ASYMPTOTIC DISTRIBUTIONS ASSOCIATED TO PIECEWISE QUASI-POLYNOMIALS

PAUL-EMILE PARADAN AND MICHÈLE VERGNE

1. Introduction

Let V be a finite dimensional real vector space equipped with a lattice Λ. Let $P \subset V$ be a rational polyhedron. The Euler-Maclaurin formula ([4], [2]) gives an asymptotic estimate, when k goes to ∞, for the Riemann sum $\sum_{\lambda \in k P \cap \Lambda} \varphi(\lambda / k)$ of the values of a test function φ at the sample points $\frac{1}{k} \Lambda \cap P$ of P, with leading term $k^{\operatorname{dim} P} \int_{P} \varphi$. Here we consider the slightly more general case of a weighted sum. Let $q(\lambda, k)$ be a quasi-polynomial function on $\Lambda \oplus \mathbb{Z}$. We consider, for $k \geq 1$, the distribution

$$
\langle\Theta(P ; q)(k), \varphi\rangle=\sum_{\lambda \in k P \cap \Lambda} q(\lambda, k) \varphi(\lambda / k)
$$

and we show (Proposition 1.2) that the function $k \mapsto\langle\Theta(P ; q)(k), \varphi\rangle$ admits an asymptotic expansion when k tends to ∞ in powers of $1 / k$ with coefficients periodic functions of k.

We extend this result to an algebra $\mathcal{S}(\Lambda)$ of piecewise quasi-polynomial functions on $\Lambda \oplus \mathbb{Z} \subset V \oplus \mathbb{R}$. A function $m(\lambda, k)(\lambda \in \Lambda, k \in \mathbb{Z})$ in $\mathcal{S}(\Lambda)$ is supported in an union of polyhedral cones in $V \oplus \mathbb{R}$. The main feature of a function $m(\lambda, k)$ in $\mathcal{S}(\Lambda)$ is that $m(\lambda, k)$ is entirely determined by its large behavior in k. We associate to $m(\lambda, k)$ a formal series $A(m)$ of distributions on V encoding the asymptotic behavior of $m(\lambda, k)$ when k tends to ∞.

The motivating example is the case where M is a projective manifold, and \mathcal{L} the corresponding ample bundle. If T is a torus acting on M, then write, for $t \in T$,

$$
\sum_{i=0}^{\operatorname{dim} M}(-1)^{i} \operatorname{Tr}\left(t, H^{i}\left(M, \mathcal{O}\left(\mathcal{L}^{k}\right)\right)\right)=\sum_{\lambda} m(\lambda, k) t^{\lambda}
$$

where λ runs over the lattice Λ of characters of T. The corresponding asymptotic expansion of the distribution $\sum_{\lambda} m(\lambda, k) \delta_{\lambda / k}$ is an important object associated to M involving the Duistermaat-Heckmann
measure and the Todd class of M, see [9] for its determination. The determination of similar asymptotics in the more general case of twisted Dirac operators is the object of a forthcoming article [7].

Thus let $m \in \mathcal{S}(\Lambda)$, and consider the sequence

$$
\Theta(m)(k)=\sum_{\lambda \in \Lambda} m(\lambda, k) \delta_{\lambda / k}
$$

of distributions on V and its asymptotic expansion $A(m)$ when k tends to ∞. Let T be the torus with lattice of characters Λ. If $g \in T$ is an element of finite order, then $m^{g}(\lambda, k):=g^{\lambda} m(\lambda, k)$ is again in $\mathcal{S}(\Lambda)$. Our main result (Theorem 1.8) is that the piecewise quasi-polynomial function m is entirely determined by the collections of asymptotic expansions $A\left(m^{g}\right)$, when g varies over the set of elements of T of finite order.

We also prove (Proposition 2.1) a functorial property of $A(m)$ under pushforward.

We use these results to give new proofs of functoriality of the formal quantization of a symplectic manifold [5] or, more generally, of a spinc manifold [6].

For these applications, we also consider the case where V is a Cartan subalgebra of a compact Lie group, and anti-invariant distributions on V of a similar nature.
1.1. Piecewise polynomial functions. Let V be a real vector space equipped with a lattice Λ. Usually, an element of V is denoted by ξ, and an element of Λ by λ. In this article, a cone C will always be a closed convex polyhedral cone, and $0 \in C$.

Let Λ^{*} be the dual lattice, and let $g \in T:=V^{*} / \Lambda^{*}$. If $G \in V^{*}$ is a representative of g and $\lambda \in \Lambda$, then we denote $g^{\lambda}=e^{2 i \pi\langle G, \lambda\rangle}$.

A periodic function m on Λ is a function such that there exists a positive integer D (we do not fix D) such that $m\left(\lambda_{0}+D \lambda\right)=m\left(\lambda_{0}\right)$ for $\lambda, \lambda_{0} \in \Lambda$. The space of such functions is linearly generated by the functions $\lambda \mapsto g^{\lambda}$ for $g \in T$ of finite order. By definition, the algebra of quasi-polynomial functions on Λ is generated by polynomials and periodic functions on Λ. If V_{0} is a rational subspace of V, the restriction of m to $\Lambda_{0}:=\Lambda \cap V_{0}$ is a quasi-polynomial function on Λ_{0}. The space of quasi-polynomial functions is graded: a quasi-polynomial function homogeneous of degree d is a linear combination of functions $t^{\lambda} h(\lambda)$ where $t \in T$ is of finite order, and h an homogeneous polynomial on V of degree d. Let $q(\lambda)$ be a quasi-polynomial function on Λ. There is a sublattice Γ of Λ of finite index d_{Γ} such that for any given $\gamma \in \Lambda$, we have $q(\lambda)=p_{\gamma}(\lambda)$ for any $\lambda \in \gamma+\Gamma$ where $p_{\gamma}(\xi)$
is a (uniquely determined) polynomial function on V. Then define $q_{p o l}(\xi)=\frac{1}{d_{\Gamma}} \sum_{\gamma \in \Lambda / \Gamma} p_{\gamma}(\xi)$, a polynomial function on V. This polynomial function is independent of the choice of the sublattice Γ. Then $q(\lambda)-q_{p o l}(\lambda)$ is a linear combination of functions of the form $t^{\lambda} h(\lambda)$ with $h(\lambda)$ polynomial and $t \neq 1$.

Using the Lebesgue measure associated to Λ, we identify generalized functions on V and distributions on V. If θ is a generalized function on V, we may write $\int_{V} \theta(\xi) \varphi(\xi) d \xi$ for its value on the test function φ. If R is a rational affine subspace of V, R inherits a canonical translation invariant measure. If P is a rational polyhedron in V, it generates a rational affine subspace of V, and $\int_{P} \varphi$ is well defined for φ a smooth function with compact support.

We say that a distribution $\theta(k)$ depending of an integer k is periodic in k if there exists a positive integer D such that for any test function φ on V, and $k_{0}, k \in \mathbb{Z},\left\langle\theta\left(k_{0}+D k\right), \varphi\right\rangle=\left\langle\theta\left(k_{0}\right), \varphi\right\rangle$. Then there exists (unique) distributions θ_{ζ} indexed by D-th roots of unity such that $\langle\theta(k), \varphi\rangle=\sum_{\zeta, \zeta^{D}=1} \zeta^{k}\left\langle\theta_{\zeta}, \varphi\right\rangle$.

Let $(\Theta(k))_{k \geq 1}$ be a sequence of distributions. We say that $\Theta(k)$ admits an asymptotic expansion (with periodic coefficients) if there exists $n_{0} \in \mathbb{Z}$ and a sequence of distributions $\theta_{n}(k), n \geq 0$, depending periodically of k, such that for any test function φ and any non negative integer N, we have

$$
\langle\Theta(k), \varphi\rangle=k^{n_{0}} \sum_{n=0}^{N} \frac{1}{k^{n}}\left\langle\theta_{n}(k), \varphi\right\rangle+o\left(k^{n_{0}-N}\right) .
$$

We write

$$
\Theta(k) \equiv k^{n_{0}} \sum_{n=0}^{\infty} \frac{1}{k^{n}} \theta_{n}(k) .
$$

The distributions $\theta_{n}(k)$ are uniquely determined.
Given a sequence $\theta_{n}(k)$ of periodic distributions, and $n_{0} \in \mathbb{Z}$, we write formally $M(\xi, k)$ for the series of distributions on V defined by

$$
\langle M(\xi, k), \varphi\rangle=k^{n_{0}} \sum_{n=0}^{\infty} \frac{1}{k^{n}} \int_{V} \theta_{n}(k)(\xi) \varphi(\xi) d \xi .
$$

We can multiply $M(\xi, k)$ by quasi-polynomial functions $q(k)$ of k and smooth functions $h(\xi)$ of ξ and obtain the formal series $q(k) h(\xi) M(\xi, k)$ of the same form with n_{0} changed to $n_{0}+\operatorname{degree}(q)$.

Let $E=V \underset{\sim}{\oplus} \mathbb{R}$, and we consider the lattice $\tilde{\Lambda}=\Lambda \oplus \mathbb{Z}$ in E. An element of $\tilde{\Lambda}$ is written as (λ, k) with $\lambda \in \Lambda$ and $k \in \mathbb{Z}$. We consider quasi-polynomial functions $q(\lambda, k)$ on $\tilde{\Lambda}$. As before, this space
is graded. We call the degree of a quasi-polynomial function on $\Lambda \oplus \mathbb{Z}$ the total degree. A quasi-polynomial function $q(\lambda, k)$ is of total degree d if it is a linear combination of functions $(\lambda, k) \mapsto j(k) t^{\lambda} k^{a} h(\lambda)$ where $j(k)$ is a periodic function of $k, t \in T$ of finite order, a a non negative integer, and h an homogeneous polynomial on V of degree b, with b such that $a+b=d$.

Let $q(\lambda, k)$ be a quasi-polynomial function on $\Lambda \oplus \mathbb{Z}$. We construct $q_{p o l}(\xi, k)$ on $V \times \mathbb{Z}$, and depending polynomially on ξ as before. We choose a sublattice of finite index d_{Γ} in Λ and functions $p_{\gamma}(\xi, k)$ depending polynomially on $\xi \in V$ and quasi-polynomial in k such that $q(\lambda, k)=p_{\gamma}(\lambda, k)$ if $\lambda \in \gamma+\Gamma$. Then $q_{p o l}(\xi, k)=\frac{1}{d_{\Gamma}} \sum_{\gamma \in \Lambda / \Gamma} p_{\gamma}(\xi, k)$. We say that $q_{p o l}(\xi, k)$ is the polynomial part (relative to Λ) of q. If q is homogeneous of total degree d, then the function $(k, \xi) \mapsto q_{p o l}(k \xi, k)$ is a linear combination of functions of the form $j(k) k^{d} s(\xi)$ where $j(k)$ is a periodic function of k and $s(\xi)$ a polynomial function of ξ.
Proposition 1.1. Let P be a rational polyhedron in V with non empty interior. Let $q(\lambda, k)$ be a quasi-polynomial function on $\Lambda \oplus \mathbb{Z}$ homogeneous of total degree d. Let $q_{p o l}(\xi, k)$ be its polynomial part. Let $k \geq 1$. The distribution

$$
\langle\Theta(P ; q)(k), \varphi\rangle=\sum_{\lambda \in k P} q(\lambda, k) \varphi(\lambda / k)
$$

admits an asymptotic expansion when $k \rightarrow \infty$ of the form

$$
k^{\operatorname{dim} V} k^{d} \sum_{n=0}^{\infty} \frac{1}{k^{n}}\left\langle\theta_{n}(k), \varphi\right\rangle .
$$

Furthermore, the term $k^{d}\left\langle\theta_{0}(k), \varphi\right\rangle$ is given by

$$
k^{d}\left\langle\theta_{0}(k), \varphi\right\rangle=\int_{P} q_{p o l}(k \xi, k) \varphi(\xi) d \xi
$$

where $q_{p o l}$ is the polynomial part (with respect to Λ) of q.
Proof. Let $q(\lambda, k)=j(k) k^{a} g^{\lambda} h(\lambda)$ be a quasi-polynomial function of total degree d. Let

$$
\begin{equation*}
\left\langle\Theta_{0}^{g}(P)(k), \varphi\right\rangle=\sum_{\lambda \in k P \cap \Lambda} g^{\lambda} \varphi(\lambda / k) . \tag{1.1}
\end{equation*}
$$

If $\Theta_{0}^{g}(P)(k)$ admits the asymptotic expansion $M(\xi, k)$, then $\Theta(P ; q)(k)$ admits the asymptotic expansion $j(k) k^{a} h(k \xi) M(\xi, k)$. So it is sufficient to consider the case where $q(\lambda, k)=g^{\lambda}$ and the distribution $\Theta_{0}^{g}(P)(k)$.

We now proceed as in [2] for the case $g=1$ and sketch the proof. By decomposing the characteristic function $[P]$ of the polyhedron P
in a signed sum of characteristic functions of tangent cones, via the Brianchon Gram formula, then decomposing furthermore each tangent cone in a signed sum of cones C_{a} of the form $\Sigma_{a} \times R_{a}$ with Σ_{a} is a translate of a unimodular cone and R_{a} a rational space, we are reduced to study this distribution for the product of the dimension 1 following situations.
$V=\mathbb{R}, \Lambda=\mathbb{Z}$ and one of the following two cases:

- $P=\mathbb{R}$
- $P=s+\mathbb{R}_{\geq 0}$ with s a rational number.

For example, if $P=[a, b]$ is an interval in \mathbb{R} with rational end points a, b, we write $[P]=[a, \infty]+[-\infty, b]-[\mathbb{R}]$.

For $P=\mathbb{R}$, and ζ a root of unity, it is easy to see that

$$
\left\langle\Theta^{\zeta}(k), \varphi\right\rangle=\sum_{\mu \in \mathbb{Z}} \zeta^{\mu} \varphi(\mu / k)
$$

is equivalent to $k \int_{\mathbb{R}} \varphi(\xi) d \xi$ if $\zeta=1$ or is equivalent to 0 if $\zeta \neq 1$.
We now study the case where $P=s+\mathbb{R}_{\geq 0}$. Let

$$
\left\langle\Theta^{\zeta}(k), \varphi\right\rangle=\sum_{\mu \in \mathbb{Z}, \mu-k s \geq 0} \zeta^{\mu} \varphi(\mu / k)
$$

and let us compute its asymptotic expansion.
For $r \in \mathbb{R}$, the fractional part $\{r\}$ is defined by $\{r\} \in[0,1[, r-\{r\} \in$ \mathbb{Z}. If μ is an integer greater or equal to $k s$, then $\mu=k s+\{-k s\}+u$ with u a non negative integer.

We consider first the case where $\zeta=1$. This case has been treated for example in [3] (Theorem 9.2.2), and there is an Euler-Maclaurin formula with remainder which leads to the following asymptotic expansion.

The function $z \mapsto \frac{e^{x z}}{e^{z}-1}$ has a simple pole at $z=0$. Its Laurent series at $z=0$ is

$$
\frac{e^{x z}}{e^{z}-1}=\sum_{n=-1}^{\infty} B_{n+1}(x) \frac{z^{n}}{(n+1)!}
$$

where $B_{n}(x)(n \geq 0)$ are the Bernoulli polynomials.
If s is rational, and $n \geq 0$, the function $k \mapsto B_{n}(\{-k s\})$ is a periodic function of k with period the denominator of s, and

$$
\sum_{\mu \in \mathbb{Z}, \mu \geq k s} \varphi\left(\frac{\mu}{k}\right) \equiv k\left(\int_{s}^{\infty} \varphi(\xi) d \xi-\sum_{n=1}^{\infty} \frac{1}{k^{n}} \frac{B_{n}(\{-k s\})}{n!} \varphi^{(n-1)}(s)\right) .
$$

This formula is easily proven by Fourier transform. Indeed, for $f(\xi)=$ $e^{i \xi z}$, the series $\sum_{\mu \geq k s} f(\mu / k)$ is $\sum_{u \geq 0} e^{i s z} e^{i\{-k s\} z / k} e^{i u z / k}$. It is convergent
if z is in the upper half plane, and the sum is

$$
F(z)(k)=-e^{i s z} \frac{e^{i\{-k s\} z / k}}{e^{i z / k}-1}
$$

So the Fourier transform of the tempered distribution $\Theta^{\zeta=1}(k)$ is the boundary value of the holomorphic function $z \mapsto F(z)(k)$ above. We can compute the asymptotic behavior of $F(z)(k)$ easily when k tends to ∞, since $\{-k s\} \leq 1$, and z / k becomes small.

Rewriting $[P]$ as the signed sum of the characteristic functions of the cones C_{a}, we see that the distribution $\Theta_{0}^{g}(P)(k)$ for $g=1$ is equivalent to

$$
k^{\operatorname{dim} V}\left(\sum_{n=0}^{\infty} \frac{1}{k^{n}} \theta_{n}(k)\right)
$$

with θ_{0} independent of k, and given by $\left\langle\theta_{0}, \varphi\right\rangle=\int_{P} \varphi(\xi) d \xi$.
Now consider the case where $\zeta \neq 1$. Then

$$
\sum_{\mu \in \mathbb{Z}, \mu \geq k s} \zeta^{\mu} \varphi(\mu / k)=\sum_{u \geq 0} \zeta^{k s+\{-k s\}} \zeta^{u} \varphi(s+\{-k s\} / k+u / k) .
$$

The function $k \mapsto \zeta^{k s+\{-k s\}}$ is a periodic function of k with period $e d$ if $\zeta^{e}=1$ and $d s$ is an integer. If $\zeta \neq 1$, the function $z \mapsto \frac{e^{x z}}{\zeta e^{z}-1}$ is holomorphic at $z=0$. Define the polynomials $B_{n, \zeta}(x)$ via the Taylor series expansion:

$$
\frac{e^{x z}}{\zeta e^{z}-1}=\sum_{n=0}^{\infty} B_{n+1, \zeta}(x) \frac{z^{n}}{(n+1)!}
$$

It is easily seen by Fourier transform that $\sum_{\mu \in \mathbb{Z}, \mu \geq k s} \zeta^{\mu} \varphi(\mu / k)$ is equivalent to

$$
-k \zeta^{k s+\{-k s\}} \sum_{n=1}^{\infty} \frac{1}{k^{n}} \frac{B_{n, \zeta}(\{-k s\})}{n!} \varphi^{(n-1)}(s) .
$$

In particular, $\Theta^{\zeta}(k)$ admits an asymptotic expansion in non negative powers of $1 / k$ and each coefficient of this asymptotic expansion is a periodic distribution supported at s.

Rewriting $[P]$ in terms of the signed cones C_{a}, we see that indeed if $g \in T$ is not 1 , one of the corresponding ζ in the reduction to a product of one dimensional cones is not 1 , and so

$$
\Theta_{0}^{g}(P)(k) \equiv k^{\operatorname{dim} V-1}\left(\sum_{n=0}^{\infty} \frac{1}{k^{n}} \theta_{n}(k)\right) .
$$

So we obtain our proposition.

Consider now P a rational polyhedron, with possibly empty interior. Let C_{P} be the cone of base P in $E=V \oplus \mathbb{R}$,

$$
C_{P}:=\{(t \xi, t), t \geq 0, \xi \in P\}
$$

Let $q(\lambda, k)$ be a quasi-polynomial function on $\Lambda \oplus \mathbb{Z}$. We consider again

$$
\langle\Theta(P ; q)(k), \varphi\rangle=\sum_{\lambda \in k P \cap \Lambda} q(\lambda, k) \varphi(\lambda / k) .
$$

Consider the vector space E_{P} generated by the cone C_{P} in E. It is clear that $\Theta(P ; q)$ depends only of the restriction r of q to $E_{P} \cap(\Lambda \oplus \mathbb{Z})$. This is a quasi-polynomial function on E_{P} with respect to the lattice $E_{P} \cap(\Lambda \oplus \mathbb{Z})$. We assume that the quasi-polynomial function r is homogeneous of degree d_{0}. This degree might be smaller that the total degree of q. Consider the affine space R_{P} generated by P in V. Let $E_{P}^{\mathbb{Z}}=E_{P} \cap(V \oplus \mathbb{Z})$. If $\xi \in R_{P}, k \in \mathbb{Z}$, then $(k \xi, k) \in E_{P}^{\mathbb{Z}}$. We will see shortly (Definition 1.3) that we can define a function $(\xi, k) \mapsto r_{p o l}(\xi, k)$ for $(\xi, k) \in E_{P}^{\mathbb{Z}}$, and that the function $(\xi, k) \mapsto r_{p o l}(k \xi, k)$ on $R_{P} \times \mathbb{Z}$ is a linear combination of functions of the form $k^{d_{0}} j(k) s(\xi)$ where $j(k)$ is a periodic function of k and $s(\xi)$ a polynomial function of ξ, for ξ varying on the affine space R_{P}.

We now can state the general formula.
Proposition 1.2. Let P be a rational polyhedron in V. Let $q(\lambda, k)$ be a quasi-polynomial function on $\Lambda \oplus \mathbb{Z}$. Let r be its restriction to $E_{P} \cap(\Lambda \oplus \mathbb{Z})$ and $r_{\text {pol }}$ the "polynomial part" of r on $E_{P} \cap(V \oplus \mathbb{Z})$. Assume that the quasi-polynomial function r is homogeneous of degree d_{0}. Let $k \geq 1$. The distribution

$$
\langle\Theta(P ; q)(k), \varphi\rangle=\sum_{\lambda \in k P} q(\lambda, k) \varphi(\lambda / k)
$$

admits an asymptotic expansion when $k \rightarrow \infty$ of the form

$$
k^{\operatorname{dim} P} k^{d_{0}} \sum_{n=0}^{\infty} \frac{1}{k^{n}}\left\langle\theta_{n}(k), \varphi\right\rangle .
$$

Furthermore, the term $k^{d_{0}}\left\langle\theta_{0}(k), \varphi\right\rangle$ is given by

$$
k^{d_{0}}\left\langle\theta_{0}(k), \varphi\right\rangle=\int_{P} r_{p o l}(k \xi, k) \varphi(\xi) d \xi
$$

Proof. We will reduce the proof of this proposition to the case treated before of a polyhedron with interior. Let $\operatorname{lin}(P)$ be the linear space parallel to R_{P}, and $\Lambda_{0}:=\Lambda \cap \operatorname{lin}(P)$. If R_{P} contains a point $\beta \in \Lambda$, then E_{P} is isomorphic to $\operatorname{lin}(P) \oplus \mathbb{R}$ with lattice $\Lambda_{0} \oplus \mathbb{Z}$. Otherwise, we will have to dilate R_{P}. More precisely, let $I_{P}=\left\{k \in \mathbb{Z}, k R_{P} \cap \Lambda \neq \emptyset\right\}$.

This is an ideal in \mathbb{Z}. Indeed if $k_{1} \in I_{P}, k_{2} \in I_{P}, \alpha_{1}, \alpha_{2} \in R_{P}$ are such that $k_{1} \alpha_{1} \in \Lambda, k_{2} \alpha_{2} \in \Lambda$, then $\alpha_{1,2}=\frac{1}{n_{1} k_{1}+n_{2} k_{2}}\left(n_{1} k_{1} \alpha_{1}+n_{2} k_{2} \alpha_{2}\right)$ is in R_{P}, and $\left(n_{1} k_{1}+n_{2} k_{2}\right)\left(\alpha_{1,2}\right) \in \Lambda$. Thus there exists a smallest $k_{0}>0$ generating the ideal I_{P}. We see that our distribution $\Theta(P ; p)(k)$ is identically equal to 0 if k is not in I_{P}. Let $\delta_{I_{P}}(k)$ be the function of k with

$$
\delta_{I_{P}}(k)= \begin{cases}0 & \text { if } k \notin I_{P} \\ 1 & \text { if } k=u k_{0} \in I_{P}\end{cases}
$$

This is a periodic function of k of period k_{0}. We choose $\alpha \in R_{P}$ such that $k_{0} \alpha \in \Lambda$. We identify E_{P} to $\operatorname{lin}(P) \oplus \mathbb{R}$ by the map $T_{\alpha}\left(\xi_{0}, t\right)=$ $\left(\xi_{0}+t k_{0} \alpha, t k_{0}\right)$. In this identification, the lattice $(\Lambda \oplus \mathbb{Z}) \cap E_{P}$ becomes the lattice $\Lambda_{0} \oplus \mathbb{Z}$. Consider $P_{0}=k_{0}(P-\alpha)$, a polyhedron with interior in $\operatorname{lin}(P)$. Let $q^{\alpha}(\gamma, u)=r\left(\gamma+u k_{0} \alpha, u k_{0}\right)$. This is a quasipolynomial function on $\Lambda_{0} \oplus \mathbb{Z}$. Its total degree is d_{0}. We have defined its polynomial part $q_{\text {pol }}^{\alpha}(\xi, u)$ for $\xi \in \operatorname{lin}(P), u \in \mathbb{Z}$.

Definition 1.3. Let $(\xi, k) \in E_{P}^{\mathbb{Z}}$. Define:

$$
r_{p o l}(\xi, k)= \begin{cases}0 & \text { if } k \notin I_{P} \\ q_{p o l}^{\alpha}\left(\xi-u k_{0} \alpha, u\right) & \text { if } k=u k_{0} \in I_{P}\end{cases}
$$

The function $r_{p o l}(\xi, k)$ does not depend of the choice of α. Indeed, if $\alpha, \beta \in R_{P}$ are such that $k_{0} \alpha, k_{0} \beta \in \Lambda$, then $q^{\beta}(\gamma, u)=q^{\alpha}(\gamma+$ $\left.u k_{0}(\beta-\alpha), u\right)$. Then we see that $q_{p o l}^{\beta}(\xi, u)=q_{p o l}^{\alpha}\left(\xi+u k_{0}(\beta-\alpha), u\right)$. Furthermore, the function $(k, \xi) \mapsto r_{p o l}(k \xi, k)$ is of the desired form, a linear combination of functions $\delta_{I_{P}}(k) j(k) k^{d_{0}} s(\xi)$ with $s(\xi)$ polynomial functions on R_{P}.

If φ is a test function on V, we define the test function φ_{0} on $\operatorname{lin}(P)$ by $\varphi_{0}\left(\xi_{0}\right)=\varphi\left(\frac{\xi_{0}}{k_{0}}+\alpha\right)$. We see that

$$
\begin{equation*}
\left\langle\Theta(P ; q)\left(u k_{0}\right), \varphi\right\rangle=\left\langle\Theta\left(P_{0} ; q^{\alpha}\right)(u), \varphi_{0}\right\rangle \tag{1.2}
\end{equation*}
$$

Thus we can apply Proposition 1.1. We obtain

$$
\left\langle\Theta(P ; q)\left(u k_{0}\right), \varphi\right\rangle \equiv u^{\operatorname{dim} P} u^{d_{0}} \sum_{n=0}^{\infty} \frac{1}{u^{n}}\left\langle\omega_{n}(u), \varphi_{0}\right\rangle
$$

We have

$$
u^{d_{0}}\left\langle\omega_{0}(u), \varphi_{0}\right\rangle=\int_{P_{0}} q_{p o l}^{\alpha}\left(u \xi_{0}, u\right) \varphi_{0}\left(\xi_{0}\right) d \xi_{0}=\int_{P_{0}} q_{p o l}^{\alpha}\left(u \xi_{0}, u\right) \varphi\left(\frac{\xi_{0}}{k_{0}}+\alpha\right)
$$

When ξ_{0} runs in $P_{0}=k_{0}(P-\alpha), \xi=\frac{\xi_{0}}{k_{0}}+\alpha$ runs over P. Changing variables, we obtain

$$
u^{d_{0}}\left\langle\omega_{0}(u), \varphi_{0}\right\rangle=k^{d_{0}} \int_{P} r_{p o l}(k \xi, k) \varphi(\xi) d \xi
$$

Thus we obtain our proposition.

Let P be a rational polyhedron in V and q a quasi-polynomial function on $\Lambda \oplus \mathbb{Z}$. We do not assume that P has interior in V. We denote by $\left[C_{P}\right]$ the characteristic function of C_{P}. Then the function $q(\lambda, k)\left[C_{P}\right](\lambda, k)$ is zero if (λ, k) is not in C_{P} or equal to $q(\lambda, k)$ if (λ, k) is in C_{P}. We denote it by $q\left[C_{P}\right]$. The space of functions on $\Lambda \oplus \mathbb{Z}$ we will study is the following space.

Definition 1.4. We define the space $\mathcal{S}(\Lambda)$ to be the space of functions on $\Lambda \oplus \mathbb{Z}$ linearly generated by the functions $q\left[C_{P}\right]$ where P runs over rational polyhedrons in V and q over quasi-polynomial functions on $\Lambda \oplus \mathbb{Z}$.

The representation of m as a sum of functions $q\left[C_{P}\right]$ is not unique. For example, consider $V=\mathbb{R}, P=\mathbb{R}, P_{+}:=\mathbb{R}_{\geq 0}, P_{-}:=\mathbb{R}_{\leq 0}, P_{0}:=$ $\{0\}$, then $\left[C_{P}\right]=\left[C_{P_{+}}\right]+\left[C_{P_{-}}\right]-\left[C_{P_{0}}\right]$.

Example 1.5. An important example of functions $m \in \mathcal{S}(\Lambda)$ is the following. Assume that we have a closed cone C in $V \oplus \mathbb{R}$, and a covering $C=\cup_{\alpha} C_{\alpha}$ by closed cones. Let m be a function on $C \cap(\Lambda \oplus \mathbb{Z})$, and assume that the restriction of m to $C_{\alpha} \cap(\Lambda \oplus \mathbb{Z})$ is given by a quasipolynomial function q_{α}. Then, using exclusion-inclusion formulae, we see that $m \in \mathcal{S}(\Lambda)$.

Definition 1.6. If $m(\lambda, k)$ belongs to $\mathcal{S}(\Lambda)$, and $g \in T$ is an element of finite order, then define

$$
m^{g}(\lambda, k)=g^{\lambda} m(\lambda, k) .
$$

The function m^{g} belongs to $\mathcal{S}(\Lambda)$.
If $m \in \mathcal{S}(\Lambda)$, and $k \geq 1$, we denote by $\Theta(m)(k)$ the distribution on V defined by

$$
\langle\Theta(m)(k), \varphi\rangle=\sum_{\lambda \in \Lambda} m(\lambda, k) \varphi(\lambda / k),
$$

if φ is a test function on V. The following proposition follows immediately from Proposition 1.2.

Proposition 1.7. If $m(\lambda, k) \in \mathcal{S}(\Lambda)$, the distribution $\Theta(m)(k)$ admits an asymptotic expansion $A(m)(\xi, k)$.

The function $m(\lambda, k)$ can be non zero, while $A(m)(\xi, k)$ is zero. For example let $V=\mathbb{R}, P=\mathbb{R}$ and $m(\lambda, k)=(-1)^{\lambda}$. Then $\Theta(m)(k)$ is the distribution on \mathbb{R} given by $\mathrm{T}(k)=\sum_{\lambda=-\infty}^{\infty}(-1)^{\lambda} \delta_{\lambda / k}, k \geq 1$ and this is equivalent to 0 . However, here is an unicity theorem.

Theorem 1.8. Assume that $m \in \mathcal{S}(\Lambda)$ is such that $A\left(m^{g}\right)=0$ for all $g \in T$ of finite order, then $m=0$.

Proof. We start by the case of a function $m=q\left[C_{P}\right]$ associated to a single polyhedron P and a quasi-polynomial function q. Assume first that P is with non empty interior P^{0}. If q is not identically 0 , we write $q(\lambda, k)=\sum_{g \in T} g^{-\lambda} p_{g}(\lambda, k)$ where $p_{g}(\lambda, k)$ are polynomials in λ. If d is the total degree of q, then all the polynomials $p_{g}(\lambda, k)$ are of degree less or equal than d. We choose $t \in T$ such that $p_{t}(\lambda, k)$ is of degree d. If we consider the quasi-polynomial $q^{t}(\lambda, k)$, then its polynomial part is $p_{t}(\lambda, k)$ and the homogeneous component $p_{t}^{\text {top }}(\lambda, k)$ of degree d is not zero. We write $p_{t}^{\text {top }}(\xi, k)=\sum_{\zeta, a} \zeta^{k} k^{a} p_{\zeta, a}(\xi)$ where $p_{\zeta, a}(\xi)$ is a polynomial in ξ homogeneous of degree $d-a$. Testing against a test function φ and computing the term in $k^{d+\operatorname{dim} V}$ of the asymptotic expansion by Proposition 1.1, we see that $\sum_{\zeta, a} \zeta^{k} k^{d} \int_{P} p_{\zeta, a}(\xi) \varphi(\xi) d \xi=$ 0 . This is true for any test function φ. So, for any ζ, we obtain $\sum_{a} p_{\zeta, a}(\xi)=0$. Each of the $p_{\zeta, a}$ being homogeneous of degree $d-a$, we see that $p_{\zeta, a}=0$ for any a, ζ. Thus $p_{t}^{\text {top }}=0$, a contradiction. So we obtain that $q=0$, and $m=q\left[C_{P}\right]=0$. Remark that to obtain this conclusion, we may use only test functions φ with support contained in the interior P^{0} of P.

Consider now a general polyhedron P and the vector space $\operatorname{lin}(P)$. Let us prove that $m(\lambda, k)=q(\lambda, k)\left[C_{P}\right](\lambda, k)$ is identically 0 if $A\left(m^{g}\right)=$ 0 for any $g \in T$ of finite order. Using the notations of the proof of Proposition 1.2 , we see that $m(\lambda, k)=0$, if k is not of the form $u k_{0}$. Furthermore, if $q^{\alpha}(\gamma, u)=q\left(\gamma+u k_{0} \alpha, u k_{0}\right)$, it is sufficient to prove that $q^{\alpha}=0$. Let $P_{0}=k_{0}(P-\alpha)$, a polyhedron with interior in V_{0}. Consider $m_{0}=q^{\alpha}\left[C_{P_{0}}\right]$. We consider T as the character group of Λ, so T surjects on T_{0}. Let $g \in T$ of finite order and such that $g^{k_{0} \alpha}=1$, and let g_{0} be the restriction of g to Λ_{0}. Using Equation 1.1, we then see that

$$
\left\langle\Theta\left(m^{g}\right)\left(u k_{0}\right), \varphi\right\rangle=\left\langle\Theta\left(m_{0}^{g_{0}}\right)(u), \varphi_{0}\right\rangle .
$$

Any $g_{0} \in T_{0}$ of finite order is the restriction to Λ_{0} of an element $g \in T$ of finite order and such that $g^{k_{0} \alpha}=1$. So we conclude that the asymptotic expansion, when u tends to ∞, of $\Theta\left(m_{0}^{g_{0}}\right)(u)$ is equal to 0 for any $g_{0} \in T_{0}$ of finite order. Remark again that we need only to know that $\left\langle\Theta\left(m^{g}\right)(k), \varphi\right\rangle \equiv 0$ for test functions φ such that the support
S of φ is contained in a very small neighborhood of compact subsets of P contained in the relative interior of P^{0}.

For any integer ℓ, denote by $\mathcal{S}_{\ell}(\Lambda)$ the subspace of functions $m \in$ $\mathcal{S}(\Lambda)$ generated by the functions $q\left[C_{P}\right]$ with $\operatorname{dim} P \leq \ell$.

When $\ell=0$, our polyhedrons are a finite number of rational points $f \in V$, the function $m(\lambda, k)$ is supported on the union of lines $\left(u d_{f} f, u d_{f}\right)$ if d_{f} is the smallest integer such that $d_{f} f$ is in Λ. Choose a test function φ with support near f. Then $u \mapsto\left\langle\Theta(m)\left(d_{f} u\right), \varphi\right\rangle$ is identical to its asymptotic expansion $m\left(u d_{f} f, u d_{f}\right) \varphi(f)$. Clearly we obtain that $m=0$.

If $m \in \mathcal{S}_{\ell}(\Lambda)$ by inclusion-exclusion, we can write

$$
m=\sum_{P ; \operatorname{dim}(P)=\ell} q_{P}\left[C_{P}\right]+\sum_{H, \operatorname{dim} H<\ell} q_{H}\left[C_{H}\right]
$$

and we can assume that the intersections of a polyhedron P occurring in the first sum, with any polyhedron P^{\prime} occurring in the decomposition of m and different from P is of dimension strictly less than ℓ. Consider P in the first sum, so $\operatorname{dim}(P)=\ell$. We can thus choose test functions φ with support in small neighborhoods of K, with K a compact subset contained in the relative interior of P. Then

$$
\left\langle\Theta\left(m^{g}\right)(k), \varphi\right\rangle=\left\langle\Theta\left(q_{P}^{g}\left[C_{P}\right]\right)(k), \varphi\right\rangle .
$$

The preceding argument shows that $q_{P}\left[C_{P}\right]=0$. So $m \in \mathcal{S}_{\ell-1}(\Lambda)$. By induction $m=0$.

2. Composition of piecewise quasi-Polynomial functions

Let V_{0}, V_{1} be vector spaces with lattice Λ_{0}, Λ_{1}.
Let $C_{0,1}$ be a closed polyhedral rational cone in $V_{0} \oplus V_{1}$ (containing the origin). Thus for any $\mu \in \Lambda_{1}$, the set of $\lambda \in V_{0}$ such that $(\lambda, \mu) \in$ $C_{0,1}$ is a rational polyhedron $P(\mu)$ in V_{0}. Let P be a polyhedron in V. We assume that for any $\mu \in \Lambda_{1}, P \cap P(\mu)$ is compact. Thus, for $m=q_{P}\left[C_{P}\right] \in \mathcal{S}(\Lambda)$, and $c(\lambda, \mu)$ a quasi-polynomial function on $\Lambda_{0} \oplus \Lambda_{1}$, we can compute

$$
m_{c}(\mu, k)=\sum_{(\lambda, \mu) \in C_{0,1}} m(\lambda, k) c(\lambda, \mu) .
$$

Proposition 2.1. The function m_{c} belongs to $\mathcal{S}\left(\Lambda_{1}\right)$.
Before establishing this result, let us give an example, which occur for example in the problem of computing the multiplicity of a representation $\chi^{\lambda} \otimes \chi^{\lambda}$ of $S U(2)$ restricted to the maximal torus.

Example 2.2. Let $V_{0}=V_{1}=\mathbb{R}$, and $\Lambda_{0}=\Lambda_{1}=\mathbb{Z}$. Let $P:=[0,2]$, and let

$$
q(\lambda, k)=\left\{\begin{array}{lr}
\frac{1}{2}\left(1-(-1)^{\lambda}\right) & \text { if } 0 \leq \lambda \leq 2 k \\
0 & \text { otherwise }
\end{array}\right.
$$

Let

$$
C_{0,1}=\left\{(x, y) \in \mathbb{R}^{2} ; x \geq 0,-x \leq y \leq x\right\}
$$

and

$$
c(\lambda, \mu)=\frac{1}{2}\left(1-(-1)^{\lambda-\mu}\right) .
$$

Let $\mu \geq 0$. Then
$m_{c}(\mu, k)=\frac{1}{4} \sum_{0 \leq \lambda \leq 2 k, \lambda \geq \mu}\left(1-(-1)^{\lambda}\right)\left(1-(-1)^{\lambda-\mu}\right)=\left(1+(-1)^{\mu}\right)(k / 2-\mu / 4)$.
So if $P_{1}=[0,2], P_{2}:=[-2,0], P_{3}:=\{0\}$, we obtain

$$
m_{c}=q_{1}\left[C_{P_{1}}\right]+q_{2}\left[C_{P_{2}}\right]+q_{3}\left[C_{P_{3}}\right]
$$

with

$$
\left\{\begin{array}{l}
q_{1}(\mu, k)=\left(1+(-1)^{\mu}\right)(k / 2-\mu / 4) \\
q_{2}(\mu, k)=\left(1+(-1)^{\mu}\right)(k / 2+\mu / 4) \\
q_{3}(\mu, k)=-k
\end{array}\right.
$$

We now start the proof of Proposition 2.1.
Proof. Write $c(\lambda, \mu)$ as a sum of products of quasi-polynomial functions $q_{j}(\lambda), f_{j}(\mu)$, and $q_{P}(\lambda, k)$ a sum of products of quasi-polynomial functions $m_{\ell}(k), h_{\ell}(\lambda)$. Then we see that it is thus sufficient to prove that, for $q(\lambda)$ a quasi-polynomial function of λ, the function

$$
\begin{equation*}
S(q)(\mu, k)=\sum_{\lambda \in k P \cap P(\mu)} q(\lambda) \tag{2.1}
\end{equation*}
$$

belongs to $\mathcal{S}\left(\Lambda_{1}\right)$. For this, let us recall some results on families of polytopes $\mathfrak{p}(\mathbf{b}) \subset E$ defined by linear inequations. See for example [1], or [8].

Let E be a vector space, and $\omega_{i}, i=1, \ldots, N$ be a sequence of linear forms on E. Let $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{N}\right)$ be an element of \mathbb{R}^{N}. Consider the polyhedron $\mathfrak{p}(\mathbf{b})$ defined by the inequations

$$
\mathfrak{p}(\mathbf{b})=\left\{v \in E ;\left\langle\omega_{i}, v\right\rangle \leq b_{i}, i=1, \ldots, N\right\} .
$$

We assume E equipped with a lattice L, and inequations ω_{i} defined by elements of L^{*}. Then if the parameters b_{i} are in \mathbb{Z}^{N}, the polytopes $\mathfrak{p}(\mathbf{b})$ are rational convex polytopes.

Assume that there exists \mathbf{b} such that $\mathfrak{p}(\mathbf{b})$ is compact (non empty). Then $\mathfrak{p}(\mathbf{b})$ is compact (or empty) for any $\mathbf{b} \in \mathbb{R}^{N}$. Furthermore, there exists a closed cone \mathcal{C} in \mathbb{R}^{N} such that $\mathfrak{p}(\mathbf{b})$ is non empty if and only if $\mathbf{b} \in \mathcal{C}$. There is a decomposition $\mathcal{C}=\cup_{\alpha} \mathcal{C}_{\alpha}$ of \mathcal{C} in closed polyhedral cones with non empty interiors, where the polytopes $\mathfrak{p}(\mathbf{b})$, for $\mathbf{b} \in \mathcal{C}_{\alpha}$, does not change of shape. More precisely:

- When \mathbf{b} varies in the interior of \mathcal{C}_{α}, the polytope $\mathfrak{p}(\mathbf{b})$ remains with the same number of vertices $\left\{s_{1}(\mathbf{b}), s_{2}(\mathbf{b}), \ldots, s_{L}(\mathbf{b})\right\}$.
- for each $1 \leq i \leq L$, there exists a cone C_{i} in E, such that the tangent cone to the polytope $\mathfrak{p}(\mathbf{b})$ at the vertex $s_{i}(\mathbf{b})$ is the affine cone $s_{i}(\mathbf{b})+C_{i}$.
- the map $\mathbf{b} \rightarrow s_{i}(\mathbf{b})$ depends of the parameter \mathbf{b}, via linear maps $\mathbb{R}^{N} \rightarrow E$ with rational coefficients.

Furthermore -as proven for example in [1]- the Brianchon-Gram decomposition of $\mathfrak{p}(\mathbf{b})$ is "continuous" in \mathbf{b} when b varies on C_{α}, in a sense discussed in [1].

Before continuing, let us give a very simple example, let b_{1}, b_{2}, b_{3} be 3 real parameters and consider $\mathfrak{p}\left(b_{1}, b_{2}, b_{3}\right)=\left\{x \in \mathbb{R}, x \leq b_{1},-x \leq\right.$ $\left.b_{2},-x \leq b_{3}\right\}$. So we are studying the intersection of the interval $\left[-b_{2}, b_{1}\right]$ with the half line $\left[-b_{3}, \infty\right]$. Then for $\mathfrak{p}(\mathbf{b})$ to be non empty, we need that $\mathbf{b} \in \mathcal{C}$, with

$$
\mathcal{C}=\left\{\mathbf{b} ; b_{1}+b_{2} \geq 0, b_{1}+b_{3} \geq 0\right\} .
$$

Consider $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$, with

$$
\begin{aligned}
& \mathcal{C}_{1}=\left\{\mathbf{b} \in \mathcal{C} ; b_{2}-b_{3} \geq 0\right\}, \\
& \mathcal{C}_{2}=\left\{\mathbf{b} \in \mathcal{C} ; b_{3}-b_{2} \geq 0\right\} .
\end{aligned}
$$

On \mathcal{C}_{1} the vertices of $\mathfrak{p}(\mathbf{b})$ are $\left[-b_{3}, b_{1}\right]$, while on \mathcal{C}_{2} the vertices of $\mathfrak{p}(\mathbf{b})$ are $\left[-b_{2}, b_{1}\right]$.

The Brianchon-Gram decomposition of $\mathfrak{p}(\mathbf{b})$ for \mathbf{b} in the interior of \mathcal{C}_{1} is $\left[-b_{3}, \infty\right]+\left[-\infty, b_{1}\right]-\mathbb{R}$. If $\mathbf{b} \in \mathcal{C}_{1}$ tends to the point $\left(b_{1}, b_{2},-b_{1}\right)$ in the boundary of \mathcal{C}, we see the Brianchon-Gram decomposition tends to that $\left[b_{1}, \infty\right]+\left[-\infty, b_{1}\right]-\mathbb{R}$, which is indeed the polytope $\left\{b_{1}\right\}$.

Let $q(\gamma)$ be a quasi-polynomial function of $\gamma \in L$. Then, when \mathbf{b} varies in $\mathcal{C}_{\alpha} \cap \mathbb{Z}^{N}$, the function

$$
S(q)(\mathbf{b})=\sum_{\gamma \in \mathfrak{p}(\mathbf{b}) \cap L} q(\gamma)
$$

is given by a quasi-polynomial function of b. This is proven in [8], Theorem 3.8. In this theorem, we sum an exponential polynomial function $q(\gamma)$ on the lattice points of $\mathfrak{p}(\mathbf{b})$ and obtain an exponential polynomial function of the parameter b. However, the explicit formula shows
that if we sum up a quasi-polynomial function of γ, then we obtain a quasi-polynomial function of $\mathbf{b} \in \mathbb{Z}^{N}$. Another proof follows from [1] (Theorem 54) and the continuity of Brianchon-Gram decomposition. In [1], only the summation of polynomial functions is studied, via a Brianchon-Gram decomposition, but the same proof gives the result for quasi-polynomial functions (it depends only of the fact that the vertices vary via rational linear functions of \mathbf{b}). The relations between partition polytopes $P_{\Phi}(\xi)$ (setting used in [8], [1]) and families of polytopes $\mathfrak{p}(\mathbf{b})$ is standard, and is explained for example in the introduction of [1].

Consider now our situation with $E=V$ equipped with the lattice Λ. The polytope $k P \subset V$ is given by a sequence of inequalities $\omega_{i}(\xi) \leq k a_{i}$, $i=1, \ldots, I$, where we can assume $\omega_{i} \in \Lambda^{*}$ and $a_{i} \in \mathbb{Z}$ by eventually multiplying by a large integer the inequality. The polytope $P(\mu)$ is given by a sequence of inequalities $\omega_{j}(\xi) \leq \nu_{j}(\mu), j=1, \ldots, J$ where ν_{j} depends linearly on μ. Similarly we can assume $\nu_{j}(\mu) \in \mathbb{Z}$. Let

$$
(\mu, k) \mapsto \mathbf{b}(\mu, k)=\left[k a_{1}, \ldots, k a_{I}, \nu_{1}(\mu), \ldots, \nu_{J}(\mu)\right]
$$

a linear map from $\Lambda_{1} \oplus \mathbb{Z}$ to \mathbb{Z}^{N}. Our polytope $k P \cap P(\mu)$ is the polytope $\mathfrak{p}(\mathbf{b}(k, \mu))$ and

$$
S(q)(\mu, k)=\sum_{\lambda \in \mathfrak{p}(\mathbf{b}(k, \mu)) \cap \Lambda} q(\lambda)=S(q)(\mathbf{b}(\mu, k)) .
$$

Consider one of the cones \mathcal{C}_{α}. Then $\mathbf{b}(\mu, k) \in \mathcal{C}_{\alpha}$, if and only if (μ, k) belongs to a rational polyhedral cone C_{α} in $V_{1} \oplus \mathbb{R}$. If Q is a quasi-polynomial function of \mathbf{b}, then $Q(\mathbf{b}(\mu, k))$ is a quasi-polynomial function of (μ, k). Thus on each of the cones $C_{\alpha}, S(q)(\mu, k)$ is given by a quasi-polynomial function of (μ, k). From Example 1.5, we conclude that $S(q)$ belongs to $\mathcal{S}\left(\Lambda_{1}\right)$.

3. Piecewise quasi-polynomial functions on the Weyl CHAMBER

For applications, we have also to consider the following situation.
Let G be a compact Lie group. Let T be a maximal torus of G, \mathfrak{t} its Lie algebra, W be the Weyl group. Let $\Lambda \subset \mathfrak{t}^{*}$ be the weight lattice of T. We choose a system $\Delta^{+} \subset \mathfrak{t}^{*}$ of positive roots, and let $\rho \in \mathfrak{t}^{*}$ be the corresponding element. We consider the positive Weyl chamber $\mathfrak{t}_{\geq 0}^{*}$ with interior $\mathfrak{t}_{>0}^{*}$.

We consider now $\mathcal{S}_{\geq 0}(\Lambda)$ the space of functions generated by the functions $q\left[C_{P}\right]$ with polyhedrons P contained in $\mathfrak{t}_{\geq 0}^{*}$. This is a subspace of $\mathcal{S}(\Lambda)$. If $t \in T$ is an element of finite order, the function $m^{t}(\lambda, k)=$ $t^{\lambda} m(\lambda, k)$ is again in $\mathcal{S}_{\geq 0}(\Lambda)$.

If $m \in \mathcal{S}_{\geq 0}(\Lambda)$, we define the following anti invariant distribution with value on a test function φ given by

$$
\left\langle\Theta_{a}(m)(k), \varphi\right\rangle=\frac{1}{|W|} \sum_{\lambda} m(\lambda, k) \sum_{w \in W} \epsilon(w) \varphi(w(\lambda+\rho) / k)
$$

Proposition 3.1. If for every $t \in T$ of finite order, we have $\Theta_{a}\left(m^{t}\right) \equiv$ 0 , then $m=0$.

Proof. Consider φ a test function supported in the interior of the Weyl chamber. Thus, for $\lambda \geq 0, \varphi(w(\lambda+\rho) / k)$ is not zero only if $w=1$. So

$$
\left\langle\Theta_{a}(m)(k), \varphi\right\rangle=\frac{1}{|W|} \sum_{\lambda \geq 0} m(\lambda, k) \varphi((\lambda+\rho) / k)
$$

while

$$
\langle\Theta(k), \varphi\rangle=\sum_{\lambda \geq 0} m(\lambda, k) \varphi(\lambda / k)
$$

Let $\left(\partial_{\rho} \varphi\right)(\xi)=\left.\frac{d}{d \epsilon}{ }^{〔} \varphi(\xi+\epsilon \rho)\right|_{\epsilon=0}$ and consider the series of differential operators with constant coefficients $e^{\partial_{\rho} / k}=1+\frac{1}{k} \partial_{\rho}+\cdots$. We then see that, if $\langle A(\xi, k), \varphi\rangle$ is the asymptotic expansion of $\langle\Theta(k), \varphi\rangle$, the asymptotic expansion of $\left\langle\Theta_{a}(k), \varphi\right\rangle$ is $\left\langle A(\xi, k), e^{\partial \rho / k} \varphi\right\rangle$. Proceeding as in the proof of Theorem 1.8, we see that if $\left\langle\Theta_{a}\left(m^{t}\right)(k), \varphi\right\rangle \equiv 0$ for all $t \in T$ of finite order, then $m(\lambda, k)$ is identically 0 when λ is on the interior of the Weyl chamber.

Consider all faces (closed) σ of the closed Weyl chamber. Define $\mathcal{S}_{\ell, \geq 0} \subset \mathcal{S}(\Lambda)$ to be the space of $m=\sum_{\sigma, \operatorname{dim}(\sigma) \leq \ell} m_{\sigma}$, where $m_{\sigma} \in$ $\mathcal{S}_{\geq 0}(\Lambda)$ is such that $m_{\sigma}(\lambda, k)=0$ if λ is not in σ. Let us prove by induction on ℓ that if $m \in \mathcal{S}_{\ell, \geq 0}$ and $\Theta_{a}^{t}\left(m^{t}\right) \equiv 0$, for all $t \in T$ of finite order, then $m=0$.

If $\ell=0$, then $m(\lambda, k)=0$ except if $\lambda=0$, and our distribution is

$$
m(0, k) \sum_{w} \epsilon(w) \varphi(w \rho / k) .
$$

Now, take for example $\varphi(\xi)=\prod_{\alpha>0}\left(\xi, H_{\alpha}\right) \chi(\xi)$ where χ is invariant with small compact support and identically equal to 1 near 0 . Then $\left\langle\Theta_{a}(m), \varphi\right\rangle$ for k large is equal to $c \frac{1}{k^{N}} m(0, k)$, where N is the number of positive roots, and c a non zero constant. So we conclude that $m(0, k)=0$.

Now consider $m=\sum_{\operatorname{dim} \sigma=\ell} m_{\sigma}+\sum_{\operatorname{dim} f<\ell} m_{f}$. Choose m_{σ} in the first sum. Let σ^{0} be the relative interior of σ. Let Δ_{0} be the set of roots α, such that $\left\langle H_{\alpha}, \sigma\right\rangle=0$. Then $\mathfrak{t}^{*}=\mathfrak{t}_{1}^{*} \oplus \mathfrak{t}_{0}^{*}$, where $\mathfrak{t}_{0}^{*}=\sum_{\alpha \in \Delta^{0}} \mathbb{R} \alpha$ and $\mathfrak{t}_{1}^{*}=\mathbb{R} \sigma$. We write $\xi=\xi_{0}+\xi_{1}$ for $\xi \in \mathfrak{t}^{*}$, with $\xi_{0} \in \mathfrak{t}_{0}^{*}$, $\xi_{1} \in \mathfrak{t}_{1}^{*}$. Then $\rho=\rho_{0}+\rho_{1}$ with $\rho_{1} \in \mathfrak{t}_{1}^{*}$ and $\rho_{0}=\frac{1}{2} \sum_{\alpha \in \Delta_{0}^{+}} \alpha$. Let W_{0} be the subgroup
of the Weyl group generated by the reflections s_{α} with $\alpha \in \Delta_{0}$. It leaves stable σ.

Consider φ a test function of the form $\varphi_{0}\left(\xi_{0}\right) \varphi_{1}\left(\xi_{1}\right)$ with $\varphi_{0}\left(\xi_{0}\right)=$ $\chi_{0}\left(\xi_{0}\right) \prod_{\alpha \in \Delta_{0}^{+}}\left\langle\xi_{0}, H_{\alpha}\right\rangle$ with $\chi_{0}\left(\xi_{0}\right)$ a function on \mathfrak{t}_{0}^{*} with small support near 0 and identically 1 near 0 , while $\varphi_{1}\left(\xi_{1}\right)$ is supported on a compact subset contained in σ^{0}.

For k large,

$$
\left\langle\Theta_{a}^{t}, \varphi\right\rangle=\frac{1}{|W|} m_{\sigma}(\lambda, k) \sum_{w \in W_{0}} \phi(w(\lambda+\rho) / k)
$$

So

$$
\left\langle\Theta_{a}^{t}, \varphi\right\rangle=c_{0} \frac{1}{k^{N_{0}}} \sum_{\lambda \in \sigma} m_{\sigma}(\lambda, k) \varphi_{1}\left(\left(\lambda+\rho_{1}\right) / k\right) .
$$

As in the preceding case, this implies that $m_{\sigma}(\lambda, k)=0$ for $\lambda \in \sigma^{0}$. Doing it successively for all σ entering in the first sum, we conclude that $m \in \mathcal{S}_{\geq 0, \ell-1}(\Lambda)$. By induction, we conclude that $m=0$.

References

[1] Nicole Berline and Michèle Vergne, Analytic continuation of a parametric polytope and wall-crossing, Configuration spaces, CRM Series, vol. 14, Ed. Norm., Pisa, 2012, pp. 111-172.
[2] ___, Local asymptotic Euler-Maclaurin expansion for Riemann sums over a semi-rational polyhedron, arXiv 1502.01671 (2015).
[3] Henri Cohen, Number theory. Vol. II. Analytic and modern tools, Graduate Texts in Mathematics, vol. 240, Springer, New York, 2007.
[4] Victor Guillemin and Shlomo Sternberg, Riemann sums over polytopes, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 7, 2183-2195 (English, with English and French summaries). Festival Yves Colin de Verdière.
[5] Paul-Émile Paradan, Formal geometric quantization, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 1, 199-238 (English, with English and French summaries).
[6] __ Formal Geometric Quantization III, Functoriality in the spin-c setting, arxiv 1704.06034 (2017).
[7] Paul-Emile Paradan and Michèle Vergne, The equivariant index of twisted Dirac operators and semi-classical limits, to appear (2017).
[8] András Szenes and Michèle Vergne, Residue formulae for vector partitions and Euler-MacLaurin sums, Adv. in Appl. Math. 30 (2003), no. 1-2, 295-342. Formal power series and algebraic combinatorics (Scottsdale, AZ, 2001).
[9] Michèle Vergne, The equivariant Riemann-Roch theorem and the graded Todd class, arXiv 1612.04651 (2016).

Institut Montpelliérain Alexander Grothendieck, CNRS, UniverSité de Montpellier

E-mail address: paul-emile.paradan@umontpellier.fr
Université Denis Diderot, Institut Mathématique de Jussieu, Sophie Germain

E-mail address: michele.vergne@imj-prg.fr

