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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT*

MARIA LAURA DELLE MONACHE', BENEDETTO PICCOLI*, AND FRANCESCO ROSSI}

Abstract. We study an optimal control problem for traffic regulation via variable speed limit.
The traffic low dynamics is described with the Lighthill-Whitham-Richards (LWR) model with
Newell-Daganzo flux function. We aim at minimizing the L? quadratic error to a desired outflow,
given an inflow on a single road. We first provide existence of a minimizer and compute analytically
the cost functional variations due to needle-like variation in the control policy. Then, we compare
three strategies: instantaneous policy; random exploration of control space; steepest descent using
numerical expression of gradient. We show that the gradient technique is able to achieve a cost
within 10% of random exploration minimum with better computational performances.
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1. Introduction. In this paper, we study an optimal control problem for traffic
flow on a single road using a variable speed limit!. The first traffic flow models on a
single road of infinite length using a non-linear scalar hyperbolic partial differential
equation (PDE) are due to Lighthill and Whitham [33] and, independently, Richards
[35], which in the 1950s proposed a fluid dynamic model to describe traffic flow. Later
on, the model was extended to networks [20] and started to be used to control and
optimize traffic flow on roads. In the last decade, several authors studied optimization
and control of conservation laws and several papers proposed different approaches to
optimization of hyperbolic PDEs, see [5, 19, 21, 24, 31, 36, 37] and references therein.
These techniques were then employed to optimize traffic flow through, for example,
inflow regulation [12], ramp-metering [34] and variable speed limit [22]. We focus
on the last approach, where the control is given by the maximal speed allowed on
the road. Notice that also the engineering literature presents a wealth of approaches
[1, 2, 10, 11, 13, 15, 25, 26, 27, 28, 29, 30, 38], but mostly in the time discrete setting.
In [1, 2] a dynamic feedback control law is employed to compute variable speed limits
using a discrete macroscopic model. Instead, [25, 26, 27] use model predictive control
(MPC) to optimally coordinate variable speed limits for freeway traffic with the aim
of suppressing shock waves.

In this paper, we address the speed limit problem on a single road. The control
variable is the maximal allowed velocity, which may vary in time but we assume to
be of bounded total variation, and we aim at tracking a given target outgoing flow.
More precisely, the main goal is to minimize the quadratic difference between the
achieved outflow and the given target outflow. Mathematically the problem is very
hard, because of the delays in the effect of the control variable (speed limit). In fact,
the Link Entering Time (LET) 7(¢), which represents the entering time of the car
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2 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

exiting the road at time ¢ see (7), depends on the given inflow and the control policy
on the whole time interval [7(t),¢]. Moreover, the input-output map is defined in
terms of LET, thus the achieved outflow at time ¢ depends on the control variable on
the whole interval [7(¢),¢]. Due to the complexity of the problem, in this article we
restrict the problem to free flow conditions. Notice that this assumption is not too
restrictive. Indeed, if the road is initially in free flow, then it will keep the free flow
condition due to properties of the LWR model, see [9, Lemma 1].

After formulating the optimal control problem, we consider needle-like variations for
the control policy as used in the classical Pontryagin Maximum Principle [8]. We
are able to derive an analytical expression of the one-sided variation of the cost,
corresponding to needle-like variations of the control policy, using fine properties of
functions with bounded variation. In particular the one-sided variations depend on
the sign of the control variation and involves integrals w.r.t. to the distributional
derivative of the solution as a measure, see (10). This allows us to prove Lipschitz
continuity of the cost functional in the space of bounded variation function and prove
existence of a solution.

Afterwards, we define three different techniques to solve numerically this problem.

e Instantaneous Policy (IP). We design a closed-loop policy, which depends
only on the instantaneous density at road exit. More precisely, we choose the
speed limit which gives the nearest outflow to the desired one.

e Random Exploration (RE). It uses time discretization and random binary
tree search of the control space to find the best maximal velocity profile.

e Gradient Descent Method (GDM). It consists in approximating numerically
the gradient of the cost functional using (10) combined with a steepest descent
method.

We compare the three approaches on two test cases: constant desired outflow and
sinusoidal inflow; sinusoidal desired outflow and inflow. In both cases RE provides
the best control policy, however GDM performs within 10% of best RE result with
a computational cost of around 15% of RE. On the other side, IP performs poorly
with respect to the RE, but with a very low computational cost. Notice that, in some
cases, I[P may be the only practical policy, while GDM represents a valid approach
also for real-time control, due to good performances and reasonable computational
costs. Moreover, control policies provided by RE may have too large total variation
to be of practical use.

The paper is organized as follows: section 2 gives the description of the traffic flow
model and of the optimal control problem. Moreover, the existence of a solution
is proved. In section 3, the three different approaches to find control policies are
described. Then in section 4, these techniques are implemented on two test cases.
Final remarks and future work are discussed in section 5.

2. Mathematical model. In this section, we introduce a mathematical frame-
work for the speed regulation problem. The traffic dynamics is based on the classical
Lighthil-Whitham-Richards (LWR) model ([33, 35]), while the optimization problem
will seek minimizers of quadratic distance to an assigned outflow.

2.1. Traffic low modeling. We consider the LWR model on a single road of
length L to describe the traffic dynamics. The evolution in time of the car density
p is described by a Cauchy problem for scalar conservation law with time dependent
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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 3

maximal speed v(t):

(1) { pt + f(p,v(t))z =0, (t,x) € RY x [0, L],
,0(0,93) = pO(x)a T e [OvL]a

where p = p(t,z) € [0, pmax] With pmax the maximal car density. In the transportation
literature the graph of the flux function p — f(p) (in our case for a fixed v(t)) is
commonly referred to as the fundamental diagram. Throughout the paper, we focus
on the Newell - Daganzo - type ([14]) fundamental diagrams, see Figure 1b. The speed
takes value on a bounded interval v(t) € [Umin, Vmax), 0 < Umin < Umax, thus the flux
function f : [0, pmax] X [Umin, Vmax] — R is given by

pU(t), lf 0 S P S pcr7
2 ,u(t)) = v(l)per i
( ) f(p ( )) p,()_p(pmax — p), if Per < P < Pmax,

with v(t) representing the maximal speed, see Figure la. Notice that the flow is
increasing up to a critical density pe and then decreasing. The interval [0, pe,] is
referred to as the free flow zone, while [pey, pmax] is referred to as the congested flow
zone.

f(p)
v(p) ~
// \\
L N Vmax "
. / .
. . .
o) . f(per) i .
) , N
5 , N
, N
Umin [ === S/ v(t) N
’ ~
’ RSN
. e Seal
=" Vmin p
~ Sy - - S e AN
Per Prmax P Per Pmax P
(a) Velocity function. (b) Newell-Daganzo fundamental diagram.

Fig. 1: Velocity and flow for different speed limits.

The problem we consider is the following. Given an inflow In(t), we want to track
a fixed outflow Out(¢) on a time horizon [0, 7], T > 0, by acting on the time-dependent
maximal velocity v(¢). A maximal velocity function v : [0, 7] = [Umin, Vmax] 18 called
a control policy.
It is easy to see that a road in free flow can become congested only because of the
outflow regulation with shocks moving backward, see [9, Lemma 2.3]. Since we assume
Neumann boundary conditions at the road exit, the traffic will always remain in free
flow, i.e. p(t,x) < per for every (t,z) € [0,T] x [0, L]. Given the inflow function
In(t), we consider the Initial Boundary Value Problem with assigned flow boundary
condition f; = f(p(t,0™)) on the left in the sense of Bardos, Le Roux and Nedelec,
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4 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

see [6] and Neumann boundary condition (flow f. = f(p(t,07))) on the right:

pe+ f(p,v(t))z =0, (t,z) € R x [0, L],
3) p(0,2) = po(z), x €10, L],

fi(t) = In(2),

1o(6) = plt, ) (1),

We denote by BV the space of scalar functions of bounded variations and by TV the
total variation, see [7] for details. For any scalar BV function h we denote by &(z%)
its right (respectively left) limit at z. We further assume the following:

Hypothesis 1. There exists 0 < pii® < piax < poand 0 < finin < fmax such that
Po S BV([O7 L]’ [panln, panax]) and In S BV([Oa T]a [fmiru fmax])-

Under this assumption, we have:

PROPOSITION 2. Assume that Hypothesis 1 holds and
CAS BV([07 T]a [’Uminy Umax])-

Then, there exists a unique entropy solution p(t,x) to (3). Moreover, p(t,x) < per
and, setting

(4) Out(t) = p(t, L)v(?),
we have that Out(.) € BV([0,T],R) and the following estimates hold

G) i {pp Y < o2 < ma [, Y por 0 e o, 1)
Umax min
(6)  min { o vimin, Sonin - b < Out(t) < masx { o v, fonax o |
Umax Umin

Proof. Let v™ € BV([0, T, [Vmin, Umax]) be a sequence of piecewise constant func-
tions converging to v in L! and satisfying TV (v™) < TV(v). For each v", by standard
properties of Initial Boundary Value Problems for conservation laws [6, Theorem 2]
and [16], there exists a unique BV entropy solution p™ to (3) with p™ € Lip([0, 7], L!).
Notice that the left flow condition is equivalent to the boundary condition: p;(t) =
In(t)
o(t)

get that p™(t,x) < per, thus by maximum principle it holds:

pt(t,) € BV(R7 [min {pg‘in, @},max {pglax, @}D

Umax Umin

. From [9, Lemma 2.3] and the Neumann boundary condition on the right, we

Let us now estimate the total variation of the solution p™. Since it solves a scalar
conservation laws, the total variation does not increase in time due to dynamics on
10, L[. Notice that changes in v(-) will not increase the total variation of p™ inside the
road (i.e. on |0,L[). The total variation of p" increases only because of new waves
In(t)

o(t)’

we can estimate the total variation in space of p” caused by time variation of In,

generated by changes in the inflow. Using the boundary condition p;(t) =

TV(I max TV .
respectively time variation of v, by (In) , respectively fzi(v) Finally we get:
TV(In max LV (v
sup TV(p"(t,-)) < TV(p"(0,-) + U( 4 2 ©
t min min

This manuscript is for review purposes only.
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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 5

By Helly’s Theorem (see [7, Theorem 2.4]) there exists a subsequence converging in
LY([0,T] % [0, L]) to a limit p*. By Lipschitz continuity of the flux and dominated con-
vergence we get that f(p™(t,z),v(t)) converges in L1([0, T x [0, L]) to f(p*(¢,x),v(t)).
Passing to the limit in the weak formulation fQ P+ f(p™,w) g, dtde = 0 (where
Q CC[0,T] x [0,L] and ¢ € C§°) we have that p* is a weak entropic solution. We
can pass to the limit also in the left boundary condition because this is equivalent

In(t
to pi(t) = n((t)) and v is bounded from below. Finally p* is a solution to (3). The
v
standard Kruzhkov entropy condition [32] and [6, Theorem 2] ensure uniqueness of
the solution. Since Out(t) = p(t, L)v(¢), we have that Out(¢) has bounded variation

and satisfies (6). 0

To simplify notation, we further make the following assumptions:

Hypothesis 3. We assume Hypothesis 1 and the following:
fmin fmax

pf)ni“ < and P > .

Umax Umin

Given a control policy v, we can define a Link Entering Time (LET) function 7 =
7(t,v) representing the entering time for a car exiting the road at time ¢. The function
depends on the control policy v, but for simplicity we will write 7(¢) when the policy
is clear from the context. Notice that LET is defined only for time greater than a
given tg > 0, the exit time of the car entering the road at time ¢ = 0, see Figure 2.
Note that ¢o satisfies foto v(s)ds = L and, for each t > tg:

0 L

Fig. 2: Graphical representation of the LET function 7 = 7(¢,v) defined in (7).

1) /j o(s)ds = L.

(t)
Such 7(t) is unique, due to the hypothesis v > vyi, > 0. From the identity

T(tz) ta
/ v(s)ds = / v(s)ds,
’T(tl) t1

we get the following;:
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6 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

LEMMA 4. Given a control policy v, the function 7 is a Lipschitz continuous func-
max

tion, with Lipschitz constant
Umin

Recalling the definition of outflow of the solution given in (4), we get:

PROPOSITION 5. The input-output flow map of the Initial Boundary Value Prob-
lem (briefly IBVP) (3) is given by

(8) Out(t) = In(r(t) -1

Proof. Thanks to Proposition 2, the solution p to the IBVP (3) satisfies p(¢, z) <
per, thus p solves a conservation law linear in p. Indeed the Newell-Daganzo flow
is linear in the free flow zone. Therefore, no shock is produced inside the domain
[0, L] and characteristics are defined for all times. In particular the value of p is
constant along characteristics. The characteristic exiting the domain at time ¢ enters
the domain from the boundary at time 7(¢). Therefore we get p(t, L) = p(0,7(¢)) =

I:((:((tt)))). From (4) we get the desired conclusion. d

Remark 6. This map is highly non-linear with respect to the control policy v
due to the definition of 7. Hence, the classical techniques of linear control cannot be
applied. Moreover, such formulation clearly shows how delays enter the input-output
flow map. The effect of the control v at time ¢ on the outflow depends on the choice
of v on the time interval [7(¢),t], because of the presence of the LET map in formula

(8).

2.2. Optimal control problem. We are now ready to define formally the prob-
lem of outflow tracking.

Problem 7. Let Hypothesis 3 hold, fix f* € BV([0,T], [fmin, fmax]) and K > 0.
Find the control policy v € BV([0, T, [Vmin; Vmax] ), With TV (v) < K, which minimizes
the functional J : BV([0, T, [Vmin, Vmax]) — R defined by

T
(9) J() = / (Out(t) — f*(1))%dt

where Out(t) is given by (8).
We prove later on, in Proposition 15, that Problem 7 admits a solution.

Remark 8. We use the same positive extreme values funin, fmax for both the
inflow In(.) and the target outflow f*(.) for simplicity of notation only.

Remark 9. In the simple case where all the parameters are constant in time, i.e.
In, Out, f*, po do not depend on time, the problem has a a trivial solution which is
*

v = — realizing J(v) = 0.
Po

2.3. Cost variation as function of control policy variation. In this section
we estimate the variation of the cost J(v) with respect to the perturbations of the
control policy v. This computation will allow to prove continuous dependence of the
solution from the control policy.

We first fix the notation for integrals of BV function with respect to Radon
measures.

This manuscript is for review purposes only.
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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 7

DEFINITION 10. Let ¢ be a BV -function and p a Radon measure. We define
[ ot duto) = [ o) due) + 3 miota).

where 1 = pic + Y., M0y, is the decomposition of p into its continuous® and Dirac
parts.

We now compute the variation in the cost J produced by needle-like variation in
the control policy v(-), i.e. variation of the value of v(-) on small intervals of the type
[t,t+ At] in the same spirit as the needle variations of Pontryagin Maximum Principle
[8]. The analytical expression of variations will allow to implement a steepest-descent
type strategy to find the optimal speed limit.

DEFINITION 11. Consider v € BV([0,T], [Vmin, Vmax]) and a time t such that
77H0) = tg <t < 7(T) and v(tT) < VUmax. Let Av > 0, At > 0 be sufficiently
small such that t + At < 7(T) and v(tT) + Av < vpax. We define a needle-like
variation v'(+) of v, corresponding to t, At and Av by setting v'(s) = v(s) + Av if
s € [t,t + At] and V'(s) = v(s) otherwise, see Figure 3.

vV=v+Av|----

t t+ At t

Fig. 3: Needle-like variation of the velocity v.

LEMMA 12. Consider v € BV ([0, T], [Vmin, Vmax]) and let v’ be a needle-like vari-
ation of v. Then it holds:

lim lim —2—~2% =
Av—0+ At—0+ Av

=2p%(t, L7 )o(t*) — 2p(t, L7) f*(¢7)+

(10) 7/ o((t+s@) ) dp2(t) +2 | A+ s(z)h)) dpa(t)+
0,L] 10,L]
In(t™) /., o(r ') )
2o (100 - g i),

where integrals are defined according to Definition 10. For Av < 0, the limit for
Av — 07 satisfies the same formula with right limits replaced by left limits in the two
integral terms in (10).

2We recall that any Radon measure on R can be decomposed into its continuous (AC+Cantor)

and Dirac parts, as a consequence of the Lebesgue decomposition Theorem, see e.g. [17] .
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8 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

Remark 13. Notice that the condition 771(0) = tg < t implies that the outflow
Out(s) € [t,t+ At], depends only on the inflow In(.) and not on the initial density po.
If such condition is not satisfied, the perturbation given by Av has a comparable effect
on Out(.), but it needs to be estimated in two parts: one with respect to In([0, ¢+ At])
and one with respect to po(0, L —I) with ! being such that

/Ot o(s)ds = 1.

The condition ¢t + At < 7(T') means that the perturbation Av has influence on the
whole outflow Out(s) in the interval [t,7=1(t + At)]. If this is not satisfied, then
the influence of the perturbation is stopped at T < 71(t + At), hence the variation
Out(s) is smaller.

Proof. Let 7(t) be defined according to (7) and an outflow Out(¢) according to
(8). For simplicity we assume that v(-) has a constant value ¢ := v(t") on [t,t + At],
the general case holding because of properties of BV functions.

We define ¢/ =t + At and s’ to be the unique value satisfying

’

/ v(t' +0)do = L — (0 + Av)At,
0

" to be the unique value satisfying

"

/ v(t' + o)do = L — DAL,
0

and s = 77(t') — ', hence fo v(t' +0)do = L. Notice that s’ < s” < s”'. We also
define the function

(11) z(s) = L—/OS v(t' + o)do.

Remark that z(s) is a decreasing function, with z(0) = z(s') = (0 + Av)At,
x(s") = DAt and z(s"") = 0. We denote with Out’(s) the outﬂow 7"(5) he LET (see
(7)) and p'(s,z) the density for the policy v’. Clearly, we have Out’(s) = Out(s) for
s € [0,t]U[r=1(¢),T] and 7'(s) = 7(s) for s € [to,t] U [t~ 1(¥), T].

To compute the variation, we distinguish four time intervals: I, = (¢,t'), Ir =
('t +s), Iz = (' +,t'+5") and Iy = (t' + s",77L(t')), see Figure 4. The
variation of the cost in the first interval can be directly computed as function of the
velocity variation, while in the other intervals the delays in the outflow formula (8) will
render the computation more involved. We denote with Ji,...,Js the contributions
to limay_o+ (J(v') — J(v))/Av in the four intervals and estimate them separately.

CASE 1: I = (t,t'). Let s € [0,t' —t] = [0, At], then Out(t + s) = p(t, L — sb)D
and Out'(t + s) = p(t, L — s(d + Av)) (9 + Av). We have:
(12)

At

= Jim Alt[/om (Out’(t+s)—f*(t+s))2ds—/0 (Out(t+s)—f*(t+s)>2ds] _

At

. - 12 o 2 - * / _ —
Alliréﬁ At{ ; Out™(t+s) —Out™(t +s) —2f (t+s)(0ut (t+s) Out(tJrs))ds}

This manuscript is for review purposes only.



TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 9

Tt 4+ At) =77 1(t)

t/ + SI//
t/ + SII I4
t+ s fs
Iy

t'=t+ At
I

t

0 L—ux(s") L—x(s") L

Fig. 4: Graphical representation for the notation used in subsection 2.3

Substituting the expressions for the outflows we get

At
i — 2 ol - 2 _ 2 a2
Azlelg(lﬁ A7 [/0 p-(t, L — s(0+ Av))(D + Av)* — p“(t, L — s0)0°ds+

At
—/ 2f*(t +s) (p(t, L — s(0+ Av)) (0 + Av) — p(t, L — sﬁ)@)ds] =
0

v+ Av

Dividing the first integral in two parts and making the change of variable o = s

I 1
m —
At—0+ At

At(14+42) ) 4 o At ) )
t,L —o0)(0+ A do — t, L — s0)0°d
|/ 0L = 00) 0+ Ao Do — [ 0L si)idss

At

—/ 2f*(t+s)<ﬁ(p(t,L—s(ﬁ+Av))—p(t,L—sﬁ))+Av(p(t,L—s(fD—i—Av))))ds] -
0

After simple algebraic manipulation we get:

1

At(1+42) At(1+42)
Ali_lr}r(l)+ AL [/0 P2 (t, L — s0)Avids + / p*(t, L — s0)0*ds+

At

At
—/0 2f*(t+s)(@(p(t,L—s(@+m))—p(L—s@))+Av(p(t,L—s(@+Av))))ds} -

At(1+42)

Jim [ /0 P2 (t, L — s0)Avids + /A t P2 (t, L — s0) (0% + Avi)ds

At
7/0 2f*(t+s)<ﬁ(p(t,Lfs(ﬁJrAv))fp(t,Lfsﬁ))+Av(p(t,Lfs(f)+Av))))ds} -

This manuscript is for review purposes only.
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Taking the limit as At — 07, we get:

P2 (t, L7)0Av + p2(t, L) (0 + AU)A;+
—2f* (") [0(p=ET) — plET))] - 21 (t7)Avp(t, L) =
P2 (t, L7)oAv + p(t, L) (0 + Av)Av — 2f*(tT) Avp(t, L™),
hence
Ju=2p%(t, L7)o + p?(t, L7)Av — 2f*(t*)p(t, L),

thus
lim Jy = 2p%(t, L7 )v(tT) — 2f*(t)p(t, L7).

Av—0t

CASE 2: I, = (t',t' + ). If s € [0,5'] then Out(t' + s) = p(t',x(s))v(t' + )
and Out’' (¢ +s) = p((t', x(s) — AvAt))v(t' +s). After decomposing Jo as done for J;
in (12) and plugging in the expression of the outflows, we have

= [ L . 204 2 _ 204
Jo —A11_>Hé+ At[/o v (t +s)(p (t', x(s) — AvAt) — p*(t ,m(s)))ds—l—

(13) /
- /0 2*( + s)o(t' + ) (p(t' 2(s) — Avdt) — p( 2(s)) ) ds].

Applying the change of variable s — x(s) (see (11)), it holds

: 1 v ! 2 (41 204/
Ja —All_r)r(lﬁﬂ{/m u(t —l—s(m))(p (t',x — AvAt) — p (t,m))dw—&—

_ /OL 20 (¢ + 5(2)) (p(t', 2 — Avt) - p(t',2) )da].

+

Notice that this change of variable is justified by Lemma 22 of the Appendix. Using
Lemma 23 of the Appendix, we get:

L
1' - _ /! + 2 (4!
Jim A+ o((t" + s(x))™) dpz (', )

L
2 [P @) ot 0)

CASE 3: I3 =(t'+,t'+5"). If s € [§, 8] then Out(t' + s) = p(t', z(s))v(t' + )
and

Out'(t' +5) = v(t' + 5)133-(71)11’ g(s) =In (t/ - Uﬁ—(sA)v> .

After decomposing Js as done for J; in (12) and plugging in the expression of the
outflows, we get

lim [/ V(' + s)ﬂ =2t ()0 (¢ + s)+
at—ot At L J, (0 + Av)? ’

g(s)
v+ Av

of(t + s)(v(t’ +5) —p(t, z(s))o(t + s))}ds -
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Observe that lima;_yo+ 8" = limpyo+ 8 =771 ()" =t and [, v(t' +0)do = AvAt,

then
(14) S :v(f‘?(i’)—)v2(7_1(tl)_)1n2(t/_) G5 +1A11>2 -(5)1-
e ) e O ) (55— )
thus
lim J;=0.
Av—0t

CASE 4: I, =t + "t/ +"). If s € [¢, "] then we compute

D 0

Out(t +5)= "ot +5) (s =m (1 - 7

and

Out'(t' +s) =v(t' + S)ﬁi(zv g(s) =In (t’ — f)i(sA)v) :

We decompose Jy as done with Jq in (12), plug in the expression of the outflows, and
use the equality [, v(t' + o) do = 9. The, denoting & = v(7~*(t')~), we have

s = oo (i) - ()] -2 [t

0+ Av D v+Av D

By passing to the limit, we get

_ _In(¢'-) v
: * 1y _ /_\2
Aqulr%+ Jy=2f"(r7(t) )7{) 2—{)2 In(t'—)°.

Lemma 12 and Remark 13 allow us to prove the following:

PROPOSITION 14. For every K > 0 and C' > 0, the functional J is Lipschitz
continuous on  := {v € BV([0,T], [Vmin; Vmax)) : TV(v) < K} endowed with the
norm ||vl|p:.

Proof. Let v, o € Q. Then v—v' is in BV([0, T, [Umin, Vmax]) and can be approxi-
mated by piecewise constant functions. This means the v — v’ can be approximated in
BV by needle-like variations as in Lemma 12. The right-hand side of (10) is uniformly
bounded (since v € Q and p € BV with uniformly bounded variation). Therefore we
conclude that |J(v) — J(v")| < Cljv — 2’| for some C > 0. |

This allows to prove the following existence result.
PROPOSITION 15. Problem 7 admits a solution.

Proof. The space Q@ = {v € BV([0,T], [Vmin, Vmax]) : TV(v) < K} n{v €
L ([0, T, [vmins Umax)) © |||l < C} is compact in L', see e.g. [4], and J is Lips-
chitz continuous on 2, thus there exists a minimizer of Problem 7. O
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3. Control policies. In this section, we define three control policies for the

time-dependent maximal speed v. The first, called the instantaneous policy (IP), is
defined by minimizing the instantaneous contribution for the cost J(v) at each time.
We will show that such control policy does not provide a global minimizer, due to
delays in the control effect on the cost for the Problem 7. In particular, due to the
bound v € [Umin, Umax]) the instantaneous minimization may induce a larger cost at
subsequent times. Then, we introduce a second control policy, called random ex-
ploration (RE) policy. Such policy uses a random path along a binary tree, which
correspond the upper and lower bounds for v, i.e. v = Vypax and v = V.
Finally, we introduce an effective strategy, which is one of the main results of the pa-
per. More precisely, a third control policy is searched using a gradient descent method
(GDM). The classical GDM are based on computing the gradient w.r.t. the control
space variable, in finite of infinite dimensional setting, and then using steepest descent.
We use a different approach and replace the gradient with cost variations computed
with respect to needle-like variations in the control policy. This is in line with the
spirit of Pontryagin Maximum Principle for optimal control problems. Therefore the
key ingredient to define the third policy is the explicit computation of the gradient
given in Section 2.

3.1. Instantaneous policy.

DEFINITION 16. Consider Problem 7. Define the instantaneous policy as fol-
lows:
o(r(t)7)

(15) o(0) = Pl (£ 02055

where the projection Py, .. ...+ R — R is the function

a forx < a,
(16) Pay(z) =< x forx € la,b],
b forx >b.

Notice that this would be the optimal choice if f* and In would be constant, see
Remark 9. The instantaneous policy can also be written directly in terms of the
input-output map defined in Proposition 5. As we will show later, the instantaneous
policy is not optimal in general, i.e., it does not provide an optimal solution v for
Problem 7. Clearly, it provides the solution in the case of wvy;, sufficiently small
and vpax sufficiently big so that the projection operator reduces to the identity, i.e.,
S |

eI (L) ) = p(Le)
Out(t) coincides with f*(t), hence the cost J(v) is zero.

for all times. Indeed, in this case the output

3.2. Random exploration policy. The random exploration policy is defined
as follows:

DEFINITION 17. Given the extreme values for the maximal speed, Vimax and Uiy,
and a time step At, the random exploration policy draws sequences of veloci-
ties from the set {Umax,VUmin} corresponding to control policy values on the intervals
[iAL, (1 4+ 1)At].

Notice that maximal speeds according to this algorithm can be generated for all
times, independently of the corresponding solution, in contrast to the instantaneous
policy which is based on the maximal speed at previous times. We will use numerical

This manuscript is for review purposes only.



319

w W
S

w W w
NN N
w N

~

325

326

327

329

TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 13

optimization to choose the best among the generated random policies, showing in
particular that the instantaneous policy is not optimal in general.

3.3. Gradient method. We use needle-like variations and the analytical ex-
pression in (10) to numerically compute one-sided variations of the cost. We consider
such variations as estimates of the gradient of the cost in L'. More precisely, we give
the following definition.

DEFINITION 18. The gradient policy is the result of a first-order optimization
algorithm to find a local minimum to Problem T using the Gradient Descent Method
and the expression in (10), stopping at a fized precision tolerance.

We will show that the gradient method gives very good results compared to the other
policies taking into account the computational complexity.

4. Numerical simulations. In this section we show the numerical results ob-
tained by implementing the policies described in section 3. The numerical algorithm
for all the approaches is composed of two steps:

1. Numerical scheme for the conservation law (1). The density values are com-
puted using the classical Godunov scheme, introduced in [23].

2. Numerical solution for the optimal control problem, i.e., computation of the
maximal speed using the instantaneous control, random exploration policy
and gradient descent.

Let Ax and At be the fixed space and time steps, and set T = jAx, the cell
interfaces such that the computational cell is given by C; = [xj; 1, +%]. The center

1
of the cell is denoted by z; = (j — i)Ax for j € Z at each time step t" = nAt for

n € N. We fix J the number of space points and T the finite time horizon. We now
describe in detail the two steps.

4.1. Godunov scheme for hyperbolic PDEs. The Godunov scheme is a first
order scheme, based on exact solution to Riemann problems. Given p(t,x), the cell
average of p in the cell C; at time ¢" is defined as

., 1
1 it+3

(17) Pi= Ay )

p(t", x)dx.

1
2

Then, the Godunov scheme consists of two main steps:
1. Solve the Riemann problem at each cell interface z;, 1 with initial data

(pj> Pj+1)-
2. Compute the cell averages at time t"*! in each computational cell and obtain

pj-
Remark 19. Waves in two neighboring cells do not intersect before At if the
following CFL (Courant-Friedrichs-Lewy) condition holds:

1
18 Atmax|f'(p;)] < = min Az.
(18) nax | (p;)] < 5 i
The Godunov scheme can be expressed in conservative form as:

(19) ot = g = S (F (o o v™) = F(of_ap) o))
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14 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

where v" is the maximal speed at time ¢". Additionally, F(p?,p},;,v") is the Go-
dunov numerical flux that in general has the following expression:

Wit ) f(z0") i pR < g,

n 3 T n
maxzepn, | ,p7 f(z0™) if Pj+1 < Py

@) Pl = {

For clarity, we included as an argument for the Godunov scheme the maximal velocity
so that the dependence of the scheme on the optimal control could be explicit.

4.2. Velocity policies. The next step in the algorithm consists of computing a
control policy v that can be used in the Godunov scheme with the different approaches
introduced in section 3. In particular, for the instantaneous policy approach we
compute the velocity at each time step using the instantaneous outgoing flux. Instead,
using the other two approaches, the RE and the GDM, we compute beforehand the
value of the velocity at each time step and then use it to solve the conservation law
with the Godunov scheme.

4.2.1. Instantaneous policy. We follow the control policy described in sub-
section 3.1 for the instantaneous control. At each time step, the velocity v™t! is
computed using the following formula:

* n
(21) ,Un-‘rl — U(tn+1) — P[vm;r.,vmax] (er))
Pa

4.2.2. Random exploration policy. To compute for each time step the value
of the velocity, we use a randomized path on a binary tree, see Figure 5. With such
technique, we obtain several sequences of possible velocities. For each sequence the
velocities are used to compute the fluxes for the numerical simulations. We then
choose the sequence that minimizes the cost.

Umax Umin
/UI!)aX vIniH /UIllaX ’UHlill
Umax Umin Umax Umin Umax Umin Umax Umin

Fig. 5: The first branches of the binary tree used for sampling the velocity.

Remark 20. Notice that the control policy RE may have a very large total varia-
tion, thus it might not respect the bounds on TV given in Problem 7. Therefore the
found control policies may not be allowed as a solution of this problem. However, we
implement this technique for comparison with the results and performances obtained
by the GDM.

4.2.3. Gradient descent method. We first numerically compute one-sided
variations of the cost using (10). Then, we use the classical gradient descent method
[3] to find the optimal control strategy and to compute the optimal velocity that fits
the given outflow profile, as described in Algorithm 1.
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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 15

Algorithm 1 Algorithm for the gradient descent and computation of the optimal control

Input data: Initial and boundary condition for the PDE and initial velocity
Fix a step tolerance € and find a suitable step size «
while |Ji+1 — J7,| S e do
Compute numerically cost variations V.J;
Update the optimal velocity vit1 = vi — aVJ;
Compute the new densities using Godunov scheme
Compute the new value of the cost functional
end while

Remark 21. One might be interested in solving the optimal control problem by
applying an adjoint method, as it is classical for finite-dimensional control systems.
Unluckily, for the problem described here by a Partial Differential Equation, adjoint
equations are still unknown.

One might then discretize the dynamics, then solve the finite-dimensional problem
with an adjoint equation, and finally pass to the limit. While we showed in [18] that
one can find minimizers by discretization for some specific mean-field equations, there
is no evidence that such technique could work for the problem described here. In
particular, there is no evidence that the sequence of minimizers of the discretized
problem converge to the minimizer of the original one.

4.3. Simulations. We set the following parameters: L = 1, J = 100, T =
15.0, per = 0.5, pmax = 1, Umin = 0.5, Umax = 1.0. Moreover, the input flux at the
boundary of the domain is given by In = min (0.3 4 0.3 sin(27t"), 0.5). We choose two
different target fluxes f* = 0.3 and f* = |(0.4sin(¢7w — 0.3))]. The initial condition is
a constant density p(0,z) = 0.4. We use oscillating inflows to represent variations in
typical inflow of urban or highway networks at the 24h time scale.

4.3.1. Test I: Constant Outflow. In Figure 6, we show the time-varying speed
obtained by using the instantaneous policy (left) and by using the gradient descent
method (right). In each case, we notice that due to the oscillating input signal the
control policy is also oscillating. We are aware, however, that from a practical point
of view, the solution where the speed changes at each time step might be unfeasible.
Nonetheless, these policies can be seen as periodic change of maximal speed for dif-
ferent time frames during the day when the time horizon is scaled to the day length.

In Table 1, we see the different results obtained for the cost functional computed

Method Cost Functional | Average Speed
Fixed speed v = vpax = 1.0 873.0786 1.0
Fixed speed v = vy = 0.5 785.2736 0.5
Instantaneous policy 850.3704 0.7867
Minimum of random exploration policy 723.6733 0.7597
Gradient method 735.0565 0.5241

Table 1: Value of the cost functional and the average velocity for the different policies.

at the final time for the different policies. For comparison, we also put the results of
the simulations with a constant speed equal to the minimum and maximal velocity
bounds. The instantaneous policy is outperformed by the random exploration policy
and by the gradient method. For the random exploration policy, in the table we put
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Fig. 6: Speed obtained by using the instantaneous policy (left) and the gradient
descent method (right) for a target flux f* = 0.3.

the minimal value of the cost functional computed by the algorithm. In Figure 7
we can see the distribution of the different values of the cost functional over 1000
simulations. Moreover, in Figure 8, we can see the differences between the actual
outflow obtained and the target one for all methods. We also compared the CPU

MNumbaer of sccurrance

TH 0

0 800 a2
Cast Functional

Fig. 7: Histogram of the distribution of the value of the cost functional for the random
exploration policy. We run 1000 different simulations.

time for the different simulations approaches (see Table 2). As expected, the random
exploration policy is the least performing while the instantaneous policy is the fastest
one.In addition, we computed the TV (v) for each one of the policies obtaining the
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Method P AE method

g g A

1
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i

Time

Fig. 8: Difference between the real outgoing flux and the target constant flux, com-
puted with the instantaneous policy (top, left), the gradient method (top, right) and
the random exploration policy (bottom).

following results:
o IP: TV (v) = 12.6904
e RE: TV(v) = 753.5
e GDM: TV (v) = 70.81333.

Method CPU Time (s)
Instantaneous policy 32.756
Random exploration policy 7577.390
Gradient method 1034.567

Table 2: CPU Time for the simulations performed with the different approaches.

4.3.2. Test II: Sinusoidal Outflow. In Figure 9, we show the optimal velocity
obtained by using the instantaneous policy and by using the gradient descent method
with a sinusoidal outflow. We show in Figure 10 the histogram of the cost functional
obtained for the random exploration policy and in Figure 11 we compare the real
outgoing flux with the target one. In Table 3, different results obtained for the cost
functional computed at final time for the different policies are shown. Also in this
case the instantaneous policy is outperformed by the other two. The CPU times give
results similar to the previous test.

5. Conclusions. In this work, we studied an optimal control problem for traffic
regulation on a single road via variable speed limit. The traffic flow is described
by the LWR model equipped with the Newell-Daganzo flux function. The optimal
control problem consists in tracking a given target outflow in free flow conditions. We
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Fig. 9: Speed obtained by using the instantaneous policy (left) and the gradient
descent method (right) for a sinusoidal target flux.
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Fig. 10: Histogram of the distribution of the value of the cost functional for the
random exploration policy. We run 1000 different simulations.

411 proved tje existence of a solution for the optimal control problem and provided explicit
412 analytical formulas for cost variations corresponding to needle-like variations of the
413 control policy. We proposed three different control policies design: instantaneous
414 depending only on the instantaneous downstream density, random simulations and
415 gradient descent. The latter, based on numerical simulations for the cost variation,
416 represents the best compromise between performance, computational cost and total
417 variation of the control policy.

418  Future works will include the study of this problem in case of congestion and the
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Fig. 11: Difference between the real outgoing flux and the target sinusoidal flux,
computed with the instantaneous policy (top, left), the gradient method (top,right)
and the random exploration policy (bottom).

Method Cost Functional | Average speed
Fixed speed v = vpax = 1.0 1.3979¢ + 03 1.0
Fixed speed v = vy, = 0.5 843.3395 0.5
Instantaneous policy 458.8874 0.7917
Minimum of random exploration policy 303.8327 0.7512
Gradient method 307.6889 0.6001

Table 3: Value of the cost functional for the different policies.

extension to second order traffic flow models.

Appendix.

LEMMA 22. Let 3,T > 0, and ¢ € BV([0,T],RT) be given. Define L := fOT (o) dcrl
and the function x : [0,T] — [0, L] by x(s) :== L — [ ¢(c)do, that is invertible.

Define o > B and the function t : (0,£] — [0, L] such that {(At) is the unique
solution of fot(At) p(o)do = L — aAt.

1t then holds

i 1
m —
At—0+ At

[/ot(At) @2(8)(¢(x(s) — BAt) — @b(x(s)))ds} _

(22) 5

Jim [ el (vt - 580 — v(@)) o]
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427 Proof. The change of variable s — x(s) inside the integral gives
1 t(At)
Jim [ [ P (vl - a0 = vla(s)ds -
18 (23) N
1 «
Jim =g [ el (e = A0~ v(@) o =
429 3
1
Jim [ ols(a@) (40 - 580 — v(@))de-
130 (24) 0

lim
At—0+ At

L " ) (9a(s) — B0 — 00 )

431 where s(x) is uniquely determined by the invertibility of the function z(s). Observe
432 that we need to specify the 0T extremum in the integral, since the limit will provide
433 Dirac terms inside the integral. We want now prove that the last addendum tends
134 to zero. Denote by 1, the distributional derivative of v, which is a measure, and
135 decompose it as in the continuous (AC+ Cantor) and Dirac part. By integrating v,
136 we write ¢ = 1) + > i MiX[e,,L], With ¢ a continuous function, m; > 0, >, m; < +oo

437 and x; € [0, L] . Hence, by the mean value theorem applied to z/), we have

alt
lim — N dzls) — BAL — d(z(s) | de <
s (25) Atso+ At it <~> BAL) — P(a(s))|de <
Jim ||so||ooa\w<az= — BAL) — ()| = 0,

where 7 € (0, «At) is a point (depending on At) and the limit is zero as a consequence
of the continuity of ¥. The remaining term in (24) is then

1 alAt
lim — / p65@) S Mgt — Xion i) 47 =

At—0+ At
z; €(0,aAt]

1
5 els) ImpArs Jim el Y me

lim
At—0t At
z;€(0,aAt] z;€(0,aAt]

139 Since @ is in BV the quantity ine(o ant Mi tends to zero as At tends to zero, thus
440 we conclude. O

441 LEMMA 23. Let p,¢ € BV(ja —¢,b+¢],R), then

442 (26) lim €L /b o(x) (w(x — CAt) — ¢(x dac = fC/ by (z

At—0+ At

443 where the integral in the right hand side is defined in Definition 10.

Proof. We decompose the measure 1, as 1, = £d\ + >, m;d,,, where X is the
Lebesgue measure, ¢ the Radon-Nikodym derivative of v, w.r.t. A, m; > 0 and
>, mi < +00. We approximate ) by piecewise continuous functions ¢™ defined as the
integrals of ¢ = £dA+3, - () Midz,, where N (n) is chosen such that 3y, mi <
1

Define I(n) = Ufi(ln) [, z; + CAt] and by I, its complement in [a, b]. Notice that for
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z € [x;,z; + CAt] we have ¥"(x — CAt) — " (x) = —m; — [, ¢ dX\ while on I,
there are no jumps so ¢"(z — CAt) — ¢"(z) = — [ .\, £ d\. We thus can write:

1 b
lim 5 | @) (v~ cat) = p" (@) )dz =

At

444

1 N(n) .z, 4+CAt

R DY | e (= can —vnia)des

445 i=1 T

+ [ o) (97 - A0~ v"() ) do =

I.

446

1 N(n) zi+CAt 1 b z
417 (27) = A%lﬁn}ﬁ AL ; (—m;) /w o(z)dx — Kt/a o(x) /mfcmg d\dx.

Since ¢ is in BV we can write:
b N(n) b
: . n _ YN 1} — . +\
Jim 5 [ et (57 - 00 = 67(@))da > il | etaaen
N(n)

- _/ab<p(x+)d( Z M0, +€/\> = —/abcp(a:*)dw;’

Now, the following estimates hold:

ﬁ /: o) (1" (& — OL) — 0" (2) ) da é / " o) (e — €At~ () )da

L
At

[ (v - can - v - 080) - (57 b))

We can write ¥ (x—CAt) = z/J(a)—FfmeAt dy? and Y(z—CAt) = w(a)—kfffcm diy,

a
which gives us

é /b ap(x)(/x_cm dr,, — /w drn>dx

where 7,, = 1) — ™. Taking the limit for At — 0T:

)

b

Ait /abcp(x)(w”(xC’At)w"(x))dxAlt i go(:ﬂ)(d)(x—CAt)—w(x))dx
b z
<5 [e(- [ an)as) <
ol [ [ drade| <ol
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The last inequality holds true because [ ., drn =Y, mi [ oa, @00 =
2 i MiX[es,zi+CAy- Thus we get:

b

AP—{%‘F é /abgo(w(x — CAt) — 1/1(x)d33) = O(%) +/ o(xT)dy?

a

. Let us now estimate the quantity

bw(%*)dwﬁ - bw(af*)dt/)z :
J J

Recalling that ¢"(z — CAt) = (a) + f;icm dyy and Y(z — CAt) = 9(a) +

N A, we get
b 1
[ et Y mib)| <lels
@ i>N(n)
Passing to the limit in n we conclude. 0
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