ASYMPTOTIC DISTRIBUTIONS ASSOCIATED TO
PIECEWISE QUASI-POLYNOMIALS
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1. INTRODUCTION

Let V be a finite dimensional real vector space equipped with a
lattice A. Let P C V be a rational polyhedron. The Euler-Maclaurin
formula ([4], [2]) gives an asymptotic estimate, when k goes to oo, for
the Riemann sum ), pra ©(A/k) of the values of a test function ¢ at
the sample points 1A N P of P, with leading term k™% [, . Here we
consider the slightly more general case of a weighted sum. Let g(\, k)
be a quasi-polynomial function on A @ Z. We consider, for k£ > 1, the
distribution

OP;q)k).0) = Y a\k)e(\/k)

AEEPNA

and we show (Proposition 1.2) that the function k — (O(P;q)(k), ¢)
admits an asymptotic expansion when k tends to co in powers of 1/k
with coefficients periodic functions of k.

We extend this result to an algebra S(A) of piecewise quasi-polynomial
functions on A@Z C V@ R. A function m(\, k) (A € A,k € Z) in
S(A) is supported in an union of polyhedral cones in V@ R. The main
feature of a function m(A, k) in S(A) is that m(\, k) is entirely deter-
mined by its large behavior in k. We associate to m(\, k) a formal
series A(m) of distributions on V' encoding the asymptotic behavior of
m(A, k) when k tends to oo.

The motivating example is the case where M is a projective manifold,
and £ the corresponding ample bundle. If T is a torus acting on M,
then write, for t € T,

dim M

> (FU)MT(t, B (M, O(L)) = Y m(A k)t

i=0 A

where A runs over the lattice A of characters of T. The correspond-
ing asymptotic expansion of the distribution ), m(X, k), is an im-

portant object associated to M involving the Duistermaat-Heckmann
1
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measure and the Todd class of M, see [9] for its determination. The de-
termination of similar asymptotics in the more general case of twisted
Dirac operators is the object of a forthcoming article [7].

Thus let m € S(A), and consider the sequence

O(m)(k) = m(X k)

AEA

of distributions on V' and its asymptotic expansion A(m) when k tends
to co. Let T be the torus with lattice of characters A. If g € T is an
element of finite order, then m9(\, k) := g*m(\, k) is again in S(A).
Our main result (Theorem 1.8) is that the piecewise quasi-polynomial
function m is entirely determined by the collections of asymptotic ex-
pansions A(m?), when g varies over the set of elements of T of finite
order.

We also prove (Proposition 2.1) a functorial property of A(m) under
pushforward.

We use these results to give new proofs of functoriality of the formal
quantization of a symplectic manifold [5] or, more generally, of a spinc
manifold [6].

For these applications, we also consider the case where V' is a Cartan
subalgebra of a compact Lie group, and anti-invariant distributions on
V' of a similar nature.

1.1. Piecewise polynomial functions. Let V' be a real vector space
equipped with a lattice A. Usually, an element of V' is denoted by &,
and an element of A by A. In this article, a cone C' will always be a
closed convex polyhedral cone, and 0 € C.

Let A* be the dual lattice, and let g € T := V*/A*. f G € V*is a
representative of g and A € A, then we denote ¢g* = e*™(GN,

A periodic function m on A is a function such that there exists a
positive integer D (we do not fix D) such that m(Ag + D) = m(\g)
for A, \g € A. The space of such functions is linearly generated by
the functions A +— ¢ for g € T of finite order. By definition, the al-
gebra of quasi-polynomial functions on A is generated by polynomials
and periodic functions on A. If Vj is a rational subspace of V', the
restriction of m to Ay := ANV, is a quasi-polynomial function on Ag.
The space of quasi-polynomial functions is graded: a quasi-polynomial
function homogeneous of degree d is a linear combination of functions
t*h(X) where t € T is of finite order, and h an homogeneous polyno-
mial on V' of degree d. Let g(\) be a quasi-polynomial function on
A. There is a sublattice I' of A of finite index dr such that for any
given v € A, we have ¢(\) = py(A) for any A € v+ I' where p, (&)
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is a (uniquely determined) polynomial function on V. Then define
Gol(§) = é > vensr Py(§), a polynomial function on V. This polyno-
mial function is independent of the choice of the sublattice I'. Then
q(A) — gpoi()) is a linear combination of functions of the form t*h(\)
with A(\) polynomial and ¢ # 1.

Using the Lebesgue measure associated to A, we identify generalized
functions on V' and distributions on V. If # is a generalized function on
V., we may write [, 0(£)e(§)d¢ for its value on the test function ¢. If
R is a rational affine subspace of V', R inherits a canonical translation
invariant measure. If P is a rational polyhedron in V| it generates a
rational affine subspace of V, and |’ p 0 is well defined for ¢ a smooth
function with compact support.

We say that a distribution #(k) depending of an integer k is periodic
in k if there exists a positive integer D such that for any test function
p on V, and ko, k € Z, (0(ko + Dk),p) = (0(ko), ). Then there
exists (unique) distributions . indexed by D-th roots of unity such
that (6(k), ) = ZC,CD:1 ¢*{Oc, ).

Let (©(k))r>1 be a sequence of distributions. We say that ©(k)
admits an asymptotic expansion (with periodic coefficients) if there
exists ng € Z and a sequence of distributions 6,,(k),n > 0, depending
periodically of k, such that for any test function ¢ and any non negative
integer NV, we have

(Ok), 0) = K™Y (b (k). @) + oK™ ).

We write
o0 1
= no N
Ok) =k nEZO kn9n(k)

The distributions 6, (k) are uniquely determined.
Given a sequence 6, (k) of periodic distributions, and ny € Z, we
write formally M (&, k) for the series of distributions on V' defined by

DR S 3 RACICHGES

We can multiply M (&, k) by quasi-polynomial functions ¢(k) of k and
smooth functions h(§) of £ and obtain the formal series q(k)h(&)M (&, k)
of the same form with ny changed to ny + degree(q).

Let E = V @ R, and we consider the lattice A = A ® Z in E.
An element of A is written as (A, k) with A\ € A and k € Z. We

consider quasi-polynomial functions g(\, k) on A. As before, this space
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is graded. We call the degree of a quasi-polynomial function on A & 7Z
the total degree. A quasi-polynomial function g(\, k) is of total degree
d if it is a linear combination of functions (), k) — j(k)t*k®h()\) where
j(k) is a periodic function of k, t € T of finite order, a a non negative
integer, and h an homogeneous polynomial on V' of degree b, with b
such that a + b = d.

Let (A, k) be a quasi-polynomial function on A @ Z. We construct
QGot(§, k) on V x Z, and depending polynomially on £ as before. We
choose a sublattice of finite index dr in A and functions p. (&, k) de-
pending polynomially on ¢ € V' and quasi-polynomial in k such that
Q()‘> k) = p’y()" k) if A € Y + I Then onl(€> k) = é Z—yeA/Fp'y(€> k)
We say that q,. (€, k) is the polynomial part (relative to A) of ¢. If ¢
is homogeneous of total degree d, then the function (k,&) — o (K&, k)
is a linear combination of functions of the form j(k)k%s(¢) where j(k)
is a periodic function of k and s(£) a polynomial function of .

Proposition 1.1. Let P be a rational polyhedron in V with non empty
interior. Let q(\, k) be a quasi-polynomial function on A & Z homoge-
neous of total degree d. Let q,0(§, k) be its polynomial part. Let k > 1.
The distribution

(O(P:q)(k), ) = D (A k)p(A/k)

admits an asymptotic expansion when k — oo of the form

o0

im 1
RIS k), ).

n=0

Furthermore, the term k%(0,(k), o) is given by

K6(k), ) = [ a6 D01
P
where Gy 15 the polynomial part (with respect to A) of q.

Proof. Let q(\, k) = j(k)k®g*h()\) be a quasi-polynomial function of
total degree d. Let

©PE) ) = S Pe(h). (1.1)

AEkPNA
If ©f(P)(k) admits the asymptotic expansion M (&, k), then O(P; q)(k)
admits the asymptotic expansion j(k)k®h(k&§)M (€, k). So it is sufficient
to consider the case where q(\, k) = g* and the distribution ©3(P)(k).
We now proceed as in [2] for the case g = 1 and sketch the proof.
By decomposing the characteristic function [P] of the polyhedron P
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in a signed sum of characteristic functions of tangent cones, via the
Brianchon Gram formula, then decomposing furthermore each tangent
cone in a signed sum of cones C, of the form ¥, x R, with ¥, is a
translate of a unimodular cone and R, a rational space, we are reduced
to study this distribution for the product of the dimension 1 following
situations.
V =R, A = 7Z and one of the following two cases:
e P=R
e P = s+ R>y with s a rational number.
For example, if P = [a, b] is an interval in R with rational end points
a,b, we write [P] = [a, o0] + [—00, b] — [R].
For P =R, and ( a root of unity, it is easy to see that

(O%(k),0) = ¢Mou/k)
WEZ
is equivalent to k [, ¢(&)d€ if { =1 or is equivalent to 0 if ¢ # 1.
We now study the case where P = s + R>. Let

©He) = S Celulk)
MEZL,pu—ks>0
and let us compute its asymptotic expansion.

For r € R, the fractional part {r} is defined by {r} € [0,1[,r—{r} €
Z. If u is an integer greater or equal to ks, then yu = ks + {—ks} + u
with u a non negative integer.

We consider first the case where ( = 1. This case has been treated
for example in [3] (Theorem 9.2.2), and there is an Euler-Maclaurin
formula with remainder which leads to the following asymptotic ex-

pansion.
The function z — eix_zl has a simple pole at z = 0. Its Laurent series
at z =01s
o7 0 n
= Byii(r)——
et —1 n;1 +( )(n—l— 1)!

where B,,(z) (n > 0) are the Bernoulli polynomials.
If s is rational, and n > 0, the function k& — B, ({—ks}) is a periodic
function of k with period the denominator of s, and

R R e )]

This formula is easily proven by Fourier transform. Indeed, for f(§) =
%%, theseries Y o f(i/k)is 32 €7/ 7FoI2/keuz/F Tt is convergent
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if z is in the upper half plane, and the sum is
ias ei{—ks}z/k
So the Fourier transform of the tempered distribution ©%=!(k) is the
boundary value of the holomorphic function z — F(z)(k) above. We
can compute the asymptotic behavior of F(z)(k) easily when k tends
to oo, since {—ks} < 1, and z/k becomes small.
Rewriting [P] as the signed sum of the characteristic functions of the
cones C,, we see that the distribution ©F(P)(k) for g = 1 is equivalent

to
V() ol

with 6y independent of k, and given by (0, ¢) = | po(€
Now consider the case Where ¢ # 1. Then

D CPolufk) =D TR (s + { s}k + u/k).

HEZ,u>ks u>0

The function k — ¢(FH{=Fs} is a periodic function of k with period

ed if (¢ = 1 and ds is an integer. If { # 1, the function z — C — is
holomorphic at z = 0. Define the polynomials B, ((z) via the Taylor
series expansion:

oo

Tz n

e

z
o1 > Bn+17<(9«“)m~

n=0

It is easily seen by Fourier transform that > ;.. C*o(u/k) is equiv-
alent to

k<k5+{ ks}z 1 BnC{ ]{78}) (S)

In particular, ©¢(k) admlts an asymptotic expansion in non negative
powers of 1/k and each coefficient of this asymptotic expansion is a
periodic distribution supported at s.

Rewriting [P] in terms of the signed cones C,, we see that indeed if
g € T is not 1, one of the corresponding ¢ in the reduction to a product
of one dimensional cones is not 1, and so

OYP)(K) = K™ V(S" o 0,(k))

So we obtain our proposition.
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Consider now P a rational polyhedron, with possibly empty interior.
Let Cp be the cone of base P in E =V @& R,

Cp = {(t6,1),t > 0,€ € PY.

Let ¢(\, k) be a quasi-polynomial function on A @ Z. We consider

again
©OP;q)(k),0) = > a\k)p(\/k).
AELPNA

Consider the vector space Ep generated by the cone Cp in E. It is
clear that ©(P; q) depends only of the restriction r of ¢ to EpN(ADZ).
This is a quasi-polynomial function on Ep with respect to the lattice
Ep N (A®Z). We assume that the quasi-polynomial function r is
homogeneous of degree dy. This degree might be smaller that the total
degree of q. Consider the affine space Rp generated by P in V. Let
EFL=EpN(V®Z). If £ € Rp,k € Z, then (k&, k) € E%. We will see
shortly (Definition 1.3) that we can define a function (&, k) — rpu(&, k)
for (¢&,k) € E%, and that the function (£, k) — 7y (k€ k) on Rp X Z
is a linear combination of functions of the form k%3 (k)s(&) where j(k)
is a periodic function of k& and s(§) a polynomial function of &, for £
varying on the affine space Rp.

We now can state the general formula.

Proposition 1.2. Let P be a rational polyhedron in V. Let q(\, k)
be a quasi-polynomial function on A @& Z. Let r be its restriction to
EpN (A Z) and rpy the "polynomial part” of r on Ep N (V & Z).
Assume that the quasi-polynomial function r is homogeneous of degree
dy. Let k > 1. The distribution

OP;q)(k),0) = > al\ k)e(A/k)
AekP
admits an asymptotic expansion when k — oo of the form

. =1
dim P 1.do -
RS (0, (), )

n=0

Furthermore, the term k% (0y(k), ) is given by
0001, = [ €, DY)

P

Proof. We will reduce the proof of this proposition to the case treated
before of a polyhedron with interior. Let lin(P) be the linear space
parallel to Rp, and Ag := A Nlin(P). If Rp contains a point 5 € A,
then Ep is isomorphic to lin(P) @R with lattice Ag @ Z. Otherwise, we
will have to dilate Rp. More precisely, let Ip = {k € Z,kRp N A # (}.
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This is an ideal in Z. Indeed if ky € Ip,ky € Ip, aq, 9 € Rp are such
that ko € A, kocry € A, then Q1o = m(nlk‘lal + ngk‘gag) is in
Rp, and (niky + noks)(a12) € A. Thus there exists a smallest kg > 0
generating the ideal Ip. We see that our distribution ©(P;p)(k) is
identically equal to 0 if k is not in Ip. Let &7, (k) be the function of &
with

0 if k ¢ Ip,
5. (k) =
1» (k) {1 if k = uko € Ip.

This is a periodic function of k of period ky. We choose o € Rp such
that koo € A. We identify Ep to lin(P) @ R by the map T,(&,t) =
(& + thkoa, tko). In this identification, the lattice (A & Z) N Ep becomes
the lattice Ag @ Z. Consider Py = ko(P — «), a polyhedron with
interior in lin(P). Let ¢*(y,u) = r(y + ukoa, uky). This is a quasi-
polynomial function on Ay @ Z. Its total degree is dy. We have defined
its polynomial part g;,, (&, u) for § € lin(P), u € Z.

Definition 1.3. Let (£, k) € E4. Define:

0 itk ¢ Ip,
Gy (§ — ukoar, u) if k = uko € Ip.

Tpol(ga k) = {

The function 7,5 (&, k) does not depend of the choice of c. Indeed,
if a,8 € Rp are such that koo, kB € A, then ¢?(v,u) = ¢*(v +
uko(8 — ), u). Then we see that qﬁol(f,u) = Qoo (& + uko(B — ), u).
Furthermore, the function (k, &) — 1,0 (K&, k) is of the desired form, a
linear combination of functions 67, (k)j(k)k%s(¢) with s(€) polynomial
functions on Rp.

If ¢ is a test function on V', we define the test function ¢ on lin(P)
by ©o(&o) = go(i—g + a). We see that

(O(P; q)(uko), @) = (O(Fo: ¢*)(u), po). (1.2)
Thus we can apply Proposition 1.1. We obtain

o

(O(P; 4)(uho), ) = w™ Pu 3™ L {u (u) ).

We have
i (wo(11), o) = / 02 (o, w)po(E0) o = /

i (00, w2 1 )
Py Py 0
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When &, runs in Py = ko(P — «), £ = i—g + « runs over P. Changing
variables, we obtain

u (o), o) = K / roat(KE. K)ol €)dE.

P
Thus we obtain our proposition. O

Let P be a rational polyhedron in V and ¢ a quasi-polynomial func-
tion on A @ Z. We do not assume that P has interior in V. We
denote by [Cp] the characteristic function of Cp. Then the function
q(A\, k)[Cp](A, k) is zero if (A, k) is not in Cp or equal to g(A, k) if (A, k)
is in C'p. We denote it by ¢[Cp]. The space of functions on A & Z we
will study is the following space.

Definition 1.4. We define the space S(A) to be the space of functions
on A @ Z linearly generated by the functions q[Cp] where P runs over

rational polyhedrons in V' and q over quasi-polynomial functions on
ADZ.

The representation of m as a sum of functions ¢[Cp| is not unique.
For example, consider V = R, P = R, Py := R, P 1= R<, P =
{0}, then [Cp] = [Cp, ] + [Cp_] — [CR)].

Example 1.5. An important example of functions m € S(A) is the
following. Assume that we have a closed cone C' in V & R, and a
covering C' = U,Cy, by closed cones. Let m be a function on CN(ABZ),
and assume that the restriction of m to C, N (A @ Z) is given by a
quasipolynomial function q.. Then, using exclusion-inclusion formulae,
we see that m € S(A).

Definition 1.6. If m(\, k) belongs to S(A), and g € T is an element
of finite order, then define

mI(\ k) = g m(\ k).

The function m? belongs to S(A).
If m € S(A), and k > 1, we denote by O(m)(k) the distribution on
V' defined by
(©(m)(k), ) =Y m\ k)p(A\/k),
AEA
if ¢ is a test function on V. The following proposition follows immedi-
ately from Proposition 1.2.

Proposition 1.7. If m(\, k) € S(A), the distribution ©(m)(k) admits
an asymptotic expansion A(m)(&, k).
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The function m(\, k) can be non zero, while A(m)(&, k) is zero. For
example let V =R, P = R and m(\, k) = (—1)*. Then ©(m)(k) is the
distribution on R given by T(k) = >5 _ (—=1)*dy/k, k > 1 and this is
equivalent to 0. However, here is an unicity theorem.

Theorem 1.8. Assume that m € S(A) is such that A(m?) =0 for all
g € T of finite order, then m = 0.

Proof. We start by the case of a function m = ¢[Cp| associated to a
single polyhedron P and a quasi-polynomial function ¢. Assume first
that P is with non empty interior P°. If ¢ is not identically 0, we write
g\ k) = D er g py(\, k) where py(\, k) are polynomials in \. If d
is the total degree of ¢, then all the polynomials p, (A, k) are of degree
less or equal than d. We choose t € T such that p;(\, k) is of degree
d. If we consider the quasi-polynomial ¢‘(), k), then its polynomial
part is py(\, k) and the homogeneous component pi’(\, k) of degree
d is not zero. We write pi” (&, k) = > Gk pe a(€) Where pea(€) is
a polynomial in & homogeneous of degree d — a. Testing against a
test function ¢ and computing the term in k*4mY of the asymptotic
expansion by Proposition 1.1, we see that . , PR [ pe,a(€)p(€)dE =
0. This is true for any test function . So, for any (, we obtain
Y uPcal§) = 0. Each of the p., being homogeneous of degree d — a,
we see that p., = 0 for any a,¢. Thus p;”” = 0, a contradiction. So
we obtain that ¢ = 0, and m = ¢[Cp] = 0. Remark that to obtain this
conclusion, we may use only test functions ¢ with support contained
in the interior P° of P.

Consider now a general polyhedron P and the vector space lin(P).
Let us prove that m(\, k) = q(X, k)[Cp|(A, k) is identically 0 if A(m?) =
0 for any g € T of finite order. Using the notations of the proof of
Proposition 1.2, we see that m(\, k) = 0, if k£ is not of the form uky.
Furthermore, if ¢* (v, u) = q(y+ukoa, uky), it is sufficient to prove that
q“ = 0. Let Py = ko(P — ), a polyhedron with interior in V. Consider
mo = ¢*[Cp,]. We consider T" as the character group of A, so T" surjects
on Ty. Let g € T of finite order and such that ¢*® = 1, and let gy be
the restriction of g to Ag. Using Equation 1.1, we then see that

(©(m?)(uko), ) = (B(mg”) (), ¢o)-

Any gy € Ty of finite order is the restriction to Ay of an element
g € T of finite order and such that g*® = 1. So we conclude that the
asymptotic expansion, when u tends to oo, of ©(mJ’)(u) is equal to
0 for any gy € Ty of finite order. Remark again that we need only to
know that (©(m?)(k), ¢) = 0 for test functions ¢ such that the support
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S of ¢ is contained in a very small neighborhood of compact subsets
of P contained in the relative interior of P°.

For any integer ¢, denote by S;(A) the subspace of functions m €
S(A) generated by the functions ¢[Cp| with dim P < /.

When ¢ = 0, our polyhedrons are a finite number of rational points
f €V, the function m(X, k) is supported on the union of lines (ud; f, udy)
if d is the smallest integer such that d;f is in A. Choose a test func-
tion ¢ with support near f. Then u — (©(m)(dsu), ) is identical
to its asymptotic expansion m(udyf, uds)(f). Clearly we obtain that
m = 0.

If m € S(A) by inclusion-exclusion, we can write

m = Z qr|Cp] + Z qu[CH]

P;dim(P)=¢ H.,dim H</

and we can assume that the intersections of a polyhedron P occurring
in the first sum, with any polyhedron P’ occurring in the decomposition
of m and different from P is of dimension strictly less than ¢. Consider
P in the first sum, so dim(P) = ¢. We can thus choose test functions
© with support in small neighborhoods of K, with K a compact subset
contained in the relative interior of P. Then

(O(m?)(k), @) = (O(gp[CP])(F), ¥).

The preceding argument shows that ¢p[Cp] = 0. So m € Sy_1(A). By
induction m = 0. O

2. COMPOSITION OF PIECEWISE QUASI-POLYNOMIAL FUNCTIONS

Let Vp, Vi be vector spaces with lattice Ag, Aq.

Let Cp1 be a closed polyhedral rational cone in Vj @ V) (containing
the origin). Thus for any u € Aq, the set of A € Vi such that (A, u) €
Co,1 is a rational polyhedron P(u) in Vp. Let P be a polyhedron in
V. We assume that for any u € Ay, PN P(p) is compact. Thus,
for m = ¢p[Cp] € S(A), and ¢(A, 1) a quasi-polynomial function on
Ao & Ay, we can compute

me(pk) = Y m\k)e(A, ),
(Am)eCo,1
Proposition 2.1. The function m. belongs to S(Ay).

Before establishing this result, let us give an example, which occur
for example in the problem of computing the multiplicity of a repre-
sentation x* ® x* of SU(2) restricted to the maximal torus.
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Example 2.2. Let Vj =V} =R, and Ay = Ay = 7Z. Let P := [0, 2],
and let

1— (=1 if 0 <\ <2k
qu,k):{( = sas2
0 otherwise.

Coq ={(z,y) eR%2>0,—z <y <z}

N[

Let

and ]
o p) = 51— (~1)0).
Let > 0. Then

me(p, k) = i Y A=CEDHA-DT) = (4 (1)) (k)2 = i/4).

0<A<2kA>p
So if P, =[0,2], P, :=[-2,0], P; := {0}, we obtain

me = q[Cp] + ¢2[Cp,] + ¢3[Cp)]
with

qi(p, k) = (14 (=1)") (k/2 = p/4),
Ga(p k) = (L4 (=1)") (k/2 + p/4),
q3(:u7 k) = —k.

We now start the proof of Proposition 2.1.

Proof. Write c¢(\, p) as a sum of products of quasi-polynomial functions
¢;(N), fj(p), and gp(A, k) a sum of products of quasi-polynomial func-
tions my(k), he(N\). Then we see that it is thus sufficient to prove that,
for q(\) a quasi-polynomial function of A, the function

S(@)(wk) =Y qN) (2.1)

AEEPNP (1)

belongs to S(A;). For this, let us recall some results on families of
polytopes p(b) C F defined by linear inequations. See for example [1],
or [8].

Let E be a vector space, and w;,7 = 1,..., N be a sequence of linear
forms on E. Let b = (by,by,...,by) be an element of RY. Consider
the polyhedron p(b) defined by the inequations

We assume E equipped with a lattice L, and inequations w; defined
by elements of L*. Then if the parameters b; are in Z”, the polytopes
p(b) are rational convex polytopes.
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Assume that there exists b such that p(b) is compact (non empty).
Then p(b) is compact (or empty) for any b € RY. Furthermore, there
exists a closed cone C in RY such that p(b) is non empty if and only
if b € C. There is a decomposition C = U,C, of C in closed polyhedral
cones with non empty interiors, where the polytopes p(b), for b € C,,
does not change of shape. More precisely:

e When b varies in the interior of C,, the polytope p(b) remains with
the same number of vertices {s1(b), sa(b),...,s.(b)}.

e for each 1 < ¢ < L, there exists a cone C; in E, such that the
tangent cone to the polytope p(b) at the vertex s;(b) is the affine cone

e the map b — s;(b) depends of the parameter b, via linear maps
RY — E with rational coefficients.

Furthermore -as proven for example in [1]- the Brianchon-Gram de-
composition of p(b) is "continuous” in b when b varies on C,, in a
sense discussed in [1].

Before continuing, let us give a very simple example, let by, by, b3
be 3 real parameters and consider p(by, by, b03) = {x € R,z < by, —x <
by, —x < bs}. So we are studying the intersection of the interval [—bg, b;]
with the half line [—bs, 00]. Then for p(b) to be non empty, we need
that b € C, with

C: {b;bl‘l'bg 2 0,b1+b3 20}

Consider C = C; U Cy, with

Ci ={becC;b, — b3 > 0},
Cy :{bEC;bg—bg 20}

On C; the vertices of p(b) are [—bs, by], while on Cy the vertices of
p(b) are [—by, by].

The Brianchon-Gram decomposition of p(b) for b in the interior of
Cy is [—bs,00] + [—00,b1] = R. If b € C; tends to the point (by, by, —by)
in the boundary of C, we see the Brianchon-Gram decomposition tends
to that [by, 00| + [—00, b1] — R, which is indeed the polytope {b;}.

Let g(vy) be a quasi-polynomial function of v € L. Then, when b
varies in C, N ZY, the function

S(@d) = > )

~vep(b)NL

is given by a quasi-polynomial function of b. This is proven in [8], The-
orem 3.8. In this theorem, we sum an exponential polynomial function
q(y) on the lattice points of p(b) and obtain an exponential polyno-
mial function of the parameter b. However, the explicit formula shows
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that if we sum up a quasi-polynomial function of v, then we obtain a
quasi-polynomial function of b € Z¥. Another proof follows from [1]
(Theorem 54) and the continuity of Brianchon-Gram decomposition.
In [1], only the summation of polynomial functions is studied, via a
Brianchon-Gram decomposition, but the same proof gives the result
for quasi-polynomial functions (it depends only of the fact that the
vertices vary via rational linear functions of b). The relations between
partition polytopes Pp(&) (setting used in [8], [1]) and families of poly-
topes p(b) is standard, and is explained for example in the introduction
of [1].

Consider now our situation with £ =V equipped with the lattice A.
The polytope kP C V is given by a sequence of inequalities w;(§) < ka;,
1 =1,...,1, where we can assume w; € A* and a; € Z by eventually
multiplying by a large integer the inequality. The polytope P(u) is
given by a sequence of inequalities w;(¢) < v;(p), j = 1,...,J where
v; depends linearly on . Similarly we can assume v;(u) € Z. Let

(1K) v (. ) = [k, .. kar,on(p), .., vs()]
a linear map from A; @ Z to Z". Our polytope kP N P(u) is the
polytope p(b(k, 1)) and

S@wk)= D> e =S@)b(u k).

Aep(b(k,u))NA

Consider one of the cones C,. Then b(u,k) € C,, if and only if
(u, k) belongs to a rational polyhedral cone C, in V; @ R. If @ is a
quasi-polynomial function of b, then Q(b(y, k)) is a quasi-polynomial
function of (u, k). Thus on each of the cones C,, S(q)(u, k) is given by
a quasi-polynomial function of (y, k). From Example 1.5, we conclude
that S(q) belongs to S(Ay). O

3. PIECEWISE QUASI-POLYNOMIAL FUNCTIONS ON THE WEYL
CHAMBER

For applications, we have also to consider the following situation.

Let G be a compact Lie group. Let T be a maximal torus of G, t its
Lie algebra, W be the Weyl group. Let A C t* be the weight lattice
of T. We choose a system AT C t* of positive roots, and let p € t*
be the corresponding element. We consider the positive Weyl chamber
tL, with interior t%.
~ We consider now Ss(A) the space of functions generated by the
functions ¢[Cp| with polyhedrons P contained in t%,. This is a subspace
of S(A). If t € T is an element of finite order, the function m*(\, k) =
t*m(\, k) is again in Sso(A).
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If m € S50(A), we define the following anti invariant distribution
with value on a test function ¢ given by

(Ou(m)(k), o) = ﬁ S mOuk) 3 ew)pwn + p)/k)
A weW

Proposition 3.1. If for everyt € T of finite order, we have ©,(m') =
0, then m = 0.

Proof. Consider ¢ a test function supported in the interior of the Weyl
chamber. Thus, for A > 0, (w(A+ p)/k) is not zero only if w = 1. So

(©u(m)(k), 0) = ﬁ S (A k(A + p)/K)

A>0
while
(O(k), ) = Y m\ k)p(\/k).
A>0
Let (0,0)(€) = L4o(£ + €p)|e—o and consider the series of differential
operators with constant coefficients e%/% = 1 + %8,, + ---. We then

see that, if (A(, k), p) is the asymptotic expansion of (O(k), ), the
asymptotic expansion of (0,(k), ) is (A(&, k), e??/*p). Proceeding as
in the proof of Theorem 1.8, we see that if (©,(m')(k),p) = 0 for all
t € T of finite order, then m(A, k) is identically 0 when A is on the
interior of the Weyl chamber.

Consider all faces (closed) o of the closed Weyl chamber. Define
Se>0 C S(A) to be the space of m = Y7y <) Mo, Where m, €
S>0(A) is such that my(A, k) = 0 if A is not in 0. Let us prove by
induction on ¢ that if m € S;>¢ and ©%(m') =0, for all ¢ € T of finite
order, then m = 0.

If ¢ =0, then m(\, k) = 0 except if A = 0, and our distribution is

m(0,k) Y e(w)p(wp/k).
Now, take for example ©(§) = [],-0(&, Ha)x(§) where x is invariant
with small compact support and identically equal to 1 near 0. Then
(©4(m), ¢) for k large is equal to cym(0, k), where N is the number
of positive roots, and ¢ a non zero constant. So we conclude that
m(0, k) = 0.

Now consider m = > .~ _,m, + Zdimfd my¢. Choose m, in the
first sum. Let 0" be the relative interior of o. Let Ay be the set of roots
a, such that (H,, o) = 0. Then t* = ¢ ® t§, where t§ = > 0 R and
t] = Ro. We write { = & + & for € € t*, with & € ¢,& € t]. Then
p = po—+p1 with p; € t] and py = % ZQGAJ a. Let Wy be the subgroup
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of the Weyl group generated by the reflections s, with a € Aq. It
leaves stable o.

Consider ¢ a test function of the form ¢g(&o)p1(&1) with ¢o(&y) =
Xo(&o) HaeAg (&0, Hy) with xo(&o) a function on tj with small support

near 0 and identically 1 near 0, while ¢ (&) is supported on a compact

subset contained in ¢©.

For k large,

(©09) = Tpme0k) 3 (i -+ o)),

So

(040) = corys S mo0 KA+ pi)/h).

A€o

As in the preceding case, this implies that m,(\, k) = 0 for A € o°.
Doing it successively for all o entering in the first sum, we conclude
that m € S>o,—1(A). By induction, we conclude that m = 0. O
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