the classical NURBS
coupling techniques (basic mortar [23, 32] and Nitsche [9, 26, 23]), which al-
lows for a better transition of the mechanical information from one model to
the other. The developed approach appears then to us more consistent with
the analysis properties of IGA since it allows for a smoother representation
of the solution across the interface.

To ensure the two coupling constraints, a Lagrange multiplier approach
has been considered. As a consequence, we have introduced two Lagrange
multipliers: the first one is devoted to the continuity of the discrete dis-
placement as usual, and the second one enables to ensure the additional
constraint, 7.e., the continuity of the traction force coming from the discrete
displacement. Since based on the use of Lagrange multipliers, we have been
able to build a non-intrusive algorithm for the resolution of the new coupling
formulation. As demonstrated in [32], a non-intrusive methodology appears
well-suited for the local enrichment of NURBS patches. The main advantages
are: the elimination of costly NURBS re-parametrization procedures for the
global model (even if the local area evolves), the possibility to assemble and
factorize the global stiffness operator only once, and the good conditioning
of the systems to be solved. Therefore, the combination of a non-intrusive
approach with the developed coupling method offers the possibility to simply
model local behaviors within a NURBS patch, with the additional benefit of

a smoother transition of the solution between the global and local models.
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Even if the numerical experiments have been limited to two-dimensional
linear elasticity in this work, the proposed coupling method may easily ap-
ply to three dimensions and nonlinear models (see, e.g., [31] in the context
of standard non-intrusive FEM). This opens the door to tackle more realistic
engineering applications. Furthermore, it has to be noted that the non-
intrusive local enrichment of NURBS patches may not be the only applica-
tion of such a method. Indeed, taking advantage of the Lagrange multipliers
approach, the proposed methodology seems to be adapted to the develop-
ment of more regular non-overlapping domain decomposition methods to
be used for high performance computing on parallel computer architectures
(see, e.g., [38, 39, 40] for the elaboration in the context of classical FEM).
In addition, in the same idea of what is performed in [47], such a coupling
may also serve as a basis to develop a strategy that could connect different
NURBS patches while ensuring a C'! continuity at the interface. This would

enable to construct full C! multi-patch geometries.
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