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Introduction

Let V be a finite dimensional real vector space equipped with a lattice Λ. Let P ⊂ V be a rational polyhedron. The Euler-Maclaurin formula ([4], [START_REF]Local asymptotic Euler-Maclaurin expansion for Riemann sums over a semi-rational polyhedron[END_REF]) gives an asymptotic estimate, when k goes to ∞, for the Riemann sum λ∈kP ∩Λ ϕ(λ/k) of the values of a test function ϕ at the sample points 1 k Λ ∩ P of P , with leading term k dim P P ϕ. Here we consider the slightly more general case of a weighted sum. Let q(λ, k) be a quasi-polynomial function on Λ ⊕ Z. We consider, for k ≥ 1, the distribution Θ(P ; q)(k), ϕ = λ∈kP ∩Λ q(λ, k)ϕ(λ/k) and we show (Proposition 1.2) that the function k → Θ(P ; q)(k), ϕ admits an asymptotic expansion when k tends to ∞ in powers of 1/k with coefficients periodic functions of k.

We extend this result to an algebra S(Λ) of piecewise quasi-polynomial functions on Λ ⊕ Z ⊂ V ⊕ R. A function m(λ, k) (λ ∈ Λ, k ∈ Z) in S(Λ) is supported in an union of polyhedral cones in V ⊕ R. The main feature of a function m(λ, k) in S(Λ) is that m(λ, k) is entirely determined by its large behavior in k. We associate to m(λ, k) a formal series A(m) of distributions on V encoding the asymptotic behavior of m(λ, k) when k tends to ∞.

The motivating example is the case where M is a projective manifold, and L the corresponding ample bundle. If T is a torus acting on M, then write, for t ∈ T ,

dim M i=0 (-1) i Tr(t, H i (M, O(L k ))) = λ m(λ, k)t λ
where λ runs over the lattice Λ of characters of T . The corresponding asymptotic expansion of the distribution λ m(λ, k)δ λ/k is an important object associated to M involving the Duistermaat-Heckmann measure and the Todd class of M, see [START_REF] Vergne | The equivariant Riemann-Roch theorem and the graded Todd class[END_REF] for its determination. The determination of similar asymptotics in the more general case of twisted Dirac operators is the object of a forthcoming article [START_REF] Paradan | The equivariant index of twisted Dirac operators and semi-classical limits[END_REF].

Thus let m ∈ S(Λ), and consider the sequence

Θ(m)(k) = λ∈Λ m(λ, k)δ λ/k
of distributions on V and its asymptotic expansion A(m) when k tends to ∞. Let T be the torus with lattice of characters Λ. If g ∈ T is an element of finite order, then m g (λ, k) := g λ m(λ, k) is again in S(Λ).

Our main result (Theorem 1.8) is that the piecewise quasi-polynomial function m is entirely determined by the collections of asymptotic expansions A(m g ), when g varies over the set of elements of T of finite order.

We also prove (Proposition 2.1) a functorial property of A(m) under pushforward.

We use these results to give new proofs of functoriality of the formal quantization of a symplectic manifold [START_REF] Paradan | Formal geometric quantization[END_REF] or, more generally, of a spinc manifold [START_REF]Formal Geometric Quantization III, Functoriality in the spin-c setting[END_REF].

For these applications, we also consider the case where V is a Cartan subalgebra of a compact Lie group, and anti-invariant distributions on V of a similar nature.

1.1. Piecewise polynomial functions. Let V be a real vector space equipped with a lattice Λ. Usually, an element of V is denoted by ξ, and an element of Λ by λ. In this article, a cone C will always be a closed convex polyhedral cone, and 0 ∈ C.

Let Λ * be the dual lattice, and let g ∈ T := V * /Λ * . If G ∈ V * is a representative of g and λ ∈ Λ, then we denote g λ = e 2iπ G,λ .

A periodic function m on Λ is a function such that there exists a positive integer D (we do not fix D) such that m(λ 0 + Dλ) = m(λ 0 ) for λ, λ 0 ∈ Λ. The space of such functions is linearly generated by the functions λ → g λ for g ∈ T of finite order. By definition, the algebra of quasi-polynomial functions on Λ is generated by polynomials and periodic functions on Λ. If V 0 is a rational subspace of V , the restriction of m to Λ 0 := Λ ∩ V 0 is a quasi-polynomial function on Λ 0 . The space of quasi-polynomial functions is graded: a quasi-polynomial function homogeneous of degree d is a linear combination of functions t λ h(λ) where t ∈ T is of finite order, and h an homogeneous polynomial on V of degree d. Let q(λ) be a quasi-polynomial function on Λ. There is a sublattice Γ of Λ of finite index d Γ such that for any given γ ∈ Λ, we have q(λ) = p γ (λ) for any λ ∈ γ + Γ where p γ (ξ) is a (uniquely determined) polynomial function on V . Then define q pol (ξ) = 1 d Γ γ∈Λ/Γ p γ (ξ), a polynomial function on V . This polynomial function is independent of the choice of the sublattice Γ. Then q(λ)q pol (λ) is a linear combination of functions of the form t λ h(λ) with h(λ) polynomial and t = 1.

Using the Lebesgue measure associated to Λ, we identify generalized functions on V and distributions on V . If θ is a generalized function on V , we may write V θ(ξ)ϕ(ξ)dξ for its value on the test function ϕ. If R is a rational affine subspace of V , R inherits a canonical translation invariant measure. If P is a rational polyhedron in V , it generates a rational affine subspace of V , and P ϕ is well defined for ϕ a smooth function with compact support.

We say that a distribution θ(k) depending of an integer k is periodic in k if there exists a positive integer D such that for any test function ϕ on V , and

k 0 , k ∈ Z, θ(k 0 + Dk), ϕ = θ(k 0 ), ϕ . Then there exists (unique) distributions θ ζ indexed by D-th roots of unity such that θ(k), ϕ = ζ,ζ D =1 ζ k θ ζ , ϕ .
Let (Θ(k)) k≥1 be a sequence of distributions. We say that Θ(k) admits an asymptotic expansion (with periodic coefficients) if there exists n 0 ∈ Z and a sequence of distributions θ n (k), n ≥ 0, depending periodically of k, such that for any test function ϕ and any non negative integer N, we have

Θ(k), ϕ = k n 0 N n=0 1 k n θ n (k), ϕ + o(k n 0 -N ).
We write

Θ(k) ≡ k n 0 ∞ n=0 1 k n θ n (k).
The distributions θ n (k) are uniquely determined. Given a sequence θ n (k) of periodic distributions, and n 0 ∈ Z, we write formally M(ξ, k) for the series of distributions on V defined by

M(ξ, k), ϕ = k n 0 ∞ n=0 1 k n V θ n (k)(ξ)ϕ(ξ)dξ.
We can multiply M(ξ, k) by quasi-polynomial functions q(k) of k and smooth functions h(ξ) of ξ and obtain the formal series q(k)h(ξ)M(ξ, k) of the same form with n 0 changed to n 0 + degree(q). Let E = V ⊕ R, and we consider the lattice Λ = Λ ⊕ Z in E. An element of Λ is written as (λ, k) with λ ∈ Λ and k ∈ Z. We consider quasi-polynomial functions q(λ, k) on Λ. As before, this space is graded. We call the degree of a quasi-polynomial function on Λ ⊕ Z the total degree. A quasi-polynomial function q(λ, k) is of total degree d if it is a linear combination of functions (λ, k) → j(k)t λ k a h(λ) where j(k) is a periodic function of k, t ∈ T of finite order, a a non negative integer, and h an homogeneous polynomial on V of degree b, with b such that a + b = d.

Let q(λ, k) be a quasi-polynomial function on Λ ⊕ Z. We construct q pol (ξ, k) on V × Z, and depending polynomially on ξ as before. We choose a sublattice of finite index d Γ in Λ and functions p γ (ξ, k) depending polynomially on ξ ∈ V and quasi-polynomial in k such that

q(λ, k) = p γ (λ, k) if λ ∈ γ + Γ. Then q pol (ξ, k) = 1 d Γ γ∈Λ/Γ p γ (ξ, k).
We say that q pol (ξ, k) is the polynomial part (relative to Λ) of q. If q is homogeneous of total degree d, then the function (k, ξ) → q pol (kξ, k) is a linear combination of functions of the form j(k)k d s(ξ) where j(k) is a periodic function of k and s(ξ) a polynomial function of ξ.

Proposition 1.1. Let P be a rational polyhedron in V with non empty interior. Let q(λ, k) be a quasi-polynomial function on Λ ⊕ Z homogeneous of total degree d. Let q pol (ξ, k) be its polynomial part. Let k ≥ 1. The distribution Θ(P ; q)(k), ϕ = λ∈kP q(λ, k)ϕ(λ/k) admits an asymptotic expansion when k → ∞ of the form

k dim V k d ∞ n=0 1 k n θ n (k), ϕ .
Furthermore, the term k d θ 0 (k), ϕ is given by

k d θ 0 (k), ϕ = P q pol (kξ, k)ϕ(ξ)dξ
where q pol is the polynomial part (with respect to Λ) of q.

Proof. Let q(λ, k) = j(k)k a g λ h(λ) be a quasi-polynomial function of total degree d. Let

Θ g 0 (P )(k), ϕ = λ∈kP ∩Λ g λ ϕ(λ/k). (1.1)
If Θ g 0 (P )(k) admits the asymptotic expansion M(ξ, k), then Θ(P ; q)(k) admits the asymptotic expansion j(k)k a h(kξ)M(ξ, k). So it is sufficient to consider the case where q(λ, k) = g λ and the distribution Θ g 0 (P )(k). We now proceed as in [START_REF]Local asymptotic Euler-Maclaurin expansion for Riemann sums over a semi-rational polyhedron[END_REF] for the case g = 1 and sketch the proof. By decomposing the characteristic function [P ] of the polyhedron P in a signed sum of characteristic functions of tangent cones, via the Brianchon Gram formula, then decomposing furthermore each tangent cone in a signed sum of cones C a of the form Σ a × R a with Σ a is a translate of a unimodular cone and R a a rational space, we are reduced to study this distribution for the product of the dimension 1 following situations.

V = R, Λ = Z and one of the following two cases:

• P = R • P = s + R ≥0 with s a rational number. For example, if P = [a, b] is an interval in R with rational end points a, b, we write [P ] = [a, ∞] + [-∞, b] -[R].
For P = R, and ζ a root of unity, it is easy to see that

Θ ζ (k), ϕ = µ∈Z ζ µ ϕ(µ/k) is equivalent to k R ϕ(ξ)dξ if ζ = 1 or is equivalent to 0 if ζ = 1.
We now study the case where

P = s + R ≥0 . Let Θ ζ (k), ϕ = µ∈Z,µ-ks≥0 ζ µ ϕ(µ/k)
and let us compute its asymptotic expansion. For r ∈ R, the fractional part {r} is defined by {r} ∈ [0, 1[, r -{r} ∈ Z. If µ is an integer greater or equal to ks, then µ = ks + {-ks} + u with u a non negative integer.

We consider first the case where ζ = 1. This case has been treated for example in [START_REF] Cohen | Analytic and modern tools[END_REF] (Theorem 9.2.2), and there is an Euler-Maclaurin formula with remainder which leads to the following asymptotic expansion.

The function z → e xz e z -1 has a simple pole at z = 0. Its Laurent series at z = 0 is

e xz e z -1 = ∞ n=-1 B n+1 (x) z n (n + 1)! where B n (x) (n ≥ 0) are the Bernoulli polynomials.
If s is rational, and n ≥ 0, the function k → B n ({-ks}) is a periodic function of k with period the denominator of s, and µ∈Z,µ≥ks

ϕ( µ k ) ≡ k( ∞ s ϕ(ξ)dξ - ∞ n=1 1 k n B n ({-ks}) n! ϕ (n-1) (s)).
This formula is easily proven by Fourier transform. Indeed, for f (ξ) = e iξz , the series µ≥ks f (µ/k) is u≥0 e isz e i{-ks}z/k e iuz/k . It is convergent if z is in the upper half plane, and the sum is

F (z)(k) = -e isz e i{-ks}z/k e iz/k -1 .
So the Fourier transform of the tempered distribution Θ ζ=1 (k) is the boundary value of the holomorphic function z → F (z)(k) above. We can compute the asymptotic behavior of F (z)(k) easily when k tends to ∞, since {-ks} ≤ 1, and z/k becomes small. Rewriting [P ] as the signed sum of the characteristic functions of the cones C a , we see that the distribution Θ g 0 (P )(k) for g = 1 is equivalent to

k dim V ( ∞ n=0 1 k n θ n (k))
with θ 0 independent of k, and given by θ 0 , ϕ = P ϕ(ξ)dξ. Now consider the case where ζ = 1. Then µ∈Z,µ≥ks 

ζ µ ϕ(µ/k) = u≥0 ζ ks+{-ks} ζ u ϕ(s + {-ks}/k + u/k). The function k → ζ ks+{-ks} is a periodic function of k with period ed if ζ e = 1
e xz ζe z -1 = ∞ n=0 B n+1,ζ (x) z n (n + 1)! .
It is easily seen by Fourier transform that µ∈Z,µ≥ks ζ µ ϕ(µ/k) is equivalent to

-kζ ks+{-ks} ∞ n=1 1 k n B n,ζ ({-ks}) n! ϕ (n-1) (s).
In particular, Θ ζ (k) admits an asymptotic expansion in non negative powers of 1/k and each coefficient of this asymptotic expansion is a periodic distribution supported at s. Rewriting [P ] in terms of the signed cones C a , we see that indeed if g ∈ T is not 1, one of the corresponding ζ in the reduction to a product of one dimensional cones is not 1, and so

Θ g 0 (P )(k) ≡ k dim V -1 ( ∞ n=0 1 k n θ n (k)).
So we obtain our proposition.

Consider now P a rational polyhedron, with possibly empty interior. Let C P be the cone of base P in E = V ⊕ R,

C P := {(tξ, t), t ≥ 0, ξ ∈ P }.
Let q(λ, k) be a quasi-polynomial function on Λ ⊕ Z. We consider again Θ(P ; q)(k), ϕ = λ∈kP ∩Λ q(λ, k)ϕ(λ/k).

Consider the vector space E P generated by the cone C P in E. It is clear that Θ(P ; q) depends only of the restriction r of q to E P ∩(Λ⊕Z). This is a quasi-polynomial function on E P with respect to the lattice E P ∩ (Λ ⊕ Z). We assume that the quasi-polynomial function r is homogeneous of degree d 0 . This degree might be smaller that the total degree of q. Consider the affine space R P generated by P in V . Let

E Z P = E P ∩ (V ⊕ Z). If ξ ∈ R P , k ∈ Z, then (kξ, k) ∈ E Z P .
We will see shortly (Definition 1.3) that we can define a function (ξ, k) → r pol (ξ, k) for (ξ, k) ∈ E Z P , and that the function (ξ, k) → r pol (kξ, k) on R P × Z is a linear combination of functions of the form k d 0 j(k)s(ξ) where j(k) is a periodic function of k and s(ξ) a polynomial function of ξ, for ξ varying on the affine space R P .

We now can state the general formula.

Proposition 1.2. Let P be a rational polyhedron in V . Let q(λ, k) be a quasi-polynomial function on Λ ⊕ Z. Let r be its restriction to E P ∩ (Λ ⊕ Z) and r pol the "polynomial part" of r on E P ∩ (V ⊕ Z).

Assume that the quasi-polynomial function r is homogeneous of degree d 0 . Let k ≥ 1. The distribution

Θ(P ; q)(k), ϕ = λ∈kP q(λ, k)ϕ(λ/k)
admits an asymptotic expansion when k → ∞ of the form

k dim P k d 0 ∞ n=0 1 k n θ n (k), ϕ .
Furthermore, the term k d 0 θ 0 (k), ϕ is given by

k d 0 θ 0 (k), ϕ = P r pol (kξ, k)ϕ(ξ)dξ.
Proof. We will reduce the proof of this proposition to the case treated before of a polyhedron with interior. Let lin(P ) be the linear space parallel to R P , and Λ 0 := Λ ∩ lin(P ). If R P contains a point β ∈ Λ, then E P is isomorphic to lin(P ) ⊕ R with lattice Λ 0 ⊕ Z. Otherwise, we will have to dilate R P . More precisely, let

I P = {k ∈ Z, kR P ∩ Λ = ∅}.
This is an ideal in Z.

Indeed if k 1 ∈ I P , k 2 ∈ I P , α 1 , α 2 ∈ R P are such that k 1 α 1 ∈ Λ, k 2 α 2 ∈ Λ, then α 1,2 = 1 n 1 k 1 +n 2 k 2 (n 1 k 1 α 1 + n 2 k 2 α 2 ) is in R P , and (n 1 k 1 + n 2 k 2 )(α 1,2 ) ∈ Λ.
Thus there exists a smallest k 0 > 0 generating the ideal I P . We see that our distribution Θ(P ; p)(k) is identically equal to 0 if k is not in I P . Let δ I P (k) be the function of k with

δ I P (k) = 0 if k / ∈ I P , 1 if k = uk 0 ∈ I P .
This is a periodic function of k of period k 0 . We choose α ∈ R P such that k 0 α ∈ Λ. We identify E P to lin(P ) ⊕ R by the map T α (ξ 0 , t) = (ξ 0 + tk 0 α, tk 0 ). In this identification, the lattice (Λ ⊕ Z) ∩ E P becomes the lattice Λ 0 ⊕ Z. Consider P 0 = k 0 (Pα), a polyhedron with interior in lin(P ). Let q α (γ, u) = r(γ + uk 0 α, uk 0 ). This is a quasipolynomial function on Λ 0 ⊕ Z. Its total degree is d 0 . We have defined its polynomial part q α pol (ξ, u) for ξ ∈ lin(P ), u ∈ Z.

Definition 1.3. Let (ξ, k) ∈ E Z P . Define: r pol (ξ, k) = 0 if k / ∈ I P , q α pol (ξ -uk 0 α, u) if k = uk 0 ∈ I P .
The function r pol (ξ, k) does not depend of the choice of α. Indeed, if α, β ∈ R P are such that k 0 α, k 0 β ∈ Λ, then q β (γ, u) = q α (γ + uk 0 (βα), u). Then we see that q β pol (ξ, u) = q α pol (ξ + uk 0 (βα), u). Furthermore, the function (k, ξ) → r pol (kξ, k) is of the desired form, a linear combination of functions δ I P (k)j(k)k d 0 s(ξ) with s(ξ) polynomial functions on R P .

If ϕ is a test function on V , we define the test function ϕ 0 on lin(P ) by ϕ 0 (ξ 0 ) = ϕ( ξ 0 k 0 + α). We see that

Θ(P ; q)(uk 0 ), ϕ = Θ(P 0 ; q α )(u), ϕ 0 . (1.2)
Thus we can apply Proposition 1.1. We obtain

Θ(P ; q)(uk 0 ), ϕ ≡ u dim P u d 0 ∞ n=0 1 u n ω n (u), ϕ 0 .
We have

u d 0 ω 0 (u), ϕ 0 = P 0 q α pol (uξ 0 , u)ϕ 0 (ξ 0 )dξ 0 = P 0 q α pol (uξ 0 , u)ϕ( ξ 0 k 0 + α)
When ξ 0 runs in P 0 = k 0 (Pα), ξ = ξ 0 k 0 + α runs over P . Changing variables, we obtain

u d 0 ω 0 (u), ϕ 0 = k d 0 P r pol (kξ, k)ϕ(ξ)dξ.
Thus we obtain our proposition.

Let P be a rational polyhedron in V and q a quasi-polynomial function on Λ ⊕ Z. We do not assume that P has interior in V . We denote by [C P ] the characteristic function of C P . Then the function q(λ, k)

[C P ](λ, k) is zero if (λ, k) is not in C P or equal to q(λ, k) if (λ, k) is in C P .
We denote it by q[C P ]. The space of functions on Λ ⊕ Z we will study is the following space. Definition 1.4. We define the space S(Λ) to be the space of functions on Λ ⊕ Z linearly generated by the functions q[C P ] where P runs over rational polyhedrons in V and q over quasi-polynomial functions on Λ ⊕ Z.

The representation of m as a sum of functions q[C P ] is not unique. For example, consider V = R, P = R,

P + := R ≥0 , P -:= R ≤0 , P 0 := {0}, then [C P ] = [C P + ] + [C P -] -[C P 0 ].
Example 1.5. An important example of functions m ∈ S(Λ) is the following. Assume that we have a closed cone C in V ⊕ R, and a covering C = ∪ α C α by closed cones. Let m be a function on C ∩(Λ⊕Z), and assume that the restriction of m to C α ∩ (Λ ⊕ Z) is given by a quasipolynomial function q α . Then, using exclusion-inclusion formulae, we see that m ∈ S(Λ). Definition 1.6. If m(λ, k) belongs to S(Λ), and g ∈ T is an element of finite order, then define The function m(λ, k) can be non zero, while A(m)(ξ, k) is zero. For example let V = R, P = R and m(λ, k) = (-1) λ . Then Θ(m)(k) is the distribution on R given by T(k) = ∞ λ=-∞ (-1) λ δ λ/k , k ≥ 1 and this is equivalent to 0. However, here is an unicity theorem.

m g (λ, k) = g λ m(λ, k).
Theorem 1.8. Assume that m ∈ S(Λ) is such that A(m g ) = 0 for all g ∈ T of finite order, then m = 0.

Proof. We start by the case of a function m = q[C P ] associated to a single polyhedron P and a quasi-polynomial function q. Assume first that P is with non empty interior P 0 . If q is not identically 0, we write q(λ, k) = g∈T g -λ p g (λ, k) where p g (λ, k) are polynomials in λ. If d is the total degree of q, then all the polynomials p g (λ, k) are of degree less or equal than d. We choose t ∈ T such that p t (λ, k) is of degree d. If we consider the quasi-polynomial q t (λ, k), then its polynomial part is p t (λ, k) and the homogeneous component = 0, a contradiction. So we obtain that q = 0, and m = q[C P ] = 0. Remark that to obtain this conclusion, we may use only test functions ϕ with support contained in the interior P 0 of P .

p top t (λ, k) of degree d is not zero. We write p top t (ξ, k) = ζ,a ζ k k a p ζ,a ( 
Consider now a general polyhedron P and the vector space lin(P ). Let us prove that m(λ, k) = q(λ, k)[C P ](λ, k) is identically 0 if A(m g ) = 0 for any g ∈ T of finite order. Using the notations of the proof of Proposition 1.2, we see that m(λ, k) = 0, if k is not of the form uk 0 . Furthermore, if q α (γ, u) = q(γ +uk 0 α, uk 0 ), it is sufficient to prove that q α = 0. Let P 0 = k 0 (Pα), a polyhedron with interior in V 0 . Consider m 0 = q α [C P 0 ]. We consider T as the character group of Λ, so T surjects on T 0 . Let g ∈ T of finite order and such that g k 0 α = 1, and let g 0 be the restriction of g to Λ 0 . Using Equation 1.1, we then see that Θ(m g )(uk 0 ), ϕ = Θ(m g 0 0 )(u), ϕ 0 . Any g 0 ∈ T 0 of finite order is the restriction to Λ 0 of an element g ∈ T of finite order and such that g k 0 α = 1. So we conclude that the asymptotic expansion, when u tends to ∞, of Θ(m g 0 0 )(u) is equal to 0 for any g 0 ∈ T 0 of finite order. Remark again that we need only to know that Θ(m g )(k), ϕ ≡ 0 for test functions ϕ such that the support S of ϕ is contained in a very small neighborhood of compact subsets of P contained in the relative interior of P 0 .

For any integer ℓ, denote by S ℓ (Λ) the subspace of functions m ∈ S(Λ) generated by the functions q[C P ] with dim P ≤ ℓ.

When ℓ = 0, our polyhedrons are a finite number of rational points f ∈ V , the function m(λ, k) is supported on the union of lines (ud f f, ud f ) if d f is the smallest integer such that d f f is in Λ. Choose a test function ϕ with support near f . Then u → Θ(m)(d f u), ϕ is identical to its asymptotic expansion m(ud f f, ud f )ϕ(f ). Clearly we obtain that m = 0.

If m ∈ S ℓ (Λ) by inclusion-exclusion, we can write

m = P ;dim(P )=ℓ q P [C P ] + H,dim H<ℓ q H [C H ]
and we can assume that the intersections of a polyhedron P occurring in the first sum, with any polyhedron P ′ occurring in the decomposition of m and different from P is of dimension strictly less than ℓ. Consider P in the first sum, so dim(P ) = ℓ. We can thus choose test functions ϕ with support in small neighborhoods of K, with K a compact subset contained in the relative interior of P . Then Θ(m g )(k), ϕ = Θ(q g P [C P ])(k), ϕ . The preceding argument shows that q P [C P ] = 0. So m ∈ S ℓ-1 (Λ). By induction m = 0.

Composition of piecewise quasi-polynomial functions

Let V 0 , V 1 be vector spaces with lattice Λ 0 , Λ 1 . Let C 0,1 be a closed polyhedral rational cone in V 0 ⊕ V 1 (containing the origin). Thus for any µ ∈ Λ 1 , the set of λ ∈ V 0 such that (λ, µ) ∈ C 0,1 is a rational polyhedron P (µ) in V 0 . Let P be a polyhedron in V . We assume that for any µ ∈ Λ 1 , P ∩ P (µ) is compact. Thus, for m = q P [C P ] ∈ S(Λ), and c(λ, µ) a quasi-polynomial function on Λ 0 ⊕ Λ 1 , we can compute Before establishing this result, let us give an example, which occur for example in the problem of computing the multiplicity of a representation χ λ ⊗ χ λ of SU(2) restricted to the maximal torus. 

m c (µ, k) = (λ,µ)∈C 0,1 m(λ, k)c(λ, µ).
2.2. Let V 0 = V 1 = R, and Λ 0 = Λ 1 = Z. Let P := [0, 2],
and let

q(λ, k) = 1 2 (1 -(-1) λ ) if 0 ≤ λ ≤ 2k 0 otherwise. Let C 0,1 = {(x, y) ∈ R 2 ; x ≥ 0, -x ≤ y ≤ x} and c(λ, µ) = 1 2 (1 -(-1) λ-µ ). Let µ ≥ 0. Then m c (µ, k) = 1 4 0≤λ≤2k,λ≥µ (1-(-1) λ )(1-(-1) λ-µ ) = (1 + (-1) µ ) (k/2 -µ/4) . So if P 1 = [0, 2], P 2 := [-2, 0], P 3 := {0}, we obtain m c = q 1 [C P 1 ] + q 2 [C P 2 ] + q 3 [C P 3 ] with      q 1 (µ, k) = (1 + (-1) µ ) (k/2 -µ/4) , q 2 (µ, k) = (1 + (-1) µ ) (k/2 + µ/4) , q 3 (µ, k) = -k.
We now start the proof of Proposition 2.1.

Proof. Write c(λ, µ) as a sum of products of quasi-polynomial functions q j (λ), f j (µ), and q P (λ, k) a sum of products of quasi-polynomial functions m ℓ (k), h ℓ (λ). Then we see that it is thus sufficient to prove that, for q(λ) a quasi-polynomial function of λ, the function

S(q)(µ, k) = λ∈kP ∩P (µ) q(λ) (2.1) 
belongs to S(Λ 1 ). For this, let us recall some results on families of polytopes p(b) ⊂ E defined by linear inequations. See for example [START_REF] Berline | Analytic continuation of a parametric polytope and wall-crossing, Configuration spaces[END_REF], or [START_REF] Szenes | Residue formulae for vector partitions and Euler-MacLaurin sums[END_REF]. Let E be a vector space, and ω i , i = 1, . . . , N be a sequence of linear forms on E. • for each 1 ≤ i ≤ L, there exists a cone C i in E, such that the tangent cone to the polytope p(b) at the vertex s i (b) is the affine cone s i (b) + C i .

• the map b → s i (b) depends of the parameter b, via linear maps R N → E with rational coefficients.

Furthermore -as proven for example in [START_REF] Berline | Analytic continuation of a parametric polytope and wall-crossing, Configuration spaces[END_REF]-the Brianchon-Gram decomposition of p(b) is "continuous" in b when b varies on C α , in a sense discussed in [START_REF] Berline | Analytic continuation of a parametric polytope and wall-crossing, Configuration spaces[END_REF].

Before The Brianchon-Gram decomposition of p(b) for b in the interior of

C 1 is [-b 3 , ∞] + [-∞, b 1 ] -R. If b ∈ C 1 tends to the point (b 1 , b 2 , -b 1 ) in the boundary of C, we see the Brianchon-Gram decomposition tends to that [b 1 , ∞] + [-∞, b 1 ] -R, which is indeed the polytope {b 1 }.
Let q(γ) be a quasi-polynomial function of γ ∈ L. Then, when b varies in C α ∩ Z N , the function

S(q)(b) = γ∈p(b)∩L q(γ)
is given by a quasi-polynomial function of b. This is proven in [START_REF] Szenes | Residue formulae for vector partitions and Euler-MacLaurin sums[END_REF], Theorem 3.8. In this theorem, we sum an exponential polynomial function q(γ) on the lattice points of p(b) and obtain an exponential polynomial function of the parameter b. However, the explicit formula shows that if we sum up a quasi-polynomial function of γ, then we obtain a quasi-polynomial function of b ∈ Z N . Another proof follows from [START_REF] Berline | Analytic continuation of a parametric polytope and wall-crossing, Configuration spaces[END_REF] (Theorem 54) and the continuity of Brianchon-Gram decomposition. In [START_REF] Berline | Analytic continuation of a parametric polytope and wall-crossing, Configuration spaces[END_REF], only the summation of polynomial functions is studied, via a Brianchon-Gram decomposition, but the same proof gives the result for quasi-polynomial functions (it depends only of the fact that the vertices vary via rational linear functions of b). The relations between partition polytopes P Φ (ξ) (setting used in [START_REF] Szenes | Residue formulae for vector partitions and Euler-MacLaurin sums[END_REF], [START_REF] Berline | Analytic continuation of a parametric polytope and wall-crossing, Configuration spaces[END_REF]) and families of polytopes p(b) is standard, and is explained for example in the introduction of [START_REF] Berline | Analytic continuation of a parametric polytope and wall-crossing, Configuration spaces[END_REF].

Consider now our situation with E = V equipped with the lattice Λ. The polytope kP ⊂ V is given by a sequence of inequalities ω i (ξ) ≤ ka i , i = 1, . . . , I, where we can assume ω i ∈ Λ * and a i ∈ Z by eventually multiplying by a large integer the inequality. The polytope P (µ) is given by a sequence of inequalities ω j (ξ) ≤ ν j (µ), j = 1, . . . , J where ν j depends linearly on µ. Similarly we can assume ν

j (µ) ∈ Z. Let (µ, k) → b(µ, k) = [ka 1 , . . . , ka I , ν 1 (µ), . . . , ν J (µ)] a linear map from Λ 1 ⊕ Z to Z N . Our polytope kP ∩ P (µ) is the polytope p(b(k, µ)) and S(q)(µ, k) = λ∈p(b(k,µ))∩Λ q(λ) = S(q)(b(µ, k)).
Consider one of the cones C α . Then b(µ, k) ∈ C α , if and only if (µ, k) belongs to a rational polyhedral cone

C α in V 1 ⊕ R. If Q is a quasi-polynomial function of b, then Q(b(µ, k)
) is a quasi-polynomial function of (µ, k). Thus on each of the cones C α , S(q)(µ, k) is given by a quasi-polynomial function of (µ, k). From Example 1.5, we conclude that S(q) belongs to S(Λ 1 ).

Piecewise quasi-polynomial functions on the Weyl chamber

For applications, we have also to consider the following situation.

Let G be a compact Lie group. Let T be a maximal torus of G, t its Lie algebra, W be the Weyl group. Let Λ ⊂ t * be the weight lattice of T . We choose a system ∆ + ⊂ t * of positive roots, and let ρ ∈ t * be the corresponding element. We consider the positive Weyl chamber t * ≥0 with interior t * >0 . We consider now S ≥0 (Λ) the space of functions generated by the functions q[C P ] with polyhedrons P contained in t * ≥0 . This is a subspace of S(Λ). If t ∈ T is an element of finite order, the function m Let (∂ ρ ϕ)(ξ) = d dǫ 'ϕ(ξ + ǫρ)| ǫ=0 and consider the series of differential operators with constant coefficients e ∂ρ/k = 1 + 1 k ∂ ρ + • • • . We then see that, if A(ξ, k), ϕ is the asymptotic expansion of Θ(k), ϕ , the asymptotic expansion of Θ a (k), ϕ is A(ξ, k), e ∂ρ/k ϕ . Proceeding as in the proof of Theorem 1.8, we see that if Θ a (m t )(k), ϕ ≡ 0 for all t ∈ T of finite order, then m(λ, k) is identically 0 when λ is on the interior of the Weyl chamber.

t (λ, k) = t λ m(λ, k) is again in S ≥0 (Λ).
Consider all faces (closed) σ of the closed Weyl chamber. Define S ℓ,≥0 ⊂ S(Λ) to be the space of m = σ,dim(σ)≤ℓ m σ , where m σ ∈ S ≥0 (Λ) is such that m σ (λ, k) = 0 if λ is not in σ. Let us prove by induction on ℓ that if m ∈ S ℓ,≥0 and Θ t a (m t ) ≡ 0, for all t ∈ T of finite order, then m = 0.

If ℓ = 0, then m(λ, k) = 0 except if λ = 0, and our distribution is m(0, k) w ǫ(w)ϕ(wρ/k). Now, take for example ϕ(ξ) = α>0 (ξ, H α )χ(ξ) where χ is invariant with small compact support and identically equal to 1 near 0. Then Θ a (m), ϕ for k large is equal to c 1 k N m(0, k), where N is the number of positive roots, and c a non zero constant. So we conclude that m(0, k) = 0. Now consider m = dim σ=ℓ m σ + dim f <ℓ m f . Choose m σ in the first sum. Let σ 0 be the relative interior of σ. Let ∆ 0 be the set of roots α, such that H α , σ = 0. Then t * = t * 1 ⊕ t * 0 , where t * 0 = α∈∆ 0 Rα and t * 1 = Rσ. We write ξ = ξ 0 + ξ 1 for ξ ∈ t * , with ξ 0 ∈ t * 0 , ξ 1 ∈ t * 1 . Then ρ = ρ 0 + ρ 1 with ρ 1 ∈ t * 1 and ρ 0 = 1 2 α∈∆ + 0 α. Let W 0 be the subgroup of the Weyl group generated by the reflections s α with α ∈ ∆ 0 . It leaves stable σ. Consider ϕ a test function of the form ϕ 0 (ξ 0 )ϕ 1 (ξ 1 ) with ϕ 0 (ξ 0 ) = χ 0 (ξ 0 ) α∈∆ + 0 ξ 0 , H α with χ 0 (ξ 0 ) a function on t * 0 with small support near 0 and identically 1 near 0, while ϕ 1 (ξ 1 ) is supported on a compact subset contained in σ 0 .

For k large, As in the preceding case, this implies that m σ (λ, k) = 0 for λ ∈ σ 0 . Doing it successively for all σ entering in the first sum, we conclude that m ∈ S ≥0,ℓ-1 (Λ). By induction, we conclude that m = 0.

  and ds is an integer. If ζ = 1, the function z → e xz ζe z -1 is holomorphic at z = 0. Define the polynomials B n,ζ (x) via the Taylor series expansion:

2 . 1 . 7 .

 217 The function m g belongs to S(Λ). If m ∈ S(Λ), and k ≥ 1, we denote by Θ(m)(k) the distribution onV defined by Θ(m)(k), ϕ = λ∈Λ m(λ, k)ϕ(λ/k),if ϕ is a test function on V . The following proposition follows immediately from Proposition 1.Proposition If m(λ, k) ∈ S(Λ), the distribution Θ(m)(k) admits an asymptotic expansion A(m)(ξ, k).

  ξ) where p ζ,a (ξ) is a polynomial in ξ homogeneous of degree da. Testing against a test function ϕ and computing the term in k d+dim V of the asymptotic expansion by Proposition 1.1, we see that ζ,a ζ k k d P p ζ,a (ξ)ϕ(ξ)dξ = 0. This is true for any test function ϕ. So, for any ζ, we obtain a p ζ,a (ξ) = 0. Each of the p ζ,a being homogeneous of degree da, we see that p ζ,a = 0 for any a, ζ. Thus p top t

Proposition 2 . 1 .

 21 The function m c belongs to S(Λ 1 ).

Example

  

  Let b = (b 1 , b 2 , . . . , b N ) be an element of R N . Consider the polyhedron p(b) defined by the inequations p(b) = {v ∈ E; ω i , v ≤ b i , i = 1, . . . , N}. We assume E equipped with a lattice L, and inequations ω i defined by elements of L * . Then if the parameters b i are in Z N , the polytopes p(b) are rational convex polytopes. Assume that there exists b such that p(b) is compact (non empty). Then p(b) is compact (or empty) for any b ∈ R N . Furthermore, there exists a closed cone C in R N such that p(b) is non empty if and only if b ∈ C. There is a decomposition C = ∪ α C α of C in closed polyhedral cones with non empty interiors, where the polytopes p(b), for b ∈ C α , does not change of shape. More precisely: • When b varies in the interior of C α , the polytope p(b) remains with the same number of vertices {s 1 (b), s 2 (b), . . . , s L (b)}.

  continuing, let us give a very simple example, let b 1 , b 2 , b 3 be 3 real parameters and consider p(b 1 , b 2 , b 3 ) = {x ∈ R, x ≤ b 1 , -x ≤ b 2 , -x ≤ b 3 }. So we are studying the intersection of the interval [-b 2 , b 1 ] with the half line [-b 3 , ∞]. Then for p(b) to be non empty, we need that b ∈ C, with C = {b; b 1 + b 2 ≥ 0, b 1 + b 3 ≥ 0}. Consider C = C 1 ∪ C 2 , with C 1 = {b ∈ C; b 2b 3 ≥ 0}, C 2 = {b ∈ C; b 3b 2 ≥ 0}. On C 1 the vertices of p(b) are [-b 3 , b 1 ], while on C 2 the vertices of p(b) are [-b 2 , b 1 ].

Proposition 3 . 1 .

 31 If m ∈ S ≥0 (Λ), we define the following anti invariant distribution with value on a test function ϕ given byΘ a (m)(k), ϕ = 1 |W | λ m(λ, k) w∈W ǫ(w)ϕ(w(λ + ρ)/k) If for every t ∈ T of finite order, we have Θ a (m t ) ≡ 0, then m = 0.Proof. Consider ϕ a test function supported in the interior of the Weyl chamber. Thus, for λ ≥ 0, ϕ(w(λ + ρ)/k) is not zero only if w = 1. So Θ a (m)(k), ϕ = 1 |W | λ≥0 m(λ, k)ϕ((λ + ρ)/k) while Θ(k), ϕ = λ≥0 m(λ, k)ϕ(λ/k).

  m σ (λ, k)ϕ 1 ((λ + ρ 1 )/k).