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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT∗1

MARIA LAURA DELLE MONACHE† , BENEDETTO PICCOLI‡ , AND FRANCESCO ROSSI§2

Abstract. We study an optimal control problem for traffic regulation via variable speed limit.3
The traffic flow dynamics is described with the Lighthill-Whitham-Richards (LWR) model with4
Newell-Daganzo flux function. We aim at minimizing the L2 quadratic error to a desired outflow,5
given an inflow on a single road. We first provide existence of a minimizer and compute analytically6
the cost functional variations due to needle-like variation in the control policy. Then, we compare7
three strategies: instantaneous policy; random exploration of control space; steepest descent using8
numerical expression of gradient. We show that the gradient technique is able to achieve a cost9
within 10% of random exploration minimum with better computational performances.10

Key words. Traffic problems, Optimal control problem, Variable speed limit11

AMS subject classifications. 90B20, 35L65, 49J2012

1. Introduction. In this paper, we study an optimal control problem for traffic13

flow on a single road using a variable speed limit1. The first traffic flow models on a14

single road of infinite length using a non-linear scalar hyperbolic partial differential15

equation (PDE) are due to Lighthill and Whitham [33] and, independently, Richards16

[35], which in the 1950s proposed a fluid dynamic model to describe traffic flow. Later17

on, the model was extended to networks [20] and started to be used to control and18

optimize traffic flow on roads. In the last decade, several authors studied optimization19

and control of conservation laws and several papers proposed different approaches to20

optimization of hyperbolic PDEs, see [5, 19, 21, 24, 31, 36, 37] and references therein.21

These techniques were then employed to optimize traffic flow through, for example,22

inflow regulation [12], ramp-metering [34] and variable speed limit [22]. We focus23

on the last approach, where the control is given by the maximal speed allowed on24

the road. Notice that also the engineering literature presents a wealth of approaches25

[1, 2, 10, 11, 13, 15, 25, 26, 27, 28, 29, 30, 38], but mostly in the time discrete setting.26

In [1, 2] a dynamic feedback control law is employed to compute variable speed limits27

using a discrete macroscopic model. Instead, [25, 26, 27] use model predictive control28

(MPC) to optimally coordinate variable speed limits for freeway traffic with the aim29

of suppressing shock waves.30

In this paper, we address the speed limit problem on a single road. The control31

variable is the maximal allowed velocity, which may vary in time but we assume to32

be of bounded total variation, and we aim at tracking a given target outgoing flow.33

More precisely, the main goal is to minimize the quadratic difference between the34

achieved outflow and the given target outflow. Mathematically the problem is very35

hard, because of the delays in the effect of the control variable (speed limit). In fact,36

the Link Entering Time (LET) τ(t), which represents the entering time of the car37
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2 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

exiting the road at time t see (7), depends on the given inflow and the control policy38

on the whole time interval [τ(t), t]. Moreover, the input-output map is defined in39

terms of LET, thus the achieved outflow at time t depends on the control variable on40

the whole interval [τ(t), t]. Due to the complexity of the problem, in this article we41

restrict the problem to free flow conditions. Notice that this assumption is not too42

restrictive. Indeed, if the road is initially in free flow, then it will keep the free flow43

condition due to properties of the LWR model, see [9, Lemma 1].44

After formulating the optimal control problem, we consider needle-like variations for45

the control policy as used in the classical Pontryagin Maximum Principle [8]. We46

are able to derive an analytical expression of the one-sided variation of the cost,47

corresponding to needle-like variations of the control policy, using fine properties of48

functions with bounded variation. In particular the one-sided variations depend on49

the sign of the control variation and involves integrals w.r.t. to the distributional50

derivative of the solution as a measure, see (10). This allows us to prove Lipschitz51

continuity of the cost functional in the space of bounded variation function and prove52

existence of a solution.53

Afterwards, we define three different techniques to solve numerically this problem.54

• Instantaneous Policy (IP). We design a closed-loop policy, which depends55

only on the instantaneous density at road exit. More precisely, we choose the56

speed limit which gives the nearest outflow to the desired one.57

• Random Exploration (RE). It uses time discretization and random binary58

tree search of the control space to find the best maximal velocity profile.59

• Gradient Descent Method (GDM). It consists in approximating numerically60

the gradient of the cost functional using (10) combined with a steepest descent61

method.62

We compare the three approaches on two test cases: constant desired outflow and63

sinusoidal inflow; sinusoidal desired outflow and inflow. In both cases RE provides64

the best control policy, however GDM performs within 10% of best RE result with65

a computational cost of around 15% of RE. On the other side, IP performs poorly66

with respect to the RE, but with a very low computational cost. Notice that, in some67

cases, IP may be the only practical policy, while GDM represents a valid approach68

also for real-time control, due to good performances and reasonable computational69

costs. Moreover, control policies provided by RE may have too large total variation70

to be of practical use.71

The paper is organized as follows: section 2 gives the description of the traffic flow72

model and of the optimal control problem. Moreover, the existence of a solution73

is proved. In section 3, the three different approaches to find control policies are74

described. Then in section 4, these techniques are implemented on two test cases.75

Final remarks and future work are discussed in section 5.76

2. Mathematical model. In this section, we introduce a mathematical frame-77

work for the speed regulation problem. The traffic dynamics is based on the classical78

Lighthil-Whitham-Richards (LWR) model ([33, 35]), while the optimization problem79

will seek minimizers of quadratic distance to an assigned outflow.80

2.1. Traffic flow modeling. We consider the LWR model on a single road of81

length L to describe the traffic dynamics. The evolution in time of the car density82

ρ is described by a Cauchy problem for scalar conservation law with time dependent83
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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 3

maximal speed v(t):84

(1)

{
ρt + f(ρ, v(t))x = 0, (t, x) ∈ R+ × [0, L],
ρ(0, x) = ρ0(x), x ∈ [0, L],

85

where ρ = ρ(t, x) ∈ [0, ρmax] with ρmax the maximal car density. In the transportation86

literature the graph of the flux function ρ → f(ρ) (in our case for a fixed v(t)) is87

commonly referred to as the fundamental diagram. Throughout the paper, we focus88

on the Newell - Daganzo - type ([14]) fundamental diagrams, see Figure 1b. The speed89

takes value on a bounded interval v(t) ∈ [vmin, vmax], 0 < vmin ≤ vmax, thus the flux90

function f : [0, ρmax]× [vmin, vmax]→ R+ is given by91

(2) f(ρ, v(t)) =

 ρv(t), if 0 ≤ ρ ≤ ρcr,
v(t)ρcr

ρmax − ρcr
(ρmax − ρ), if ρcr < ρ ≤ ρmax,

92

with v(t) representing the maximal speed, see Figure 1a. Notice that the flow is93

increasing up to a critical density ρcr and then decreasing. The interval [0, ρcr] is94

referred to as the free flow zone, while [ρcr, ρmax] is referred to as the congested flow95

zone.96

ρρcr ρmax

v(t)

vmin

vmax

v(ρ)

(a) Velocity function.

ρρcr ρmax

f(ρ)

f(ρcr)

v(t)

vmin

vmax

(b) Newell-Daganzo fundamental diagram.

Fig. 1: Velocity and flow for different speed limits.

97

The problem we consider is the following. Given an inflow In(t), we want to track98

a fixed outflow Out(t) on a time horizon [0, T ], T > 0, by acting on the time-dependent99

maximal velocity v(t). A maximal velocity function v : [0, T ] → [vmin, vmax] is called100

a control policy.101

It is easy to see that a road in free flow can become congested only because of the102

outflow regulation with shocks moving backward, see [9, Lemma 2.3]. Since we assume103

Neumann boundary conditions at the road exit, the traffic will always remain in free104

flow, i.e. ρ(t, x) ≤ ρcr for every (t, x) ∈ [0, T ] × [0, L]. Given the inflow function105

In(t), we consider the Initial Boundary Value Problem with assigned flow boundary106

condition fl + f(ρ(t, 0+)) on the left in the sense of Bardos, Le Roux and Nedelec,107

This manuscript is for review purposes only.



4 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

see [6] and Neumann boundary condition (flow fr + f(ρ(t, 0−))) on the right:108

(3)


ρt + f(ρ, v(t))x = 0, (t, x) ∈ R+ × [0, L],
ρ(0, x) = ρ0(x), x ∈ [0, L],
fl(t) = In(t),
fr(t) = ρ(t, L) v(t).

109

We denote by BV the space of scalar functions of bounded variations and by TV the110

total variation, see [7] for details. For any scalar BV function h we denote by ξ(x±)111

its right (respectively left) limit at x. We further assume the following:112

Hypothesis 1. There exists 0 < ρmin
0 ≤ ρmax

0 ≤ ρcr and 0 < fmin ≤ fmax such that113

ρ0 ∈ BV([0, L], [ρmin
0 , ρmax

0 ]) and In ∈ BV([0, T ], [fmin, fmax]).114

Under this assumption, we have:115

Proposition 2. Assume that Hypothesis 1 holds and

v ∈ BV([0, T ], [vmin, vmax]).

Then, there exists a unique entropy solution ρ(t, x) to (3). Moreover, ρ(t, x) ≤ ρcr116

and, setting117

(4) Out(t) = ρ(t, L)v(t),118

we have that Out(.) ∈ BV([0, T ],R) and the following estimates hold119

(5) min
{
ρmin

0 ,
fmin

vmax

}
≤ ρ(t, x) ≤ max

{
ρmax

0 ,
fmax

vmin

}
, for x ∈ [0, L]120

121

(6) min
{
ρmin

0 vmin, fmin
vmin

vmax

}
≤ Out(t) ≤ max

{
ρmax

0 vmax, fmax
vmax

vmin

}
.122

Proof. Let vn ∈ BV([0, T ], [vmin, vmax]) be a sequence of piecewise constant func-
tions converging to v in L1 and satisfying TV(vn) ≤ TV(v). For each vn, by standard
properties of Initial Boundary Value Problems for conservation laws [6, Theorem 2]
and [16], there exists a unique BV entropy solution ρn to (3) with ρn ∈ Lip([0, T ],L1).
Notice that the left flow condition is equivalent to the boundary condition: ρl(t) =
In(t)

v(t)
. From [9, Lemma 2.3] and the Neumann boundary condition on the right, we

get that ρn(t, x) ≤ ρcr, thus by maximum principle it holds:

ρn(t, ·) ∈ BV
(
R,
[

min
{
ρmin

0 ,
fmin

vmax

}
,max

{
ρmax

0 ,
fmax

vmin

}])
.

Let us now estimate the total variation of the solution ρn. Since it solves a scalar123

conservation laws, the total variation does not increase in time due to dynamics on124

]0, L[. Notice that changes in v(·) will not increase the total variation of ρn inside the125

road (i.e. on ]0, L[). The total variation of ρn increases only because of new waves126

generated by changes in the inflow. Using the boundary condition ρl(t) =
In(t)

v(t)
,127

we can estimate the total variation in space of ρn caused by time variation of In,128

respectively time variation of v, by
TV(In)

vmin
, respectively

fmax TV(v)

v2
min

. Finally we get:129

sup
t

TV(ρn(t, ·)) ≤ TV(ρn(0, ·) +
TV(In)

vmin
+
fmax TV(v)

v2
min

.130
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TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 5

By Helly’s Theorem (see [7, Theorem 2.4]) there exists a subsequence converging in131

L1([0, T ]× [0, L]) to a limit ρ∗. By Lipschitz continuity of the flux and dominated con-132

vergence we get that f(ρn(t, x), v(t)) converges in L1([0, T ]×[0, L]) to f(ρ∗(t, x), v(t)).133

Passing to the limit in the weak formulation
∫

Ω
ρn ϕt + f(ρn, w)ϕx dt dx = 0 (where134

Ω ⊂⊂ [0, T ] × [0, L] and ϕ ∈ C∞0 ) we have that ρ∗ is a weak entropic solution. We135

can pass to the limit also in the left boundary condition because this is equivalent136

to ρl(t) =
In(t)

v(t)
and v is bounded from below. Finally ρ∗ is a solution to (3). The137

standard Kružhkov entropy condition [32] and [6, Theorem 2] ensure uniqueness of138

the solution. Since Out(t) = ρ(t, L)v(t), we have that Out(t) has bounded variation139

and satisfies (6).140

To simplify notation, we further make the following assumptions:141

Hypothesis 3. We assume Hypothesis 1 and the following:

ρmin
0 ≤ fmin

vmax
and ρmax

0 ≥ fmax

vmin
.

Given a control policy v, we can define a Link Entering Time (LET) function τ =142

τ(t, v) representing the entering time for a car exiting the road at time t. The function143

depends on the control policy v, but for simplicity we will write τ(t) when the policy144

is clear from the context. Notice that LET is defined only for time greater than a145

given t0 > 0, the exit time of the car entering the road at time t = 0, see Figure 2.146

Note that t0 satisfies
∫ t0

0
v(s)ds = L and, for each t ≥ t0:

0 L

τ(t)
t0

t

Fig. 2: Graphical representation of the LET function τ = τ(t, v) defined in (7).

147

(7)

∫ t

τ(t)

v(s)ds = L.148

Such τ(t) is unique, due to the hypothesis v ≥ vmin > 0. From the identity∫ τ(t2)

τ(t1)

v(s)ds =

∫ t2

t1

v(s)ds,

we get the following:149

This manuscript is for review purposes only.



6 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

Lemma 4. Given a control policy v, the function τ is a Lipschitz continuous func-150

tion, with Lipschitz constant
vmax

vmin
.151

Recalling the definition of outflow of the solution given in (4), we get:152

Proposition 5. The input-output flow map of the Initial Boundary Value Prob-153

lem (briefly IBVP) (3) is given by154

(8) Out(t) = In(τ(t))
v(t)

v(τ(t))
.155

Proof. Thanks to Proposition 2, the solution ρ to the IBVP (3) satisfies ρ(t, x) ≤156

ρcr, thus ρ solves a conservation law linear in ρ. Indeed the Newell-Daganzo flow157

is linear in the free flow zone. Therefore, no shock is produced inside the domain158

[0, L] and characteristics are defined for all times. In particular the value of ρ is159

constant along characteristics. The characteristic exiting the domain at time t enters160

the domain from the boundary at time τ(t). Therefore we get ρ(t, L) = ρ(0, τ(t)) =161
In(τ(t))
v(τ(t)) . From (4) we get the desired conclusion.162

Remark 6. This map is highly non-linear with respect to the control policy v163

due to the definition of τ . Hence, the classical techniques of linear control cannot be164

applied. Moreover, such formulation clearly shows how delays enter the input-output165

flow map. The effect of the control v at time t on the outflow depends on the choice166

of v on the time interval [τ(t), t], because of the presence of the LET map in formula167

(8).168

2.2. Optimal control problem. We are now ready to define formally the prob-169

lem of outflow tracking.170

Problem 7. Let Hypothesis 3 hold, fix f∗ ∈ BV([0, T ], [fmin, fmax]) and K > 0.171

Find the control policy v ∈ BV([0, T ], [vmin, vmax]), with TV(v) ≤ K, which minimizes172

the functional J : BV([0, T ], [vmin, vmax])→ R defined by173

(9) J(v) :=

∫ T

0

(Out(t)− f∗(t))2dt174

where Out(t) is given by (8).175

We prove later on, in Proposition 15, that Problem 7 admits a solution.176

Remark 8. We use the same positive extreme values fmin, fmax for both the177

inflow In(.) and the target outflow f∗(.) for simplicity of notation only.178

Remark 9. In the simple case where all the parameters are constant in time, i.e.179

In, Out, f∗, ρ0 do not depend on time, the problem has a a trivial solution which is180

v =
f∗

ρ0
realizing J(v) = 0.181

2.3. Cost variation as function of control policy variation. In this section182

we estimate the variation of the cost J(v) with respect to the perturbations of the183

control policy v. This computation will allow to prove continuous dependence of the184

solution from the control policy.185

We first fix the notation for integrals of BV function with respect to Radon186

measures.187

This manuscript is for review purposes only.



TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 7

Definition 10. Let φ be a BV -function and µ a Radon measure. We define∫
φ(x+) dµ(x) :=

∫
φ(x) dµc(x) +

∑
i

miφ(x+
i ),

where µ = µc +
∑
imiδxi

is the decomposition of µ into its continuous2 and Dirac188

parts.189

We now compute the variation in the cost J produced by needle-like variation in190

the control policy v(·), i.e. variation of the value of v(·) on small intervals of the type191

[t, t+∆t] in the same spirit as the needle variations of Pontryagin Maximum Principle192

[8]. The analytical expression of variations will allow to implement a steepest-descent193

type strategy to find the optimal speed limit.194

Definition 11. Consider v ∈ BV([0, T ], [vmin, vmax]) and a time t such that195

τ−1(0) = t0 ≤ t < τ(T ) and v(t+) < vmax. Let ∆v > 0, ∆t > 0 be sufficiently196

small such that t + ∆t ≤ τ(T ) and v(t+) + ∆v ≤ vmax. We define a needle-like197

variation v′(·) of v, corresponding to t, ∆t and ∆v by setting v′(s) = v(s) + ∆v if198

s ∈ [t, t+ ∆t] and v′(s) = v(s) otherwise, see Figure 3.199

t

v

t t+ ∆t

v

v′ = v + ∆v

Fig. 3: Needle-like variation of the velocity v.

Lemma 12. Consider v ∈ BV([0, T ], [vmin, vmax]) and let v′ be a needle-like vari-200

ation of v. Then it holds:201

lim
∆v→0+

lim
∆t→0+

J(v′)− J(v)

∆v
=

= 2ρ2(t, L−)v(t+)− 2ρ(t, L−)f∗(t+)+

−
∫

]0,L]

v((t+ s(x))+) dρ2
x(t) + 2

∫
]0,L]

f∗((t+ s(x))+)) dρx(t)+

+ 2
In(t−)

v(t+)

(
f∗(t+)− v(τ−1(t′)−)

v(t+)
In(t−)

)
,

(10)202

where integrals are defined according to Definition 10. For ∆v < 0, the limit for203

∆v → 0− satisfies the same formula with right limits replaced by left limits in the two204

integral terms in (10).205

2We recall that any Radon measure on R can be decomposed into its continuous (AC+Cantor)
and Dirac parts, as a consequence of the Lebesgue decomposition Theorem, see e.g. [17] .
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8 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

Remark 13. Notice that the condition τ−1(0) = t0 < t implies that the outflow
Out(s) ∈ [t, t+∆t], depends only on the inflow In(.) and not on the initial density ρ0.
If such condition is not satisfied, the perturbation given by ∆v has a comparable effect
on Out(.), but it needs to be estimated in two parts: one with respect to In([0, t+∆t])
and one with respect to ρ0(0, L− l) with l being such that∫ t

0

v(s)ds = l.

The condition t + ∆t ≤ τ(T ) means that the perturbation ∆v has influence on the206

whole outflow Out(s) in the interval [t, τ−1(t + ∆t)]. If this is not satisfied, then207

the influence of the perturbation is stopped at T < τ−1(t+ ∆t), hence the variation208

Out(s) is smaller.209

Proof. Let τ(t) be defined according to (7) and an outflow Out(t) according to
(8). For simplicity we assume that v(·) has a constant value v̂ := v(t+) on [t, t+ ∆t],
the general case holding because of properties of BV functions.
We define t′ = t+ ∆t and s′ to be the unique value satisfying∫ s′

0

v(t′ + σ)dσ = L− (v̂ + ∆v)∆t,

s′′ to be the unique value satisfying∫ s′′

0

v(t′ + σ)dσ = L− v̂∆t,

and s′′′ = τ−1(t′)− t′, hence
∫ s′′′

0
v(t′+σ)dσ = L. Notice that s′ < s′′ < s′′′. We also210

define the function211

(11) x(s) = L−
∫ s

0

v(t′ + σ)dσ.212

Remark that x(s) is a decreasing function, with x(0) = L , x(s′) = (v̂ + ∆v)∆t,213

x(s′′) = v̂∆t and x(s′′′) = 0. We denote with Out′(s) the outflow, τ ′(s) the LET (see214

(7)) and ρ′(s, x) the density for the policy v′. Clearly, we have Out′(s) = Out(s) for215

s ∈ [0, t] ∪ [τ−1(t′), T ] and τ ′(s) = τ(s) for s ∈ [t0, t] ∪ [τ−1(t′), T ].216

To compute the variation, we distinguish four time intervals: I1 = (t, t′), I2 =217

(t′, t′ + s′), I3 = (t′ + s′, t′ + s′′) and I4 = (t′ + s′′, τ−1(t′)), see Figure 4. The218

variation of the cost in the first interval can be directly computed as function of the219

velocity variation, while in the other intervals the delays in the outflow formula (8) will220

render the computation more involved. We denote with J1, . . . , J4 the contributions221

to lim∆t→0+(J(v′)− J(v))/∆v in the four intervals and estimate them separately.222

CASE 1 : I1 = (t, t′). Let s ∈ [0, t′ − t] = [0,∆t], then Out(t + s) = ρ(t, L − sv̂)v̂223

and Out′(t+ s) = ρ(t, L− s(v̂ + ∆v))(v̂ + ∆v). We have:224

(12)

J1 = lim
∆t→0+

1

∆t

[ ∫ ∆t

0

(
Out′(t+s)−f∗(t+s)

)2

ds−
∫ ∆t

0

(
Out(t+s)−f∗(t+s)

)2

ds
]

=225

lim
∆t→0+

1

∆t

[ ∫ ∆t

0

Out′2(t+s)−Out2(t+s)−2f∗(t+s)
(

Out′(t+s)−Out(t+s)
)
ds
]

=

This manuscript is for review purposes only.



TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 9

0 LL− x(s′) L− x(s′′)

τ(t)

t′ = t+ ∆t

t′ + s′

t′ + s′′

t′ + s′′′

tt

τ−1(t+ ∆t) = τ−1(t′)

∆t I1

I2

I3

I4

Fig. 4: Graphical representation for the notation used in subsection 2.3

Substituting the expressions for the outflows we get

lim
∆t→0+

1

∆t

[ ∫ ∆t

0

ρ2(t, L− s(v̂ + ∆v))(v̂ + ∆v)2 − ρ2(t, L− sv̂)v̂2ds+

−
∫ ∆t

0

2f∗(t+ s)
(
ρ(t, L− s(v̂ + ∆v))(v̂ + ∆v)− ρ(t, L− sv̂)v̂

)
ds
]

=

Dividing the first integral in two parts and making the change of variable σ = s
v̂ + ∆v

v̂

lim
∆t→0+

1

∆t

[ ∫ ∆t(1+ ∆v
v̂ )

0

ρ2(t, L− σv̂)(v̂ + ∆v)�2
v̂

����v̂ + ∆v
dσ −

∫ ∆t

0

ρ2(t, L− sv̂)v̂2ds+

−
∫ ∆t

0

2f∗(t+s)
(
v̂(ρ(t, L−s(v̂+∆v))−ρ(t, L−sv̂))+∆v(ρ(t, L−s(v̂+∆v)))

)
ds
]

=

After simple algebraic manipulation we get:

lim
∆t→0+

1

∆t

[ ∫ ∆t(1+ ∆v
v̂ )

0

ρ2(t, L− sv̂)∆vv̂ds+

∫ ∆t(1+ ∆v
v̂ )

∆t

ρ2(t, L− sv̂)v̂2ds+

−
∫ ∆t

0

2f∗(t+ s)
(
v̂(ρ(t, L− s(v̂+ ∆v))− ρ(L− sv̂)) + ∆v(ρ(t, L− s(v̂+ ∆v)))

)
ds
]

=

lim
∆t→0+

1

∆t

[ ∫ ∆t

0

ρ2(t, L− sv̂)∆vv̂ds+

∫ ∆t(1+ ∆v
v̂ )

∆t

ρ2(t, L− sv̂)(v̂2 + ∆vv̂)ds

−
∫ ∆t

0

2f∗(t+s)
(
v̂(ρ(t, L−s(v̂+∆v))−ρ(t, L−sv̂))+∆v(ρ(t, L−s(v̂+∆v)))

)
ds
]

=
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10 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

Taking the limit as ∆t→ 0+, we get:

ρ2(t, L−)v̂∆v + ρ2(t, L−)�̂v(v̂ + ∆v)
∆v

�̂v
+

−2f∗(t+)[v̂(����ρ(t, L−) −����ρ(t, L−))]− 2f∗(t+)∆vρ(t, L−) =

ρ2(t, L−)v̂∆v + ρ2(t, L−)(v̂ + ∆v)∆v − 2f∗(t+)∆vρ(t, L−),

hence
J1 = 2ρ2(t, L−)v̂ + ρ2(t, L−)∆v − 2f∗(t+)ρ(t, L−),

thus
lim

∆v→0+
J1 = 2ρ2(t, L−)v(t+)− 2f∗(t+)ρ(t, L−).

226

CASE 2 : I2 = (t′, t′ + s′). If s ∈ [0, s′] then Out(t′ + s) = ρ(t′, x(s))v(t′ + s)227

and Out′(t′+ s) = ρ((t′, x(s)−∆v∆t))v(t′+ s). After decomposing J2 as done for J1228

in (12) and plugging in the expression of the outflows, we have229

J2 = lim
∆t→0+

1

∆t

[ ∫ s′

0

v2(t′ + s)
(
ρ2(t′, x(s)−∆v∆t)− ρ2(t′, x(s))

)
ds+

−
∫ s′

0

2f∗(t′ + s)v(t′ + s)
(
ρ(t′, x(s)−∆v∆t)− ρ(t′, x(s))

)
ds
]
.

(13)230

Applying the change of variable s→ x(s) (see (11)), it holds

J2 = lim
∆t→0+

1

∆t

[ ∫ L

0+

v(t′ + s(x))
(
ρ2(t′, x−∆v∆t)− ρ2(t′, x)

)
dx+

−
∫ L

0+

2f∗(t′ + s(x))
(
ρ(t′, x−∆v∆t)− ρ(t′, x)

)
dx
]
.

Notice that this change of variable is justified by Lemma 22 of the Appendix. Using
Lemma 23 of the Appendix, we get:

lim
∆v→0+

J2 = −
∫ L

0+

v((t′ + s(x))+) dρ2
x(t′, x)

+2

∫ L

0+

f∗((t′ + s(x))+) dρx(t′, x).

CASE 3 : I3 = (t′ + s′, t′ + s′′). If s ∈ [s′, s′′] then Out(t′ + s) = ρ(t′, x(s))v(t′ + s)
and

Out′(t′ + s) = v(t′ + s)
g(s)

v̂ + ∆v
, g(s) = In

(
t′ − x(s)

v̂ + ∆v

)
.

After decomposing J3 as done for J1 in (12) and plugging in the expression of the
outflows, we get

lim
∆t→0+

1

∆t

[ ∫ s′′

s′
v2(t′ + s)

g2(s)

(v̂ + ∆v)2
− ρ2(t′, x(s))v2(t′ + s)+

−2f∗(t′ + s)
(
v(t′ + s)

g(s)

v̂ + ∆v
− ρ(t′, x(s))v(t′ + s)

)]
ds =
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Observe that lim∆t→0+ s′ = lim∆t→0+ s′′ = τ−1(t′)−−t′ and
∫ s′′
s′
v(t′+σ)dσ = ∆v∆t,231

then232

∆v J3 =
∆v

v(τ−1(t′)−)
v2(τ−1(t′)−)In2(t′−)

[( 1

v̂ + ∆v

)2

−
(1

v̂

)2]
−

∆v

v(τ−1(t′)−)
2f∗(τ−1(t′)−)v(τ−1(t′)−)In(t′−)

( 1

v̂ + ∆v
− 1

v̂

)]
,

(14)233

thus

lim
∆v→0+

J3 = 0.

CASE 4 : I4 = (t′ + s′′, t′ + s′′′). If s ∈ [s′′, s′′′] then we compute

Out(t′ + s) =
h(s)

v̂
v(t′ + s) h(s) = In

(
t′ − x(s)

v̂

)
and

Out′(t′ + s) = v(t′ + s)
g(s)

v̂ + ∆v
g(s) = In

(
t′ − x(s)

v̂ + ∆v

)
.

We decompose J4 as done with J1 in (12), plug in the expression of the outflows, and

use the equality
∫ s′′′
s′′

v(t′ + σ) dσ = v̂. The, denoting ṽ = v(τ−1(t′)−), we have

∆vJ4 =
v̂

ṽ

[
ṽ2In2(t′−)

[( 1

v̂ + ∆v

)2

−
(1

v̂

)2]
− 2f∗(τ−1(t′)−)ṽIn(t′−)

[ 1

v̂ + ∆v
− 1

v̂

]]
.

By passing to the limit, we get234

lim
∆v→0+

J4 = 2f∗(τ−1(t′)−)
In(t′−)

v̂
− 2

ṽ

v̂2
In(t′−)2.235

236

Lemma 12 and Remark 13 allow us to prove the following:237

Proposition 14. For every K > 0 and C > 0, the functional J is Lipschitz238

continuous on Ω := {v ∈ BV([0, T ], [vmin, vmax]) : TV(v) ≤ K} endowed with the239

norm ‖v‖L1 .240

Proof. Let v, ṽ ∈ Ω. Then v−v′ is in BV([0, T ], [vmin, vmax]) and can be approxi-241

mated by piecewise constant functions. This means the v−v′ can be approximated in242

BV by needle-like variations as in Lemma 12. The right-hand side of (10) is uniformly243

bounded (since v ∈ Ω and ρ ∈ BV with uniformly bounded variation). Therefore we244

conclude that |J(v)− J(v′)| ≤ C‖v − v′‖L1 for some C > 0.245

This allows to prove the following existence result.246

Proposition 15. Problem 7 admits a solution.247

Proof. The space Ω = {v ∈ BV([0, T ], [vmin, vmax]) : TV(v) ≤ K} ∩ {v ∈248

L∞([0, T ], [vmin, vmax]) : ‖v‖∞ ≤ C} is compact in L1, see e.g. [4], and J is Lips-249

chitz continuous on Ω, thus there exists a minimizer of Problem 7.250
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12 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

3. Control policies. In this section, we define three control policies for the251

time-dependent maximal speed v. The first, called the instantaneous policy (IP), is252

defined by minimizing the instantaneous contribution for the cost J(v) at each time.253

We will show that such control policy does not provide a global minimizer, due to254

delays in the control effect on the cost for the Problem 7. In particular, due to the255

bound v ∈ [vmin, vmax]) the instantaneous minimization may induce a larger cost at256

subsequent times. Then, we introduce a second control policy, called random ex-257

ploration (RE) policy. Such policy uses a random path along a binary tree, which258

correspond the upper and lower bounds for v, i.e. v = vmax and v = vmin.259

Finally, we introduce an effective strategy, which is one of the main results of the pa-260

per. More precisely, a third control policy is searched using a gradient descent method261

(GDM). The classical GDM are based on computing the gradient w.r.t. the control262

space variable, in finite of infinite dimensional setting, and then using steepest descent.263

We use a different approach and replace the gradient with cost variations computed264

with respect to needle-like variations in the control policy. This is in line with the265

spirit of Pontryagin Maximum Principle for optimal control problems. Therefore the266

key ingredient to define the third policy is the explicit computation of the gradient267

given in Section 2.268

3.1. Instantaneous policy.269

Definition 16. Consider Problem 7. Define the instantaneous policy as fol-270

lows:271

(15) v(t) := P[vmin,vmax]

(
f∗(t−) · v(τ(t)−)

In(τ(t)−)

)
,272

where the projection P[vmin,vmax] : R→ R is the function273

(16) P[a,b](x) :=

 a for x < a,
x for x ∈ [a, b],
b for x > b.

274

Notice that this would be the optimal choice if f∗ and In would be constant, see275

Remark 9. The instantaneous policy can also be written directly in terms of the276

input-output map defined in Proposition 5. As we will show later, the instantaneous277

policy is not optimal in general, i.e., it does not provide an optimal solution v for278

Problem 7. Clearly, it provides the solution in the case of vmin sufficiently small279

and vmax sufficiently big so that the projection operator reduces to the identity, i.e.,280

v(t) = P[vmin,vmax]

(f∗(t−)

ρ(L−)

)
=
f∗(t−)

ρ(L−)
for all times. Indeed, in this case the output281

Out(t) coincides with f∗(t), hence the cost J(v) is zero.282

3.2. Random exploration policy. The random exploration policy is defined283

as follows:284

Definition 17. Given the extreme values for the maximal speed, vmax and vmin,285

and a time step ∆t, the random exploration policy draws sequences of veloci-286

ties from the set {vmax, vmin} corresponding to control policy values on the intervals287

[i∆t, (i+ 1)∆t].288

Notice that maximal speeds according to this algorithm can be generated for all289

times, independently of the corresponding solution, in contrast to the instantaneous290

policy which is based on the maximal speed at previous times. We will use numerical291
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optimization to choose the best among the generated random policies, showing in292

particular that the instantaneous policy is not optimal in general.293

3.3. Gradient method. We use needle-like variations and the analytical ex-294

pression in (10) to numerically compute one-sided variations of the cost. We consider295

such variations as estimates of the gradient of the cost in L1. More precisely, we give296

the following definition.297

Definition 18. The gradient policy is the result of a first-order optimization298

algorithm to find a local minimum to Problem 7 using the Gradient Descent Method299

and the expression in (10), stopping at a fixed precision tolerance.300

We will show that the gradient method gives very good results compared to the other301

policies taking into account the computational complexity.302

4. Numerical simulations. In this section we show the numerical results ob-303

tained by implementing the policies described in section 3. The numerical algorithm304

for all the approaches is composed of two steps:305

1. Numerical scheme for the conservation law (1). The density values are com-306

puted using the classical Godunov scheme, introduced in [23].307

2. Numerical solution for the optimal control problem, i.e., computation of the308

maximal speed using the instantaneous control, random exploration policy309

and gradient descent.310

Let ∆x and ∆t be the fixed space and time steps, and set xj+ 1
2

= j∆x, the cell311

interfaces such that the computational cell is given by Cj = [xj− 1
2
, xj+ 2

2
]. The center312

of the cell is denoted by xj = (j − 1

2
)∆x for j ∈ Z at each time step tn = n∆t for313

n ∈ N. We fix J the number of space points and T the finite time horizon. We now314

describe in detail the two steps.315

4.1. Godunov scheme for hyperbolic PDEs. The Godunov scheme is a first316

order scheme, based on exact solution to Riemann problems. Given ρ(t, x), the cell317

average of ρ in the cell Cj at time tn is defined as318

(17) ρj =
1

∆x

∫ x
j+ 1

2

x
j− 1

2

ρ(tn, x)dx.319

Then, the Godunov scheme consists of two main steps:320

1. Solve the Riemann problem at each cell interface xj+ 1
2

with initial data321

(ρj , ρj+1).322

2. Compute the cell averages at time tn+1 in each computational cell and obtain323

ρj .324

Remark 19. Waves in two neighboring cells do not intersect before ∆t if the325

following CFL (Courant-Friedrichs-Lewy) condition holds:326

(18) ∆tmax
j∈Z
|f ′(ρj)| ≤

1

2
min
j∈Z

∆x.327

The Godunov scheme can be expressed in conservative form as:328

(19) ρn+1
j = ρnj −

∆t

∆x

(
F (ρnj , ρ

n
j+1, v

n)− F (ρnj−1ρ
n
j , v

n)
)

329
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where vn is the maximal speed at time tn. Additionally, F (ρnj , ρ
n
j+1, v

n) is the Go-330

dunov numerical flux that in general has the following expression:331

(20) F (ρnj , ρ
n
j+1, v

n) =

{
minz∈[ρnj ,ρ

n
j+1] f(z, vn) if ρnj ≤ ρnj+1,

maxz∈ρnj+1,ρ
n
j
f(z, vn) if ρnj+1 ≤ ρnj .

332

For clarity, we included as an argument for the Godunov scheme the maximal velocity333

so that the dependence of the scheme on the optimal control could be explicit.334

4.2. Velocity policies. The next step in the algorithm consists of computing a335

control policy v that can be used in the Godunov scheme with the different approaches336

introduced in section 3. In particular, for the instantaneous policy approach we337

compute the velocity at each time step using the instantaneous outgoing flux. Instead,338

using the other two approaches, the RE and the GDM, we compute beforehand the339

value of the velocity at each time step and then use it to solve the conservation law340

with the Godunov scheme.341

4.2.1. Instantaneous policy. We follow the control policy described in sub-342

section 3.1 for the instantaneous control. At each time step, the velocity vn+1 is343

computed using the following formula:344

(21) vn+1 = v(tn+1) = P[vmin,vmax]

(f∗(tn)

ρnJ

)
.345

4.2.2. Random exploration policy. To compute for each time step the value346

of the velocity, we use a randomized path on a binary tree, see Figure 5. With such347

technique, we obtain several sequences of possible velocities. For each sequence the348

velocities are used to compute the fluxes for the numerical simulations. We then349

choose the sequence that minimizes the cost.

vmax

vmax

vmax vmin

vmin

vmax vmin

vmin

vmax

vmax vmin

vmin

vmax vmin

Fig. 5: The first branches of the binary tree used for sampling the velocity.

350

Remark 20. Notice that the control policy RE may have a very large total varia-351

tion, thus it might not respect the bounds on TV given in Problem 7. Therefore the352

found control policies may not be allowed as a solution of this problem. However, we353

implement this technique for comparison with the results and performances obtained354

by the GDM.355

4.2.3. Gradient descent method. We first numerically compute one-sided356

variations of the cost using (10). Then, we use the classical gradient descent method357

[3] to find the optimal control strategy and to compute the optimal velocity that fits358

the given outflow profile, as described in Algorithm 1.359
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Algorithm 1 Algorithm for the gradient descent and computation of the optimal control

Input data: Initial and boundary condition for the PDE and initial velocity
Fix a step tolerance ε and find a suitable step size α
while |Ji+1 − Ji| ≤ ε do

Compute numerically cost variations ∇Ji
Update the optimal velocity vi+1 = vi − α∇Ji
Compute the new densities using Godunov scheme
Compute the new value of the cost functional

end while

Remark 21. One might be interested in solving the optimal control problem by360

applying an adjoint method, as it is classical for finite-dimensional control systems.361

Unluckily, for the problem described here by a Partial Differential Equation, adjoint362

equations are still unknown.363

One might then discretize the dynamics, then solve the finite-dimensional problem364

with an adjoint equation, and finally pass to the limit. While we showed in [18] that365

one can find minimizers by discretization for some specific mean-field equations, there366

is no evidence that such technique could work for the problem described here. In367

particular, there is no evidence that the sequence of minimizers of the discretized368

problem converge to the minimizer of the original one.369

4.3. Simulations. We set the following parameters: L = 1, J = 100, T =370

15.0, ρcr = 0.5, ρmax = 1, vmin = 0.5, vmax = 1.0. Moreover, the input flux at the371

boundary of the domain is given by In = min (0.3 + 0.3 sin(2πtn), 0.5). We choose two372

different target fluxes f∗ = 0.3 and f∗ = |(0.4 sin(tπ − 0.3))|. The initial condition is373

a constant density ρ(0, x) = 0.4. We use oscillating inflows to represent variations in374

typical inflow of urban or highway networks at the 24h time scale.375

4.3.1. Test I: Constant Outflow. In Figure 6, we show the time-varying speed376

obtained by using the instantaneous policy (left) and by using the gradient descent377

method (right). In each case, we notice that due to the oscillating input signal the378

control policy is also oscillating. We are aware, however, that from a practical point379

of view, the solution where the speed changes at each time step might be unfeasible.380

Nonetheless, these policies can be seen as periodic change of maximal speed for dif-381

ferent time frames during the day when the time horizon is scaled to the day length.382

In Table 1, we see the different results obtained for the cost functional computed

Method Cost Functional Average Speed
Fixed speed v = vmax = 1.0 873.0786 1.0
Fixed speed v = vmin = 0.5 785.2736 0.5

Instantaneous policy 850.3704 0.7867
Minimum of random exploration policy 723.6733 0.7597

Gradient method 735.0565 0.5241

Table 1: Value of the cost functional and the average velocity for the different policies.

383

at the final time for the different policies. For comparison, we also put the results of384

the simulations with a constant speed equal to the minimum and maximal velocity385

bounds. The instantaneous policy is outperformed by the random exploration policy386

and by the gradient method. For the random exploration policy, in the table we put387
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16 M. L. DELLE MONACHE, B. PICCOLI AND F. ROSSI

Fig. 6: Speed obtained by using the instantaneous policy (left) and the gradient
descent method (right) for a target flux f∗ = 0.3.

the minimal value of the cost functional computed by the algorithm. In Figure 7388

we can see the distribution of the different values of the cost functional over 1000389

simulations. Moreover, in Figure 8, we can see the differences between the actual390

outflow obtained and the target one for all methods. We also compared the CPU

Fig. 7: Histogram of the distribution of the value of the cost functional for the random
exploration policy. We run 1000 different simulations.

391

time for the different simulations approaches (see Table 2). As expected, the random392

exploration policy is the least performing while the instantaneous policy is the fastest393

one.In addition, we computed the TV(v) for each one of the policies obtaining the394
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Fig. 8: Difference between the real outgoing flux and the target constant flux, com-
puted with the instantaneous policy (top, left), the gradient method (top, right) and
the random exploration policy (bottom).

following results:395

• IP: TV(v) = 12.6904396

• RE: TV(v) = 753.5397

• GDM: TV(v) = 70.81333.398

Method CPU Time (s)
Instantaneous policy 32.756

Random exploration policy 7577.390
Gradient method 1034.567

Table 2: CPU Time for the simulations performed with the different approaches.

4.3.2. Test II: Sinusoidal Outflow. In Figure 9, we show the optimal velocity399

obtained by using the instantaneous policy and by using the gradient descent method400

with a sinusoidal outflow. We show in Figure 10 the histogram of the cost functional401

obtained for the random exploration policy and in Figure 11 we compare the real402

outgoing flux with the target one. In Table 3, different results obtained for the cost403

functional computed at final time for the different policies are shown. Also in this404

case the instantaneous policy is outperformed by the other two. The CPU times give405

results similar to the previous test.406

5. Conclusions. In this work, we studied an optimal control problem for traffic407

regulation on a single road via variable speed limit. The traffic flow is described408

by the LWR model equipped with the Newell-Daganzo flux function. The optimal409

control problem consists in tracking a given target outflow in free flow conditions. We410
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Fig. 9: Speed obtained by using the instantaneous policy (left) and the gradient
descent method (right) for a sinusoidal target flux.

Fig. 10: Histogram of the distribution of the value of the cost functional for the
random exploration policy. We run 1000 different simulations.

proved tje existence of a solution for the optimal control problem and provided explicit411

analytical formulas for cost variations corresponding to needle-like variations of the412

control policy. We proposed three different control policies design: instantaneous413

depending only on the instantaneous downstream density, random simulations and414

gradient descent. The latter, based on numerical simulations for the cost variation,415

represents the best compromise between performance, computational cost and total416

variation of the control policy.417

Future works will include the study of this problem in case of congestion and the418
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Fig. 11: Difference between the real outgoing flux and the target sinusoidal flux,
computed with the instantaneous policy (top, left), the gradient method (top,right)
and the random exploration policy (bottom).

Method Cost Functional Average speed
Fixed speed v = vmax = 1.0 1.3979e+ 03 1.0
Fixed speed v = vmin = 0.5 843.3395 0.5

Instantaneous policy 458.8874 0.7917
Minimum of random exploration policy 303.8327 0.7512

Gradient method 307.6889 0.6001

Table 3: Value of the cost functional for the different policies.

extension to second order traffic flow models.419

Appendix.420

Lemma 22. Let β, T > 0, and ϕ ∈ BV([0, T ],R+) be given. Define L :=
∫ T

0
ϕ(σ) dσ421

and the function x : [0, T ]→ [0, L] by x(s) := L−
∫ s

0
ϕ(σ)dσ, that is invertible.422

Define α ≥ β and the function t̄ :
(
0, Lα

]
→ [0, L] such that t̄(∆t) is the unique423

solution of
∫ t̄(∆t)

0
ϕ(σ)dσ = L− α∆t.424

It then holds425

lim
∆t→0+

1

∆t

[ ∫ t̄(∆t)

0

ϕ2(s)
(
ψ(x(s)− β∆t)− ψ(x(s))

)
ds
]

=

lim
∆t→0+

1

∆t

[ ∫ L

0+

ϕ(s(x))
(
ψ(x− β∆t)− ψ(x)

)
dx
]
.

(22)426
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Proof. The change of variable s→ x(s) inside the integral gives427

lim
∆t→0+

1

∆t

[ ∫ t̄(∆t)

0

ϕ2(s)
(
ψ(x(s)− β∆t)− ψ(x(s))

)
ds =

lim
∆t→0+

− 1

∆t

∫ α∆t

L

ϕ(s(x))
(
ψ(x− β∆t)− ψ(x)

)
dx =

(23)428

429

lim
∆t→0+

1

∆t

∫ L

0+

ϕ(s(x))
(
ψ(x− β∆t)− ψ(x)

)
dx−

lim
∆t→0+

1

∆t

∫ α∆t

0+

ϕ(s(x))
(
ψ(x(s)− β∆t)− ψ(x(s))

)
dx,

(24)430

where s(x) is uniquely determined by the invertibility of the function x(s). Observe431

that we need to specify the 0+ extremum in the integral, since the limit will provide432

Dirac terms inside the integral. We want now prove that the last addendum tends433

to zero. Denote by ψx the distributional derivative of ψ, which is a measure, and434

decompose it as in the continuous (AC+ Cantor) and Dirac part. By integrating ψx,435

we write ψ = ψ̃ +
∑
imiχ[xi,L], with ψ̃ a continuous function, mi > 0,

∑
imi < +∞436

and xi ∈ [0, L] . Hence, by the mean value theorem applied to ψ̃, we have437

lim
∆t→0+

1

∆t

∫ α∆t

0+

ϕ(s(x))
∣∣∣ψ̃(x(s)− β∆t)− ψ̃(x(s))

∣∣∣dx ≤
lim

∆t→0+
‖ϕ‖∞α

∣∣∣ψ̃(x̃− β∆t)− ψ̃(x̃)
∣∣∣ = 0,

(25)438

where x̃ ∈ (0, α∆t) is a point (depending on ∆t) and the limit is zero as a consequence
of the continuity of ψ̃. The remaining term in (24) is then

lim
∆t→0+

1

∆t

∫ α∆t

0+

ϕ(s(x))
∑

xi∈(0,α∆t]

mi(χ[xi−β∆t,L] − χ[xi,L]) dx =

lim
∆t→0+

1

∆t

∑
xi∈(0,α∆t]

ϕ(s(xi)
−)miβ∆t ≤ lim

∆t→0+
β‖ϕ‖∞

∑
xi∈(0,α∆t]

mi.

Since ψ is in BV the quantity
∑
xi∈(0,α∆t]mi tends to zero as ∆t tends to zero, thus439

we conclude.440

Lemma 23. Let ϕ,ψ ∈ BV([a− ε, b+ ε],R), then441

lim
∆t→0+

1

∆t

∫ b

a

ϕ(x)
(
ψ(x− C∆t)− ψ(x)

)
dx = −C

∫ b

a

ϕ(x+)dψx(x),(26)442

where the integral in the right hand side is defined in Definition 10.443

Proof. We decompose the measure ψx as ψx = ` dλ +
∑
imiδxi

, where λ is the
Lebesgue measure, ` the Radon-Nikodym derivative of ψx w.r.t. λ, mi > 0 and∑
imi < +∞. We approximate ψ by piecewise continuous functions ψn defined as the

integrals of ψnx = ` dλ+
∑
i≤N(n)miδxi , where N(n) is chosen such that

∑
i>N(n)mi <

1
n .

Define I(n) = ∪N(n)
i=1 [xi, xi + C∆t] and by Ic its complement in [a, b]. Notice that for

This manuscript is for review purposes only.



TRAFFIC REGULATION VIA CONTROLLED SPEED LIMIT 21

x ∈ [xi, xi + C∆t] we have ψn(x − C∆t) − ψn(x) = −mi −
∫ x
x−C∆t

` dλ while on Ic
there are no jumps so ψn(x− C∆t)− ψn(x) = −

∫ x
x−C∆t

` dλ. We thus can write:

lim
∆t→0+

1

∆t

∫ b

a

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx =

444

lim
∆t→0+

1

∆t

N(n)∑
i=1

∫ xi+C∆t

xi

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx+

+

∫
Ic

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx =

445

446

(27) = lim
∆t→0+

1

∆t

N(n)∑
i=1

(−mi)

∫ xi+C∆t

xi

ϕ(x)dx− 1

∆t

∫ b

a

ϕ(x)

∫ x

x−C∆t

` dλ dx.447

Since ϕ is in BV we can write:

lim
∆t→0+

1

∆t

∫ b

a

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx = −

N(n)∑
i=1

miϕ(x+)−
∫ b

a

ϕ(x)d(`λ)

= −
∫ b

a

ϕ(x+)d
(N(n)∑
i=1

miδxi
+ `λ

)
= −

∫ b

a

ϕ(x+)dψnx

Now, the following estimates hold:∣∣∣∣∣ 1

∆t

∫ b

a

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx− 1

∆t

∫ b

a

ϕ(x)
(
ψ(x− C∆t)− ψ(x)

)
dx

∣∣∣∣∣
=

∣∣∣∣∣ 1

∆t

∫ b

a

ϕ
(
ψn(x− C∆t)− ψ(x− C∆t)

)
−
(
ψn(x)− ψ(x)

)
dx

∣∣∣∣∣
We can write ψn(x−C∆t) = ψ(a)+

∫ x−C∆t

a
dψnx and ψ(x−C∆t) = ψ(a)+

∫ x−C∆t

a
dψx,

which gives us

=

∣∣∣∣∣ 1

∆t

∫ b

a

ϕ(x)
(∫ x−C∆t

a

drn −
∫ x

a

drn

)
dx

∣∣∣∣∣,
where rn = ψ − ψn. Taking the limit for ∆t→ 0+:∣∣∣∣∣ 1

∆t

∫ b

a

ϕ(x)
(
ψn(x− C∆t)− ψn(x)

)
dx− 1

∆t

∫ b

a

ϕ(x)
(
ψ(x− C∆t)− ψ(x)

)
dx

∣∣∣∣∣
≤

∣∣∣∣∣ 1

∆t

∫ b

a

ϕ(x)
(
−
∫ x

x−C∆t

drn

)
dx

∣∣∣∣∣ ≤
‖ϕ‖∞

1

∆t

∣∣∣∣∣
∫ b

a

∫ x

x−C∆t

drndx

∣∣∣∣∣ ≤ ‖ϕ‖∞ 1

n
.
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The last inequality holds true because
∫ x
x−C∆t

drn =
∑
imi

∫ x
x−C∆t

dδxi
=∑

imiχ[xi,xi+C∆t]. Thus we get:

lim
∆t→0+

1

∆t

∫ b

a

ϕ
(
ψ(x− C∆t)− ψ(x)dx

)
= O

( 1

n

)
+

∫ b

a

ϕ(x+)dψnx

. Let us now estimate the quantity∣∣∣∣∣
∫ b

a

ϕ(x+)dψnx −
∫ b

a

ϕ(x+)dψx

∣∣∣∣∣.
Recalling that ψn(x − C∆t) = ψ(a) +

∫ x−C∆t

a
dψnx and ψ(x − C∆t) = ψ(a) +∫ x−C∆t

a
dψx we get ∣∣∣∣∣∣

∫ b

a

ϕ(x+)d
( ∑
i≥N(n)

miδxi

)∣∣∣∣∣∣ ≤ ‖ϕ‖∞ 1

n
.

Passing to the limit in n we conclude.448

449
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