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We consider the problem of joint estimation of states and some constant parameters for a class of nonlinear discrete-time
systems. This class contains systems that could be transformed into a quasi-LPV (linear parameter varying) polytopic model
in the Takagi–Sugeno (T–S) form. Such systems could have unmeasured premise variables, a case usually overlooked in the
observer design literature. We assert that, for such systems in discrete-time, the current literature lacks design strategies for
joint state and parameter estimation. To this end, we adapt the existing literature on continuous-time linear systems for joint
state and time-varying parameter estimation. We first develop the discrete-time version of this result for linear systems.
A Lyapunov approach is used to illustrate stability, and bounds for the estimation error are obtained via the bounded real
lemma. We use this result to achieve our objective for a design procedure for a class of nonlinear systems with constant
parameters. This results in less conservative conditions and a simplified design procedure. A basic waste water treatment
plant simulation example is discussed to illustrate the design procedure.

Keywords: adaptive observer, joint state and parameter estimation, Takagi–Sugeno model, time-varying parameter estima-
tion, sector nonlinearity transformation, discrete-time nonlinear systems.

1. Introduction

The term ‘adaptive observers’ is used to represent those
observers that simultaneously estimate the states and
unknown parameters (constant or time-varying) without
augmenting the parameters along with the states. For
nonlinear systems, a systematic procedure was first
proposed by Cho and Rajamani (1997). However, the
extension of this approach to discrete-time systems is
not straightforward as it exploits some specific structure
arising from continuous-time trajectories investigated in
the proof.

Specific applications such as fault diagnosis have
been attacked using adaptive observers as in the work
of Caccavale et al. (2008), where a diagnostic observer
adaptively estimates uncertainties. The authors assume
all states as measured and use a peculiar innovation term
ex,k+1 − (A −Ko)ex,k, where A and Ko are the system
and the state observer gain matrices, respectively, with

∗Corresponding author

ex,k representing the state error. This innovation allows
cancellation of terms that complicates the adaptation
of the approach by Cho and Rajamani (1997) to
discrete-time. Another fault detection application based
on the design of an adaptive observer is proposed by
Thumati and Sarangapani (2008). The specific constraints
used to tune the observers for the fault detection case do
not extend to general adaptive observers.

One way to develop observers for general nonlinear
systems could be using equivalent forms. A large class of
nonlinear systems could be converted to linear parameter
varying (LPV) or quasi-LPV system formulations. A
nonlinear state equation of the form

xk+1 = f(xk,uk) (1)

could be put through a systematic procedure of factorizing
them as proposed by Kwiatkowski et al. (2006) to obtain
a quasi-LPV form,

xk+1 = A(xk,uk)xk +B(xk,uk)uk. (2)
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For the model structure used by Cho and Rajamani (1997),
the quasi-LPV form with unknown parameters θj , j =
1, . . . , nθ, would be

xk+1 =

nθ∑

j=1

(Aj(xk,uk)xkθj +Bj(xk,uk)ukθj) , (3)

and possibly with an affine term. Here, nθ is the
number of parameters. If the system matrices depend
only on measured or known variables, the observer design
strategies for these systems are the same as those for linear
time-varying (LTV) systems (Ţiclea and Besançon, 2016).

In that direction, we can also consider the adaptive
observer proposed for LTV systems by Guyader and
Zhang (2003). The authors set forth an innovation
term whose gain is obtained by filtering the parameters’
transmission matrix in the state equation. This
structure, along with some boundedness assumption,
allows showing the exponential convergence of the
observer. If the system has bounded zero mean noise,
the estimation errors have the expected value that
exponentially converges to zero. The main issue with this
approach is the lack of a clear procedure to choose a scalar
that helps to guarantee convergence. These criticisms lead
Ţiclea and Besançon (2016) to propose an exponential
forgetting factor based approach. It mimics a Kalman
filter with an update and propagation step, but has two
interconnected exponential forgetting factor designs, thus
preserving the adaptive observer structure. The main
assumptions are complete uniform observability of the
system and the invertibility of the system matrix of LTV,
Ak, ∀k.

LTV based observers, however, cannot handle the
case when the system matrices depend on one of the
unmeasured states. This type of design can be handled
in the realm of one of the quasi-LPV polytopic models:
the Takagi–Sugeno (T–S) form. One way to obtain a
T–S model that exactly represents the original nonlinear
system within a sector is using sector nonlinearity (SNL)
transformation (Ohtake et al., 2003). For the quasi-LPV
model in (3), applying SNL would lead to a T–S model of
the form

xk+1 =

2np∑

i=1

μi(zk)
[
(Ai +

nθ∑

j=1

Āijθj)xk

+ (Bi +

nθ∑

j=1

B̄ijθj))uk

]
,

yk = Cxk, (4)

where np is the number of premise variables zk, which
could be one of the states, inputs, and outputs. Like
Cho and Rajamani (1997), we consider here a linear
output equation. We assert that observer design for
such models can cover all possible systems that are

represented by those in the work of Cho and Rajamani
(1997). The observer for this type of system should
take into account the fact that the weighting functions
μi would be depending on estimated premise variables,
rather than exact ones. Fortunately, there is a growing
body of literature for observer design for T–S systems with
unmeasured premise variables (Lendek et al., 2010), as
well as using immersion techniques to avoid T–S systems
with unmeasured premise variables (Ichalal et al., 2016).

The approach used in this paper springs from
the idea of Bezzaoucha et al. (2013b) to represent
a time-varying parameter using SNL transformation.
This was extended to T–S models with time-varying
parameters by Bezzaoucha et al. (2013a). We derived
the discrete-time version for T–S models (Srinivasarengan
et al., 2016a). In the present paper, we first derive
time-varying parameter estimation for a discrete-time
linear system. Further, we assume the case of constant
parameters and derive a less conservative and simpler
design approach for nonlinear systems whose T–S form
has unmeasured premise variables. In our opinion, this
would fill the gap that is left in nonlinear discrete-time
adaptive observers that cannot be solved by adapting LTV
based design approaches.

This work builds on top of our previous
communication (Srinivasarengan et al., 2016a). The
key improvements show the generalized nature of
the results for both LTV and T–S systems, providing
extensions and refinement through corollaries, and
proposing an adaptive observer design for constant
parameters based on a simpler design approach with
less conservative conditions. The illustration involves
a different, but more relevant example. The outline of
the paper is as follows: The following section discusses
the preliminaries that are used later on. Section 3
discusses the model structure idea and formulates the
problem. Joint state and time-varying parameters are
derived for a discrete-time linear time-varying system
in Section 4. These results are customized to design an
adaptive observer for nonlinear discrete-time systems
with constant parameters in Section 5. A simulation
example is given in Section 6 to illustrate the proposed
method. The paper is then summarized with a future
outlook in Section 7.

2. Preliminaries

2.1. Notation. Takagi–Sugeno models (Tanaka and
Wang, 2004) are of the form

xk+1 =

r∑

i=1

μi(zk) [Aixk +Biuk] ,

yk = Cxk. (5)
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Here, r = 2np , where np is the number of premise
variables zk . The weighting functions μi(zk) capture the
nonlinearity associated with the corresponding premise
variables. Further,

xk ∈ R
nx , uk ∈ R

nu , zk ∈ R
np , yk ∈ R

ny

and

Ai ∈ R
nx×nx , Bi ∈ R

nx×nu ,

C ∈ R
ny×nx , ∀i, (6)

Given a symmetric matrix,

A =

[
a11 a12
∗ a22

]
,

the ‘∗’ symbol represents the symmetric transpose
element, that is, in this case, ∗ = aT12.

2.2. Preliminary results. The following known results
would be referred to while proving the results in this work.

Lemma 1. (Boyd et al., 1994) For a symmetric matrix
M , given by

M =

[
A B
BT C

]
,

if C is invertible, then the following properties hold:

1. M > 0 iff C > 0 and A−BC−1BT > 0;

2. if C > 0, then M ≥ 0 iff A−BC−1BT ≥ 0.

Lemma 2. (Zhou and Khargonekar, 1988) Consider two
matrices X and Y with appropriate dimensions, a time-
varying matrix Δk and a positive scalar λ. Then

XTΔT
k Y + Y TΔkX ≤ λXTX + λ−1Y TY (7)

for ΔT
k Δk ≤ I

Lemma 3. (de Souza and Xie, 1992) For a discrete-time
system of the form

xk+1 = Axk +Buk,

yk = Cxk +Duk, (8)

the bounded real lemma equivalent LMI condition for sta-
bility is

P = PT > 0,
[
ATPA− P + CTC ATPB + CTD
BTPA+DTC DTD +BTPB − Γ2

]
≤ 0,

where Γ2 is the L2 gain between the input uk and the
output yk.

3. System model and problem formulation

3.1. Representing a time-varying parameter using
SNL. The idea of the estimation of a time-varying
parameter lies in representing it using sector nonlinearity
(SNL) transformation. SNL assumes that the parameter is
bounded and its boundary values are known. For a scalar
parameter θk ∈ [θ1, θ2], we could write

θk = μ1(θk)θ
1 + μ2(θk)θ

2, (9)

where

μ1(θk) =
θ2 − θk
θ2 − θ1

, μ2(θk) =
θk − θ1

θ2 − θ1
. (10)

The membership functions satisfy the convex sum
property, that is,

∑

i

μi(·) = 1, 0 ≤ μi(·) ≤ 1, ∀i. (11)

Hence each parameter could be represented by a weighted
sum of two elements.

Remark 1. For a vector case, or for T–S systems with
unknown parameters, the membership functions can be
manipulated to obtain weighting functions that depend on
the same membership functions. To illustrate this, take
the case of two unknown parameters, θ1,k ∈ [θ11, θ

2
1 ] and

θ2,k ∈ [θ12 , θ
2
2], represented by

θ1,k = μ1
1(θ1,k)θ

1
1 + μ2

1(θ1,k)θ
2
1 ,

θ2,k = μ1
2(θ2,k)θ

1
2 + μ2

2(θ2,k)θ
2
2 . (12)

We can now create a new formulation for the unknown
parameters by

θ1,k =
(
μ1
2(θ2,k) + μ2

2(θ2,k)
)
θ1,k,

θ2,k =
(
μ1
1(θ1,k) + μ2

1(θ1,k)
)
θ2,k (13)

By bringing the alternative form in (12), we obtain
the membership functions that depend on the same but
four weighting functions, which are the products of the
membership functions of the original representation. In
general, this approach would lead to 2nθ submodels,
where nθ is the number of parameters. A detailed
treatment of this representation could be obtained from
the work of Nagy et al. (2010).

3.2. System model structures. Consider the following
linear time-varying system:

xk+1 = A(Θk)xk +B(Θk)uk,

yk = Cxk, (14)

where Θk ∈ R
nθ is the vector of the time-varying

parameter θi,k, ∀i ∈ [1, . . . , nθ], k being the time



58 K. Srinivasarengan et al.

index. We consider only the following specific form of
time-varying matrices:

A(Θk) = A0 +

nθ∑

i=1

θi,kĀi,

B(Θk) = B0 +

nθ∑

i=1

θi,kB̄i; (15)

that is, it is possible to write these time-varying matrix
as a sum of constant matrices that are scaled by unknown
parameters.

We can use SNL transformation as in (9) to represent
the matrices of time-varying parameters. Let us first
consider the scalar framework,

A(θk) = A0 + θkĀ

= A0 + (μ1(θk)θ
1 + μ2(θk)θ

2)Ā

=

2∑

j=1

μj(θk)(A0 + θj)Ā, (16)

with θj corresponding to one of θ1 or θ2 depending upon
the submodel j. Similarly,

B(θk) =
2∑

j=1

μj(θk)(B0 + θj)B̄. (17)

This could then be extended to the vector case to yield

A(Θk) =
2nθ∑

i=1

2∑

j=1

hi(Θk)(A0 + θji Āi),

B(Θk) =

2nθ∑

i=1

2∑

j=1

hi(Θk)(B0 + θji B̄i), (18)

where hi(Θk) is the normalized product of a membership
function μj

i (θi,k) of each parameter (see Remark 1) and
θji , j = 1, 2 represents the sector boundary values of each
parameter θi. Here θij is the corresponding maximum or
minimum value of θj for the submodel i; more details
could be obtained from Tanaka and Wang (2004). This
would lead to

xk+1 =

r∑

i=1

hi(Θk)(Aixk +Biuk),

yk = Cxk, (19)

with

Ai = A0 +

nθ∑

j=1

θijĀi, Bi = B0 +

nθ∑

j=1

θijB̄i. (20)

For the model in (19), we propose an observer of the form

x̂k+1 =
r∑

i=1

hi(Θ̂k)(Aix̂k +Biuk + Li(yk − ŷk)),

Θ̂k+1 = Θ̂k +

r∑

i=1

hi(Θ̂k)(Ky,i(yk − ŷk)−KθΘ̂k),

ŷk = Cx̂k. (21)

The gains Li ∈ R
nx×ny and Ky,i ∈ R

nθ×ny are to be
estimated while the gain Kθ ∈ R

nθ×nθ is chosen. The
choice of Kθ will typically be in the form of a diagonal
matrix. In the initial work (Bezzaoucha et al., 2013a),
this was introduced to avoid a marginal stability condition
for the error dynamics. As discussed by Srinivasarengan
et al. (2016b), choosing this reduces the number of
variables in the final LMI to be solved and hence allows
a computationally tractable problem. Further, in the
discrete-time case, Kθ as a variable leads to unresolvable
nonlinear terms in the matrix inequalities.

3.3. Uncertain-like model representation. Let us
define the state estimation error ex,k = xk − x̂k . If we
want to analyse the dynamics of the errors based on the
system and observer models in (19) and (21), it would
involve comparing systems weighted by functions that
depend on mismatched variables (i.e., xk,Θk vs x̂k, Θ̂k).
This is a typical problem in observer design for T–S
systems with unmeasured premise variables. There are
various approaches to deal with it. In this work, we use
the one proposed by Ichalal et al. (2009) to develop an
uncertain-like model representation. Making use of the
convex sum property in (11), we can rewrite (19), without
making any approximations, as

xk+1 =

r∑

i=1

hi(Θ̂k)(Aixk +Biuk)

+

r∑

i=1

(hi(Θk)− hi(Θ̂k))(Aixk +Biuk),

yk = Cxk. (22)

Write

ΔAk =
r∑

i=1

(hi(Θk)− hi(Θ̂k))Ai = AΣA,kEA,

ΔBk =

r∑

i=1

(hi(Θk)− hi(Θ̂k))Bi = BΣB,kEB , (23)

where

A =
[
A1 A2 . . . Ar

] ∈ R
nx×nxr,

EA =
[
Inx Inx . . . Inx

]T ∈ R
nxr×nx ,
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ΣA,k =

⎡

⎣
(h1 − ĥ1)Inx 0

· · ·
0 (hr − ĥr)Inx

⎤

⎦ .

(24)

Likewise,

B =
[
B1 B2 . . . Br

] ∈ R
nu×nur,

EB =
[
Inu Inu . . . Inu

]T ∈ R
nur×nu ,

ΣB,k =

⎡

⎣
(h1 − ĥ1)Inu 0

· · ·
0 (hr − ĥr)Inu

⎤

⎦ ,

(25)

with hi and ĥi standing for hi(Θ) and ĥi(Θ), respectively.
Since −1 ≤ (hi − ĥi) ≤ 1, the matrices ΣA,k ∈
R

nxr×nxr, ΣB,k ∈ R
nur×nur have the useful property

ΣT
A,kΣA,k ≤ I, ΣT

B,kΣB,k ≤ I (26)

which will later be used to bound the time-varying
difference between the known and estimated weighting
functions. This will transform the system model (19) to
the following representation:

xk+1 =

r∑

i=1

hi(Θ̂)[(Ai +ΔAk)xk + (Bi +ΔBk)uk],

yk = Cxk. (27)

As the model (27) and its observer (21) now share the
same weighting functions hi(Θ̂), it is therefore possible to
express the state and the parameter estimation errors in a
simpler and more tractable form.

4. Joint state and time-varying parameter
estimation

In this section, we provide the results for stability analysis
of the joint state and parameter observer. The results
can be considered a discrete-time version of the observer
design of Bezzaoucha et al. (2013a) and our approach
follows the steps of Srinivasarengan et al. (2016a).

Theorem 1. Given the system model of the form (19),
there exists an observer of the form (21) if there exist
P0, P1, Ri, Fi, λ1, λ2, λ3, λ4, Γj

2 (∀i ∈ [1, r], ∀j ∈
{x, u, θ,Δθ}) such that

P0 = PT
0 > 0, P1 = PT

1 > 0,

λm > 0, ∀m ∈ {1, 2, 3, 4}, Γj
2 > 0, ∀j, (28)

⎡

⎢⎢⎢⎢⎣

−P + I QA,i ΦT
i P 0

∗ T22 0 QT
B TAB,i

∗ ∗ −P 0
∗ ∗ ∗ −P

* Λ

⎤

⎥⎥⎥⎥⎦
< 0. (29)

Here

P0,i = AT
i P0 − CTRT

i , P = diag(P0, P1),

ΦT
i P =

[
P0,i −CTFT

i

0 −KT
θ P1

]
,

QA,i =

⎡

⎣
0 0 −CTFT

i (I +Kθ) −CTFT
i

0 0 −KT
θ P1(I +Kθ) −KT

θ P1

⎤

⎦ ,

QB =

⎡

⎢⎢⎣

0 0
0 0
0 (I +Kθ)

TP1

0 P1

⎤

⎥⎥⎦ ,

T22 =

⎡

⎢⎢⎣

T 11
22 0 0 0
0 T 22

22 0 0
0 0 −Γθ

2 0
0 0 0 −ΓΔθ

2

⎤

⎥⎥⎦ ,

Λ = diag(−λ1I,−λ3I,−λ2I,−λ4I),

TAB,i =

⎡

⎢⎢⎣

P0,iA P0,iB 0 0
0 0 0 0
0 0 0 0
0 0 P0A P0B

⎤

⎥⎥⎦ , (30)

where T 11
22 = −Γx

2 +(λ1 +λ2)E
T
AEA and T 22

22 = −Γu
2 +

(λ3 + λ4)E
T
BEB . The observer gains are given by

Ky,i = P−1
1 Fi, Li = P−1

0 Ri. (31)

Proof. Consider the uncertain-like representation of the
system in (27). Comparing it with the observer (21) and
defining the errors

ex,k = xk − x̂k, eΘ,k = Θk − Θ̂k,

we get

ex,k+1 =

r∑

i=1

hi(Θ̂k)
[
(Ai − LiC)ex,k +ΔAkxk

+ΔBkuk

]
,

eΘ,k+1 =
r∑

i=1

hi(Θ̂k)[ΔΘk + (I +Kθ)θk

−Ky,iCex,k −KθeΘ,k], (32)

where ΔΘk = Θk+1 − Θk. We can represent these error
dynamics as

⎡

⎣
ex,k+1

eΘ,k+1

⎤

⎦

=

r∑

i=1

hi(Θ̂k)

⎛

⎜⎜⎝Φi

⎡

⎣
ex,k

eΘ,k

⎤

⎦+Ψi,k

⎡

⎢⎢⎣

xk

uk

Θk

ΔΘk

⎤

⎥⎥⎦

⎞

⎟⎟⎠ ,
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where

Φi =

[
Ai − LiC 0
−Ky,iC −Kθ

]
,

Ψi,k =

[
ΔAk ΔBk 0 0
0 0 I +Kθ I

]
. (33)

Setting

ea,k =
[
eTx,k eTΘ,k

]T
,

ũk =
[
xT
k uT

k ΘT
k ΔΘT

k

]T
,

the error dynamics can be written as

ea,k+1 =

r∑

i=1

hi(Θ̂k) (Φiea,k +Ψi,kũk) . (34)

The aim here is an asymptotic decay of the error
and the minimization of the effect of ũk on the error. It
is to be noted that Φi has constant entries, but Ψi,k has
time-varying entries. To analyze the stability of (34), we
consider the following Lyapunov candidate:

Vk = eTa,kPea,k. (35)

Since there are time-varying perturbations that affect the
error ea,k in (34), the sufficient condition for stability that
we consider is

Vk+1 < Vk − (eTa,kea,k − ũT
k Γ2ũk), (36)

where Γ2 is a block diagonal matrix with the entries

Γ2 = diag(Γx
2 ,Γ

u
2 ,Γ

θ
2,Γ

Δθ
2 ) (37)

that represent the L2-gains of the effect of the elements
in ũ on the error. Applying the discrete-time version of
the bounded real lemma (BRL) in Lemma 3, we get the
matrix inequality condition

[
ΦT

i PΦj − P + I ΦT
i PΨi,k

∗ ΨT
i,kPΨl,k − Γ2

]
< 0. (38)

The introduction of l terms is to illustrate that we
have cross terms between the different submodels.
However, we could take the more conservative condition
of considering l = i, based on the illustrations in
Theorem 17 by Blanco (2001). We find another form for
(38) so as to

• obtain linear bounds for the nonlinearities (in
ΦT

i PΦj , ΦT
i PΨi,k and their transposes);

• obtain bounds for the time-varying terms (in
ΦT

i PΨi,k and ΨT
i,kPΨj,k).

Reducing nonlinearities. The quadratic terms
associated with Φi and Ψi,k could be reduced to
linear terms. By using the Schur complements (Lemma 1)
for the nonlinear terms, the matrix terms in (38) could be
reduced to

⎡

⎢⎢⎣

−P + I ΦT
i PΨi,k ΦT

i P 0
∗ −Γ2 0 ΨT

i,kP

∗ ∗ −P 0
∗ ∗ ∗ −P

⎤

⎥⎥⎦ < 0. (39)

This has not resolved all the nonlinear entries, though, and
the residual factors are in the form of unresolvable terms
inside ΦT

i P and ΦT
i PΨi,k. This is because, as in (33),

Φi has two variables Li and Ky,i, as part of the matrix
split into nx and nθ blocks. This issue is alleviated in two
steps:

• Consider a diagonal structure for the Lyapunov

matrix P =

[
P0 0
0 P1

]
.

• This Lyapunov structure would lead to terms P0Li

and P1Ky,i. These quadratic terms are eliminated by
introducing new variables,

Ri = P0Li, Fi = P1Ky,i. (40)

These steps would reduce the nonlinear matrix
entries in (39) to linear terms. First, we define, to simplify
the notation,

P0,i = AT
i P0 − CTRT

i . (41)

The term ΦT
i P would reduce to

ΦT
i P =

[
P0,i −CTFT

i

0 −KT
θ P1

]
.

Further, we split the linearized time-varying matrices to
those with constant entries and time-varying terms,

ΦT
i PΨi,k = QA,i + LU,i,k,

ΨT
i,kP = QB + LT

L,k, (42)

where

QA,i =

⎡

⎣
0 0 −CTFT

i (I +Kθ) −CTFT
i

0 0 −KT
θ P1(I +Kθ) −KT

θ P1

⎤

⎦ ,

QB =

⎡

⎢⎢⎣

0 0
0 0
0 (I +Kθ)

TP1

0 P1

⎤

⎥⎥⎦ ,

LU,i,k =

⎡

⎣
P0,iΔAk P0,iΔBk 0 0

0 0 0 0

⎤

⎦ ,

LL,k =

[
P0ΔAk P0ΔBk 0 0

0 0 0 0

]
. (43)
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Bounds for time-varying terms. The linearized version
of the inequality in (39) can now be split into terms with
and without time-varying terms and their corresponding
transposes,

Qi + Li,k + LT
i,k < 0, (44)

where

Qi =

⎡

⎢⎢⎣

−P + I QA,i ΦT
i P 0

∗ −Γ2 0 QB

∗ ∗ −P 0
∗ ∗ ∗ −P

⎤

⎥⎥⎦ , (45)

with QA,i and QB given in (30). The time-varying terms
are gathered as follows:

Li,k =

⎡

⎢⎢⎣

0 LU,i,k 0 0
0 0 0 0
0 0 0 0
0 LL,k 0 0

⎤

⎥⎥⎦ . (46)

There are four time-varying terms and their
transposes in (44). In (23), we showed that the
uncertain-like terms could be written as products of
matrices and further showed an interesting property of
the time-varying matrix in (26). Bythe some token, we
can split each of the uncertain-like terms in Li,k. Let us
insert the four terms corresponding to the time-varying
factors, P0,iΔAk, P0ΔAk, P0,iΔBk, P0ΔBk, as parts
of individual matrices, LA1,k, LA2,k, LB1,k, LB2,k

respectively, that is,

LA1,k =

⎡

⎢⎢⎢⎢⎣

0

[
P0,iΔAk 0 0

0 0 0

]
0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎥⎥⎦
,

LB2,k =

⎡

⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0

0

[
0 P0ΔBk 0
0 0 0

]
0 0

⎤

⎥⎥⎥⎥⎦
, (47)

and similarly for LB1,k and LA2,k, so that

Li,k = LA1,k + LA2,k + LB1,k + LB2,k. (48)

It is to be noted that the zero entries in the matrices
have appropriate dimensions and are usually grouped
together to make the representation easier. Based on
the representation in (23), we represent the uncertain-like

terms as

LA1,k =

⎡

⎢⎢⎢⎢⎣

[
P0,iA
0

]

0
0
0

⎤

⎥⎥⎥⎥⎦
ΣA,k

[
0

[
EA 0 0

]
0 0

]
,

LA2,k =

⎡

⎢⎢⎢⎢⎣

0
0
0[

P0A
0

]

⎤

⎥⎥⎥⎥⎦
ΣA,k

[
0

[
EA 0 0

]
0 0

]
,

LB1,k =

⎡

⎢⎢⎢⎢⎣

[
P0,iB
0

]

0
0
0

⎤

⎥⎥⎥⎥⎦
ΣB,k

[
0

[
0 EB 0

]
0 0

]
,

LB2,k =

⎡

⎢⎢⎢⎢⎣

0
0
0[

P0B
0

]

⎤

⎥⎥⎥⎥⎦
ΣB,k

[
0

[
0 EB 0

]
0 0

]
.

(49)

Now, we apply Lemma 2 to the sum of these terms and
their transposes,

LA1,k + LT
A1,k

≤ λ−1
1

⎡

⎢⎢⎢⎢⎣

[
P0,iA
0

]

0
0
0

⎤

⎥⎥⎥⎥⎦

[[ATP0,i 0
]

0 0 0
]

+ λ1

⎡

⎢⎢⎢⎢⎢⎢⎣

0⎡

⎣
ET

A

0
0

⎤

⎦

0
0

⎤

⎥⎥⎥⎥⎥⎥⎦

[
0

[
EA 0 0

]
0 0

]

≤

⎛

⎜⎜⎜⎜⎜⎜⎝

[
λ−1
1 P0,iAATP0,i 0

0 0

]
0

0

[
0 λ1E

T
AEA 0

0 0 0

]

0 0
0 0

0 0
0 0
0 0
0 0

⎞

⎟⎟⎠ (50)

for some scalar λ1. Similarly, the sums of LA2,k +
LT
A2,k, LB1,k + LT

B1,k and LB2,k + LT
B2,k are bounded
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(respectively) by

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0

[
λ2E

T
AEA 0 0
0 0 0

]
0 0

0 0 0 0

0 0 0

[
λ−1
2 P0AATP0 0

0 0

]

⎞

⎟⎟⎟⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
λ−1
3 P0,iBBTP0,i 0

0 0

]
0 0 0

0

[
0 0 0
0 λ3E

T
BEB 0

]
0 0

0 0 0 0
0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0

[
0 0 0
0 λ4E

T
BEB 0

]
0 0

0 0 0 0

0 0 0

[
λ−1
4 P0BBTP0 0

0 0

]

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Adding them all up gives

Li,k + LT
i,k ≤

⎛

⎜⎜⎜⎜⎜⎜⎝

[L1
i 0
0 0

]
0 0 0

0 L2 0 0
0 0 0 0

0 0 0

[L3 0
0 0

]

⎞

⎟⎟⎟⎟⎟⎟⎠
,

with

L1
i = λ−1

1 P0,iAATP0,i + λ−1
3 P0,iBBTP0,i,

L2 =

⎡

⎢⎢⎣

(λ1 + λ2)E
T
AEA 0 0 0

0 (λ3 + λ4)E
T
BEB 0 0

0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ ,

L3 = λ−1
2 P0AATP0 + λ−1

4 P0BBTP0. (51)

This would lead the inequality in (44) to

⎛

⎜⎜⎝

L11
i QA,i ΦT

i P 0
∗ −Γ2 + L2 0 QB

∗ ∗ −P 0
∗ ∗ ∗ L44

⎞

⎟⎟⎠ < 0, (52)

where

L11
i =

[−P0 + I + L1
i 0

0 P1

]
,

L44 =

[−P0 + I + L3 0
0 P1

]
. (53)

These terms have quadratic entries that could be
handled by applying Schur’s complement. In this way,
we could consider

L11
i < 0 ⇔

⎡

⎢⎢⎣

−P0 + I 0 P0,iA P0,iB
0 P1 0 0
0 0 −λ1I 0
0 0 0 −λ3I

⎤

⎥⎥⎦ < 0,

(54)

and in much the same way as we could do for L44. Putting
them together and rearranging, we get

⎡

⎢⎢⎢⎢⎣

−P + I QA,i ΦT
i P 0

∗ T22 0 QT
B TAB,i

∗ ∗ −P 0
∗ ∗ ∗ −P

* Λ

⎤

⎥⎥⎥⎥⎦
< 0, (55)

with

TAB,i =

⎡

⎢⎢⎣

P0,iA P0,iB 0 0
0 0 0 0
0 0 0 0
0 0 P0A P0B

⎤

⎥⎥⎦ ,

Λ =

⎡

⎢⎢⎣

−λ1I 0 0 0
0 −λ3I 0 0
0 0 −λ2I 0
0 0 0 −λ4I

⎤

⎥⎥⎦ .

This completes the proof. �

Corollary 1. We could formulate observer design as an
optimization problem with the objective to minimize the
L2-gain between the perturbation factors ũk and the er-
rors ea,k in (34). We could aim to minimize a scalar β
such that

min
P0,P1,Fi,Ri,Γ

j
2,λm

β (56)

∀i ∈ [1, r], ∀j ∈ {x, u, θ,Δθ}, ∀m ∈ {1, 2, 3, 4}, so that
the LMIs in (29) are satisfied along with

βI > Γj
2, ∀j ∈ {x, u, θ,Δθ}. (57)

There is an inherent assumption that the L2-gains of var-
ious perturbations are scaled appropriately so that using
a single β makes sense. This could otherwise be achieved
by using an appropriate scaling factor instead of I on the
left hand side of (57).

Corollary 2. Measurement noise could be added to the
output equation in (19) so that

yk = Cxk +Hνk, (58)

where νk ∈ R
ny is the measurement noise with

H ∈ R
ny×ny the transmission matrix. This would
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make the perturbation variable turn into ũk =[
xk uk Θk ΔΘk νk

]T
and the matrix Ψi,k in (33)

into

Ψi,k =

[
ΔAk ΔBk 0 0 −LiH
0 0 I +Kθ I −Ky,iH

]
, (59)

which would then lead to the same LMIs with the modifi-
cations in the following components in (30):

QA,i

=

⎡

⎣
0 0 −CTFT

i (I +Kθ) −CTFT
i −RiH

0 0 −KT
θ P1(I +Kθ) −KT

θ P1 −FiH

⎤

⎦ ,

T22 =

⎡

⎢⎢⎢⎢⎣

T 11
22 0 0 0 0
0 T 22

22 0 0 0
0 0 −Γθ

2 0 0
0 0 0 −ΓΔθ

2 0
0 0 0 0 −Γν

2

⎤

⎥⎥⎥⎥⎦
, (60)

where Γν
2 is the L2-gain between the noise ν and the error

ea,k. It is to be noted that Γν
2 will also be added as a

diagonal block in the matrix Γ2.

Remark 2. It is to be noted here that since there are
only two time-varying terms ΔAk and ΔBk in (46), we
could split the time-varying terms into only two additive
factors, and hence apply Lemma 2 twice. However, the
resulting matrix inequality is nonlinear with crossover
terms, making it impossible to resolve. Hence four
additive factors were used.

Remark 3. In the continuous-time version discussed
by Bezzaoucha et al. (2013a), the factor Kθ allowed
avoiding numerical issues in the LMI conditions. In our
work, this has been followed through. The value of Kθ,
however, is also important because it may make the effect
of the innovation term Ky,i(yk − ŷk) negligible due to
relative scaling between Kθ and Ky,i, as discussed by
Srinivasarengan et al. (2016b). This could be done by
adding an extra condition. For example, for a scalar
parameter estimation case, let kθ be the scalar value of
the observer gain Kθ, which would yield the condition

1

kθ
Ky,i > ρ, (61)

where ρ > 1 is a constant chosen depending upon the
relative scaling between θ and yk − ŷk. Along with the
LMIs in (29), we could add, for a scalar case,

Fi > ρP1kθ. (62)

Remark 4. The LMI in (29) could be considered
restrictive partly because of the term −P + I that calls
for P to be more positive than I . This starts with the term

eTa,kIea,k in the Lyapunov function trajectory in (36). If a
solution is unavailable for this case, we could replace this
with eTa,kQeea,k, where Qe could be chosen to be a value
that allows a solution to the LMI (29) to exist.

Remark 5. The extension of Theorem 1 to a nonlinear
system represented by T–S models is straightforward.
That is, the nonlinear model has to be transformed into
a T–S model with time-varying matrices and then all
the proposed development with the introduction of a
supplementary index for some of the matrices involved.
Furthermore, the weighting functions now would be
the products of membership functions of both unknown
parameters as well as the premise variables of the T–S
model. Hence the components of the uncertain-like terms
would be different.

5. Adaptive observer design

Consider now a discrete-time version of the nonlinear
system by Cho and Rajamani (1997) and the particular
case where the unknown parameter vector Θ is constant:

xk+1 = Axk + φ(xk,uk) + bf(xk,uk)Θ,

yk = Cxk, (63)

where a quasi-LPV equivalent would be of the form (4).
Our aim is to design an adaptive observer for this model,
assuming that we know a range of values [θ1i , θ

2
i ] in which

the true value of each θi, ∀i ∈ 1, . . . , nθ lies. This
substitutes the sector bounds for the time-varying case. In
much the same way as in the previous section, applying
SNL transformation to the time-varying parameter with
these bounds, we obtain

xk+1 =

s∑

i=1

hi(zk,Θ)(Aixk +Biuk),

yk = Cxk, (64)

where s = 2np+nθ and hi(zk,Θ) is the weighting
function obtained by normalizing the product of
membership functions associated with the premise
variables zk and the parameters θ. For this type of system,
we propose an observer of the form

x̂k+1 =

s∑

i=1

hi(ẑk, Θ̂k) [Aix̂+Biuk + Li(yk − ŷk)] ,

Θ̂k+1 = Θ̂k +

s∑

i=1

hi(ẑk, Θ̂k)Ky,i(yk − ŷk),

ŷk = Cxk. (65)

As could be noted, the gain term Kθ has been
dropped. One main reason is the simplification this offers
(this will be apparent soon). Further, the condition Kθ =
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0 leads to unsolvable LMIs in the continuous-time case,
but not in the discrete-time one. To compute the state
and parameter error, we follow the uncertain-like model
approach, with the augmented error dynamics given by

ea,k+1 =

[
Ai − LiC 0
−Ky,iC 0

]
ea,k (66)

+

[
ΔAk ΔBk

0 0

] [
xk

uk

]
.

As could be seen, the number of perturbations has
reduced and hence the dynamics matrices are simplified.
By applying the discrete-time BRL and following it up
with the application of LMI equivalence using Schur’s
complement (Lemma 1), then splitting the Lyapunov
matrix to the form

P =

[
P0 0
0 P1

]
,

and applying the variable transformations Ri = P0Li and
Fi = P1Ky,i, we get

⎡

⎢⎢⎣

−P + I ΦT
i PΨi,k ΦT

i P 0
∗ −Γ2 0 ΨT

i,kP

∗ ∗ −P 0
∗ ∗ ∗ −P

⎤

⎥⎥⎦ < 0, (67)

with

ΦT
i PΨi,k =

[
P0,iΔAk P0,iΔBk

0 0

]
,

ΦT
i P =

[
P0,i −CTFT

i

0 0

]
,

ΨT
i,kP =

[
ΔAT

k P0 ΔBT
k P0

0 0

]
. (68)

Furthermore, following the steps described in the proof of
Theorem 1, we can summarize the results as follows.

Theorem 2. Given a nonlinear discrete-time system of
the form (63) which can be transformed into a T–S model,
an observer of the form (65) could be designed if there
exist P0, P1, Ri, Fi, λ1, λ2, λ3, λ4, Γj

2 (∀i ∈ [1, r], ∀j ∈
{x, u}) such that

P0 = PT
0 > 0, P1 = PT

1 > 0, (69)

λm > 0, ∀m ∈ 1, 2, 3, 4, Γj
2 > 0, ∀j, (70)

⎡

⎢⎢⎢⎢⎣

−P + I 0 ΦT
i P 0

∗ T22 0 0 TAB
∗ ∗ −P 0
∗ ∗ ∗ −P

∗ Λ

⎤

⎥⎥⎥⎥⎦
< 0, (71)

where ΦT
i P is given in (68) and Λ in (30), TAB,i has the

same structure as in (30) except for accommodating the

Table 1. Model parameters.
Parameter Value

a0 0.5
b 0.4
c 0.4
d 2
Ts 1

changes in the number of zero rows due to the change of
T22 to

T22 =

[
T 11
22 0
0 T 22

22

]
,

where T 11
22 = −Γx

2 +(λ1 +λ2)E
T
AEA and T 11

22 = −Γu
2 +

(λ3+λ4)E
T
BEB . The observer gains are given by Ky,i =

P−1
1 Fi and Li = P−1

0 Ri.

Proof. The proof follows that of Theorem 1 with the
changes in the matrix block entries discussed above. �

6. Simulation example

We consider a discrete-time version of the simplified
waste water treatment plant from the work of Bezzaoucha
et al. (2013a). The simplification concerns reducing the
10-state system to a 2-state model, given by

x1,k+1 = x1,k + Ts

[
ax1,k

x2,k + b
x2,k − x1,kuk

]
,

x2,k+1 = x2,k + Ts

[
− cax1,k

x2,k + b
x2,k + (d− x2,k)uk

]
,

yk = x1,k. (72)

In this model, we consider an uncertainty in the parameter
a, that is,

a = a0 + θ. (73)

The parameters of the model used are given in Table 1.
The unknown parameter θ in (65) is constant; however,
for observer design purposes we assume it to be known
and in the range

θ ∈ [−0.3, 0.3]. (74)

We choose the premise variables

z1,k = uk, z2,k =
x1,k

x2,k + b
. (75)

It is evident that z2,k depends on the unmeasured state
x2,k, making it unmeasured. Assuming a range of values
for uk ∈ [0, 0.4], x1,k ∈ [0.01, 6], and x2,k ∈ [0.01, 3],
we get the range of the premise variables as

z1,k ∈ [0, 0.4], z2,k ∈ [0.003, 14.63]. (76)
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Fig. 1. Estimation of x1,k.
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Fig. 2. Estimation of x2,k.

With these parameters, we get the model

xk+1 =

8∑

i=1

hi(zk, θk) [Aixk +Biuk] , (77)

where hi(zk, θ) is obtained from the product of
membership functions of z1,k, z2,k and θ corresponding
to the submodel i. The system matrices are given by

A1 =

[
1 5.9× 10−4

0 0.99

]
, A2 =

[
1 0.0024
0 0.99

]
,

A3 =

[
1 2.92
0 −0.17

]
, A4 =

[
1 11.7
0 −3.68

]
,

A5 =

[
0.6 5.9× 10−4

0 0.6

]
, A6 =

[
0.6 0.0024
0 0.6

]
,
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0.25
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Fig. 3. Estimation of θk.

A7 =

[
0.6 2.93
0 −0.57

]
, A8 =

[
0.6 11.7
0 −4.1

]
,

Bi =

[
0
2

]
, ∀i.

We used Matlab with the Yalmip (Löfberg, 2004)
interface, as well as the LMIlab toolbox, to solve the LMI
conditions.

Remark 6. Some problem specific conditions could be
added to obtain an optimum solution to the problem. For
example, pole placement for the state observers Ai−LiC
could be added as a separate LMI condition so as to
achieve a favourable rate of convergence. Further, some
minimum value for the gain corresponding to parameter
estimation, Ki, ∀i could be imposed so that the innovation
term be useful in augmenting the estimated θ (due to the
relative scaling between the values of θ̂ and y−ŷ). Further,
as noted in Remark 4, the value of Qe was chosen as

Qe =

[
0.001Inx 0

0 0.1Inθ

]
.

Remark 7. It is to be noted that there are a number
of variables to be determined by the LMI solver. This
could be reduced by fixing some of the parameters. For
this example, we chose the values for Γx

2 = Γu
2 = 0.1 and

λi = 0.001, ∀i = 1, 2, 3, 4. This significantly reduces the
computational complexity of the problem.

With the above conditions, we obtain the following
observer gain values:

L1 =

[
0.23
0.24

]
, L2 =

[
0.23
0.24

]
, L3 =

[
0.31
0.21

]
,

L4 =

[
0.61
0.09

]
, L5 =

[−0.41
0.30

]
, L6 =

[−0.41
0.30

]
,

L7 =

[−0.41
0.30

]
, L8 =

[−0.27
0.24

]
,

and Ki = 0.03, ∀i.
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Fig. 4. Input used for the illustrated simulation result.

With these gain values, we obtain the state estimation
results as shown in Figs. 1 and 2 (here ‘Nonlin’ and
‘TSObs’ refer to the results from nonlinear system T–S
observer). The estimation of the unknown parameter is
given in (Fig. 3). Further, the input used for the simulation
is shown in Fig. 4. To illustrate the nonlinearity of the
model, we show the variation of the weighting function
hi(x̂, θ̂) in Fig. 5.

Remark 8. The transient response characteristics of
polytopic observers have some known issues. This con-
cerns implicitly taking into account the known bound
for the states in observer design. This might make
the transient response of estimated states (and hence the
parameters) exceed the bounds and lead to jerks in the
response as seen in (Fig. 3). This could be partially
mitigated through approaches such as that described by
Ichalal et al. (2015), but is beyond the scope of this work.

7. Concluding remarks

We presented an adaptive observer design procedure
for discrete-time nonlinear systems which could be
converted to a quasi-LPV form. The work fills a gap
in adaptive observer design for discrete-time nonlinear
systems for those cases where transformed quasi-LPV
matrices depend on one of the unmeasured system states.
The results in this approach are conservative, but give way
to exploring a systematic approach to adaptive observer
design for nonlinear systems of this type. One interesting
extension could be to explore other observer structures,
especially the one proposed by Guyader and Zhang
(2003), and follow a similar design strategy as in our work
so as to expand for the unmeasured premise variable case.
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Fig. 5. Weighting functions’ evolution for different submodels.
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Löfberg, J. (2004). YALMIP: A toolbox for modeling and
optimization in Matlab, International Symposium on Com-
puter Aided Control Systems Design, Taipei, Taiwan, pp.
284–289.

Nagy, A.M., Mourot, G., Marx, B., Ragot, J. and Schutz, G.
(2010). Systematic multimodeling methodology applied to
an activated sludge reactor model, Industrial & Engineer-
ing Chemistry Research 49(6): 2790–2799.

Ohtake, H., Tanaka, K. and Wang, H.O. (2003). Fuzzy modeling
via sector nonlinearity concept, Integrated Computer-
Aided Engineering 10(4): 333–341.

Srinivasarengan, K., Ragot, J., Maquin, D. and Aubrun,
C. (2016a). Joint state and parameter estimation for
discrete-time Takagi–Sugeno model, 13th European Work-
shop on Advanced Control and Diagnosis, ACD 2016,
Lille, France, pp. 012016.

Srinivasarengan, K., Ragot, J., Maquin, D. and Aubrun, C.
(2016b). Nonlinear joint state-parameter observer for
VAV damper position estimation, 3rd Conference on Con-
trol and Fault-Tolerant Systems, SysTol 2016, Barcelona,
Spain, pp. 164–169.

Tanaka, K. and Wang, H.O. (2004). Fuzzy Control Systems De-
sign and Analysis: A Linear Matrix Inequality Approach,
John Wiley & Sons, New York, NY.

Thumati, B.T. and Sarangapani, J. (2008). A model based fault
detection scheme for nonlinear multivariable discrete-time
systems, 2008 IEEE International Conference on Systems,
Man and Cybernetics, Singapore, pp. 1978–1983.

Zhou, K. and Khargonekar, P.P. (1988). Robust stabilization
of linear systems with norm-bounded time-varying
uncertainty, Systems & Control Letters 10(1): 17–20.

Krishnan Srinivasarengan is a PhD candidate
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