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Interactive computer-aided composition with constraints

Computer-aided composition systems enable composers to write programs to generate and transform musical scores. In this sense, constraint programming is appealing because of its declarative nature: the composer constrains the score and relies on a solver to automatically provide solutions. However, the existing constraint solvers often lack interactivity. Specifically, the composers do not participate in the selection of a particular solution. We propose an interactive search algorithm that enables the composer to alter and to navigate in the solution space. To this aim, we propose spacetime programming, a paradigm based on lattices and synchronous process calculi. The result is an interactive score editor with constraint support, and we experiment it on the all-interval series problem.

INTRODUCTION

Computer-aided composition is a routine for many composers, as attested by numerous tools including OpenMusic [START_REF] Agon | Objects, time and constraints in OpenMusic[END_REF] and Max/MSP [START_REF] Puckette | MAX, Development Package, Ircam and Opcode Systems[END_REF]. It enables the composer to delegate tedious computation to the machine, such as generating rhythms for non-overlapping voices of a score. The computation is usually displayed in visual programming languages based on the functional paradigm. In this paradigm, the data "flows" in a tree structure where nodes (named "boxes") encapsulate computation on data. If a functionality is missing in the available precoded boxes, the composer must implement it with a "lower-level" programming language, such as Lisp in OpenMusic. However, these programming languages are less intuitive for composers than visual languages. This is why other paradigm, such as constraint programming, are investigated.

Constraint programming is a declarative paradigm where programmers only need to declare the structure of a problem with constraints. The resolution process is left to a dedicated solver (see Section 2.2). It has been applied to model multiple aspects of music theory, such as harmony, rhythm and orchestration [START_REF] Truchet | Constraint Programming in Music[END_REF]. There are several systems integrating constraint programming in computer-aided composition softwares [START_REF] Anders | Constraint programming systems for modeling music theories and composition[END_REF]. In particular, PWConstraint [START_REF] Laurson | PatchWork: A visual programming language and some musical applications[END_REF] is one of the first systems that integrates constraint solving under a visual composition environment. Another approach is OMCloud [START_REF] Truchet | Musical constraint satisfaction problems solved with adaptive search[END_REF] that is based on a non-exhaustive constraint solving technique called local search. Generally, merging the constraint and functional paradigms is done by encapsulating constraint solving into a box where the parameters are inputs to the constraint satisfaction problem (CSP) and the output is a solution to this CSP.

Lack of interactivity A CSP can have from zero (in case of unsatisfiability) to multiple solutions. Despite the relational nature of constraints, the existing systems view a CSP as a function. Therefore, the solution chosen by the solver is unpredictable and the composer does not participate in the selection of this particular solution. Besides, this process is not replicable: the first solution may change with the solver search strategy, parameters or when the solver is simply updated. On the contrary, a CSP can be over-constrained with no solution. In this case, a common method is to use soft constraints: the system tries to satisfy as many constraints as possible. It is similar to the problem with multiple solutions because many "soft solutions" are possible. In summary, current approaches lack interactivity between the composer and the constraint solver for selecting the solution.

Interactive score editor To solve this problem, we suggest a score editor in which the composer can visualize partially instantiated scores and steer the solving process toward a customized solution (Section 4). We propose several interactive strategies for navigating in the solution space to help the composer consciously select a solution (Section 5). However, the existing abstractions inside constraint solvers are not tailored for interactivity. To solve this problem, we introduce spacetime programming, a paradigm based on the synchronous paradigm, to facilitate interactions between the composer and the solver (Section 3). The synchronous paradigm is the key to support interactive solving (Section 2.1). We experiment the system1 with the all-interval series problem (Section 4). The result is an interactive score editor with constraint solving as a part of the composition process.

BACKGROUND

Synchronous programming

The synchronous paradigm [START_REF] Halbwachs | Synchronous Programming of Reactive Systems[END_REF] was initially designed for modeling systems reacting to simultaneous events of the environment (different inputs can arrive at the same time) while avoiding typical issues of parallelism, such as deadlock or indeterminism. The main idea of this paradigm is to divide the execution of a program into a sequence of discrete instants conceptually instantaneous (named as synchrony hypothesis). It enables strong static analysis to ensure the cooperative and correct behaviour of the processes reacting to external stimuli. A simple example is a watch: its state changes when the user presses buttons or when it receives a signal indicating that a second has elapsed.

In the rest of this paper, we consider the synchronous language Esterel [START_REF] Berry | The Foundations of Esterel[END_REF]. An Esterel program reacts to boolean input signals and produces outputs. We introduce the ABO example (variant of the standard ABRO example [START_REF] Berry | The Foundations of Esterel[END_REF] The statement await A indefinitely waits for the signal A and terminates when A occurred. The parallel composition P || Q allows the concurrent execution of two processes and terminates when both are terminated. This operator does not offer multithreading and is compiled into sequential code-the processes are statically interleaved to ensure determinism. In this example, the parallel statement terminates as soon as the signals A and B have occurred. Once terminated, the signal O is emitted and can be retrieved by the user to activate, for example, a real world command. We initialize the value of O to 0 and increment it when emitted; pre(?O) is used to retrieve the value of O in the previous instant. The primitive instruction loop p end loop executes indefinitely the process p. We forbid the body of the loop to be instantaneous due to the synchrony hypothesis and therefore, we delay each iteration to the next instant with the statement pause. The whole behavior is reset at each loop iteration. A synchronous program is a coroutine: a function that can be called multiple times and that maintains its state between calls. When called, the code of the coroutine is resumed from the last pause statements reached. Also, due to this temporal dimension, it is composed of two memories: ure 1, user inputs can be injected into the program in-between two calls. The external inputs are collected by a host language from which the synchronous program is called. The well-defined semantics of synchronous languages for the treatments of simultaneous events has a wide variety of applications encompassing interactive mixed music [START_REF] Baudart | A synchronous embedding of antescofo, a domain-specific language for interactive mixed music[END_REF] and web programming [START_REF] Berry | Hop and HipHop: Multitier Web Orchestration[END_REF], just to name a few of them.

Constraint programming

Constraint programming is a declarative paradigm for solving CSP [START_REF] Rossi | Handbook of Constraint Programming[END_REF]. A CSP is a couple d, C where d is a function mapping variables to sets of values (the domain) and C is a set of relations constraining these variables (the constraints). The goal is to find a solution: a set of variables reduced to a singleton domain such that every constraint is satisfied. In practice, it interleaves: (i) a propagation step, removing values from the domains that do not satisfy at least one constraint and (ii) a search step making a choice when "we don't know" and backtracking to another choice if the former did not lead to a solution. The choice made for creating the children nodes is referred to as the branching strategy-it describes the branches leading to these nodes. The successive interleaving of choices and backtracks leads to the construction of a search tree that can be explored with various search strategies. In this paper, we exclusively focus on the search step and delegate the propagation step to the specialized constraint solver Choco [START_REF] Prud'homme | Choco Documentation[END_REF] (more information on the propagation theory can be found in e.g. [START_REF] Tack | Constraint Propagation -Models[END_REF]).

SPACETIME PROGRAMMING

We propose spacetime programming, a language where variables are complete lattices and the program statements are monotonic functions over these variables. The language semantics is based on lattice theory and we introduce several definitions based on [START_REF] Davey | Introduction to lattices and order[END_REF] before describing the language.

Definitions

An ordered set D, ≤ is a complete lattice if every subset of S ⊆ D has both a least upper bound and a greatest lower bound. A complete lattice is always and an infimum ⊥ ∈ D such that ∀x ∈ D.⊥ ≤ x. Alternatively, we can view a lattice as an algebraic structure L; ∨; ∧ where the binary operation ∨ is called the join and ∧ the meet. The join x ∨ y is the lower upper bound of the set {x, y} and the meet x ∧ y its greatest lower bound. In the following, we use the entailment operation which is the inverse ordering defined as x |= y def = y ≤ x and the in-place join operator x ← y def = x = x ∨ y. Finally, any set S can be turned into a flat lattice with the following order: ∀x ∈ S.⊥ ≤ x ≤ .

Model of computation

We generalize the synchronous paradigm with data defined over complete lattices and extend it to support backtracking. In Figure 1, the synchronous model of computation is endowed with a third memory named the queue. This queue of nodes represents the remaining search tree to explore and enables the restoration of variables upon backtracking. In each instant, one node is extracted from the queue and instantiated but several new children nodes can be created. For this purpose, we introduce the space b end statement. It pushes the node described by the process b onto the queue. This process will be executed in a future instant when the node is popped out from the queue.

A spacetime program is a set of processes working collaboratively on the exploration of the tree by synchronizing on their pause statements. Indeed, a new instant can only be started once every process has reached a pause or is terminated. We can see the pause statement as a barrier that must be reached by all the processes before an new instant is started.

Finally, we have three distinct memories and we introduce spacetime attributes for explicitly situating variables in one of them: (1) single_time for variables in the local memory which are re-initialized between each instant; (2) single_space for variables in the global memory, and (3) world_line for variables in the queue that must be backtracked.

Minimal constraint solver

In Figure 2, we give a spacetime program implementing a minimal constraint solver. It is constituted of two classes: Solver for composing the main components of the CSP and Binary to implement a particular branching strategy. As suggested by the syntax, the host language is Java and therefore, all variables are Java objects. They must implement a lattice interface for being usable inside the spacetime paradigm. Also, the methods are assumed to be monotonic functions over the considered lattice2 . The class Solver faithfully implements the mathematical definition of a CSP (Section 2.2) with a pair of variables domains, constraints initialized to botthe bottom element of their lattices. Their types, VStore and CStore respectively, are Java classes serving as abstraction of the constraint library Choco [START_REF] Prud'homme | Choco Documentation[END_REF]. The class Solver is parametrized by a class Model containing the definition of the CSP and a class Brancher for the branching strategy. They are both attributes and are composed with the parallel statement in the process solve. The process propagation is implemented with a Java method called on the variable constraints and the loop/pause mechanism is used to propagate in each node. The propagation is implemented by the constraint solver Choco. Similarly, the model of the problem is also implemented in Choco and is encapsulated in the class Model (not shown). The class Binary takes references to the CSP's variables with the keyword ref. It implements a branching strategy for selecting the first non-instantiated variable (method input_order) and the value in the middle of the variable's domain (method middle_value). The search tree is then built with two space statements. The first describes the left child node in which x > v and the second describes the right child in which x ≤ v. Using the statement when, we ensure that children nodes are only created when we did not reach a solution or a failed node yet. The expression domains |= constraints is true if we can deduce the constraints from the variables' domains-which indicates a solution. This result is negated with the not operator.

SCORE EDITOR WITH CONSTRAINTS

Visual constraint solving

We propose a new score editor programmed in Java. We particularly focus on the visual and interactive aspect of constraint solving. To illustrate the system, we use the all-interval series (AIS) musical constraint problem. It constrains the pitches to be all different as well as the intervals between two successive pitches. This is notably used to implement the twelvetone technique in which every note of a pitch class has the same importance. This constraint comes built-in in our system and we leave apart its exact modeling which is, for example, covered in [START_REF] Truchet | Constraint Programming in Music[END_REF].

Initially, when the AIS problem is set in the editor, the pitches are initialized with domains in the interval [1..12] and are represented with rectangles:
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Through the solving process, these rectangles become smaller and are displayed as a note when instantiated. For example, the following score is partially instantiated with four notes and the propagation reduces the domains of the rest of the score accordingly-the rectangles became smaller:
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Experimentally, the 'space' key is pressed until a partial solution or a fully instantiated solution satisfies the composer. An example of solution given by our system to the all-interval series is:
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These scores are displayed in a larger visual programming environment similar to OpenMusic. In this setting, a score is contained in a functional box which ensures the compatibility with existing methods.

Spacetime for composition

The model of the problem can be monotonically updated (adding constraints) throughout the solving process. Between instants, the composer is allowed to add new constraints into the model. We identify two different ways to add constraints interactively based on the spacetime attributes:

• Persistent: The constraints are added in a store with the spacetime single_space; they hold for the rest of the search. For example, a chord that the composer particularly likes and wants to be part of the final musical composition.

• Contextual: The constraints are added in a store with the spacetime world_line store; they hold only for the current subtree. For example, it can be an interval between two notes that only makes sense in the presence of the already instantiated notes.

To achieve this, we need to modify the solver presented in Section 3.3. We only highlight the changes here:

class PSolver { world_line CStore constraints = bot; single_space CStore cpersistent = bot; proc merge_cstore = loop constraints <-cpersistent; pause; end }

We use an additional constraint store cpersistent that can be augmented by user constraints in between instants. In each instant, we impose these constraints in the initial constraints store, hence they are never "forgotten". For example, here, the composer interactively chooses to instantiate the eighth note to G:
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G is added in the persistent constraint store, and will remain unchanged until the end of the search. Hence, every partial assignment or solution will contain this note.

INTERACTIVE SEARCH STRATEGIES

Using the spacetime paradigm, we investigate several search strategies from the most straightforward to the more complex but useful strategies.

Stop and resume the search

There are many ways to interact with a search tree during its traversal. Interacting in each node is not really interesting because the search tree is usually too large and we are not interested in every partial assignment. In most composition-aided systems, the user interacts with the search at solution nodes and, if needed, asks for the next solution. This behavior is programmed in spacetime with the following code: We introduce the statement stop which behaves similarly to pause but gives the control back to the host program. Indeed, pause automatically extracts a node from the queue and continue the execution without suspending the program. Hence, in this example, the search stops each time we reach a solution. Since we are in a loop, we must also ensure that we at least The variable asn represents the number of variables instantiated in domains. It is of type LMax: the lattice of increasing integers. In each node, we update this value by calling count_asn() on domains. We suspend the search whenever the current number of assignments is greater than the previous one.

Lazy search tree

A musical CSP can have many solutions, especially in the early composition of the musical piece because it is under-constrained. The solutions proposed by the strategies presented above form a catalogue in which the composer can pick one. However, their analysis by the composer is not practical and computing every solution can be time-consuming. We propose a search strategy interleaving solution generation and composer interaction. The goal is to obtain a solution that has been entirely chosen by the composer, but without exploring the full solution space. We call it a lazy search strategy because it explores the solutions space on-demand. This strategy explores the score from left to right, and whenever a note can be instantiated to several pitches, the composer chooses one. For example, the next two scores represent a choice between D and G on the sixth note-framed with a red rectangle:
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The strategy first computes a representative solution for each D and G. It is mandatory if we want the composer to navigate in the solution space and not the full search space. To summarize, each time two or more solutions exist in a given note's domain, the system performs the following tasks: (i) it pauses the search strategy, (ii) it asks the composer for the note wanted, and (iii) it discards all the other propositions and resumes the search. The laziness comes from the fact that the search trees of the discarded solution will not be explored further.

Encapsulated search

We introduce the universe class for encapsulating the search [START_REF] Schulte | Programming Constraint Services: High-Level Programming of Standard and New Constraint Services, ser[END_REF] using nested time scales [START_REF] Gemünde | Clock refinement in imperative synchronous languages[END_REF]. A universe is a Java class with its own queue of nodes. Its full execution is nested in the current instant of the outer universe. This nested universe can interact with the outer universe with the following statements: (i) stop suspends the execution of the current universe in the outermost universe-which is the environment, and (ii) pause up suspends the current universe and gives the control back to the outer universe. For example, we can encapsulate the search performed in PSolver in the following class SubSolver; it is used to "pause up" each time we reach a solution. Firstly, we create two instances of SubSolver: left and right for exploring the search tree from left-toright and right-to-left. For this purpose, we use the branching class RBinary which is the class Binary with the space statements reversed. Since we "pause up" when we find a solution, we have the left-and right-most solutions.

Secondly, the variable choice reflects the decision of the composer to explore the left or the right part of the solution space. Its type is L<Boolean> where L<T> is a Java class transforming any type T into a flat lattice. In the first instant, we need to explore both solutions, and this is why choice is initialized to top since we can deduce both true and false from top. After, we only need to explore either the left or right part of the search tree depending on the composer choice. This is implemented with the suspend statement which activates the left search strategy if the composer has chosen the right one, and the right one otherwise.

Third, the process commit_user_choice stores the composer's choices in the persistent constraint store. It has the effects of pruning the exploration of other solutions, and of preventing to backtrack beyond the user choice.

Finally, the termination criterion is implemented in the process exit_when_all_solutions. When it detects that both sub-solvers reached the same solution, it exits the trap EndOfSearch-a mechanism similar to exceptions.

CONCLUSION

Computer-aided composition with constraints is not often used due to the black box search process in constraint solvers. We introduced a score editor with an interactive search strategy allowing to navigate in the solution space. Hence, the composer knows clearly why a solution is chosen. With the spacetime paradigm, we are able to lazily explore the search tree, to pause and to resume the search with additional information from the composer. In addition, at any stage of the search, the partial solution can be visualized on the score and examples of possible solutions are given. The modeling of musical constraint problems has been left apart. In the future, we want to incorporate visual modeling capabilities in our score editor that fits the interactivity of the search well. Last but not least, we will evaluate and experiment this editor with professional composers.
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 1 Figure 1: Spacetime extension of the synchronous model of computation.
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 2 Figure 2: A minimal constraint solver in spacetime.

  universe class SubSolver<Brancher, Model> { PSolver<Brancher, Model> solver = new PSolver(); proc search = par || solver . solve () || loop par || when solver .domains |= solver.constraints then pause up end || pause end end end } To implement the discussed lazy search strategy, we introduce the statement suspend when c then P . It suspends the execution of the process P whenever the condition c is true. The algorithm is shown in Figure 3.

  ): when the signals (i.e. boolean events) A and B are received, the output O is emitted. signal O carries an integer value indicating the number of times it has been emitted.

	module ABO:
	input A, B;
	output O := 0: integer ;
	loop
	[ await A || await B ];
	emit O(pre(?O) + 1);
	pause;
	end loop
	end module

  Lazy search algorithm. pause in each iteration. When pause and stop occur at the same time, stop takes the priority over pause.More generally, we can stop the search on any event. For example, we can be interested by a partial assignment in which a new variable has just been instantiated:

	class LazySearch<Model> {	proc commit_user_choice =
	SubSolver<RBinary, Model> left = new SubSolver();	loop
	SubSolver<Binary, Model> right = new SubSolver();	single_time Constraint c = select( left , right , choice );
	// true if left, false if right.	left . cpersistent <-c;
	single_time L<Boolean> choice = bot;	right . cpersistent <-c;
	proc search =	stop;
	choice <-top;	end
	trap EndOfSearch in	proc exit_when_all_solutions =
	par	loop
	|| suspend when choice |= true then right.search() end	when right . solver .domains |= left. solver .domains then
	|| suspend when choice |= false then left .search() end	exit EndOfSearch
	|| commit_user_choice()	end
	|| exit_when_all_solutions()	stop;
	end	end
	end	}
	Figure 3: world_line LMax asn = new LMax(0);	
	loop	
	par	
	|| asn <-domains.count_asn()	
	|| when asn > pre asn then stop end	
	|| pause	
	end	
	end	

A prototype is available at github.com/ptal/repmus.

Verifying that a Java method is actually monotonic is left to the implementer of the method.