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Abstract. In this paper we report, clarify and broaden various recent efforts to complement the chemistry-centered models of
force generation in (skeletal) muscles by mechanics-centered models. The physical mechanisms of interest can be grouped into
two classes: passive and active. Themain passive effect is the fast force recovery which does not require the detachment of myosin
cross-bridges from actin filaments and can operate without a specialized supply of metabolic fuel (ATP). In mechanical terms,
it can be viewed as a collective folding-unfolding phenomenon in the system of interacting bi-stable units and modeled by near
equilibriumLangevin dynamics. The parallel active force generationmechanism operates at slow time scales, requires detachment
and is crucially dependent on ATP hydrolysis. The underlying mechanical processes take place far from equilibrium and are
represented by stochastic models with broken time reversal symmetry implying non-potentiality, correlated noise or multiple
reservoirs. The modeling approaches reviewed in this paper deal with both active and passive processes and support from the
mechanical perspective the biological point of view that phenomena involved in slow (active) and fast (passive) force generation
are tightly intertwined. They reveal, however, that biochemical studies in solution, macroscopic physiological measurements and
structural analysis do not provide by themselves all the necessary insights into the functioning of the organized contractile system.
In particular, the reviewed body of work emphasizes the important role of long-range interactions and criticality in securing the
targeted mechanical response in the physiological regime of isometric contractions. The importance of the purely mechanical
micro-scale modeling is accentuated at the end of the paper where we address the puzzling issue of the stability of muscle response
on the so called “ descending limb” of the isometric tetanus.
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1. Introduction

In recent years considerable attention has been focused on the
study of the physical behavior of cells and tissues. Outside their
direct physiological functionality, these biological systems are
viewed as prototypes of new artificially produced materials
that can actively generate stresses, adjust their rheology and
accommodate loading through remodeling and growth. The
intriguing mechanical properties of these systems can be
linked to hierarchical structures which bridge a broad range
of scales, and to expressly nonlocal interactions which make
these systems reminiscent more of structures and mechanisms
than of a homogeneous matter. In contrast with traditional
materials, where microscopic dynamics can be enslaved
through homogenization and averaging, diverse scales in cells
and tissues appear to be linked by complex energy cascades. To
complicate matters further, in addition to external loading, cells
and tissues are driven internally by endogenous mechanisms
supplying energy and maintaining non-equilibrium. The
multifaceted nature of the ensuingmechanical responsesmakes
the task of constitutive modeling of such distributed systems
rather challenging [1–15].

While general principles of active bio-mechanical response
of cells and tissues still remain to be found, physical
understanding of some specific sub-systems and regimes has
been considerably improved in recent years. An example of a
class of distributed biological systems whose functioning has
been rather thoroughly characterized on both physiological and
bio-chemical levels is provided by skeletal (striated) muscles
[16–24]. The narrow functionality of skeletal muscles is
behind their relatively simple, almost crystalline geometry
which makes them a natural first choice for systematic physical
modeling. The main challenge in the representation of the
underlying microscopic machinery is to strike the right balance
between chemistry and mechanics.

In this review, we address only a very small portion of the
huge literature on force generation in muscles and mostly focus
on recent efforts to complement the chemistry-centered models
by the mechanics-centered models. Other perspectives on
muscle contraction can be found in a number of comprehensive
reviews [25–38].

The physical mechanisms of interest for our study can be
grouped into two classes: passive and active. The passive
phenomenon is the fast force recovery which does not require
the detachment of myosin cross-bridges from actin filaments
and can operate without a specialized supply of ATP. It can
be viewed as a collective folding-unfolding in the system of
interacting bi-stable units and modeled by near equilibrium
Langevin dynamics. The active force generation mechanism
operates at much slower time scales, requires detachment
from actin and is fueled by continuous ATP hydrolysis. The
underlying processes take place far from equilibrium and are
represented by stochastic models with broken time reversal
symmetry implying non-potentiality, correlated noise, multiple
reservoirs and other non-equilibrium mechanisms.

The physical modeling approaches reviewed in this paper
support the biochemical perspective that phenomena involved
in slow (active) and fast (passive) force generation are tightly
intertwined. They reveal, however, that biochemical studies
of the isolated proteins in solution, macroscopic physiological
measurements of muscle fiber energetics and structural studies

using electron microscopy, X-ray diffraction and spectroscopic
methods do not provide by themselves all the necessary
insights into the functioning of the organized contractile
system. The importance of the microscopic physical modeling
that goes beyond chemical kinetics is accentuated by our
discussion of the mechanical stability of muscle response on
the descending limb of the isometric tetanus (segment of the
tension-elongation curve with negative stiffness) [17–19; 39].

An important general theme of this review is the cooper-
ative mechanical response of muscle machinery which defies
thermal fluctuations. To generate substantial force, individual
contractile elements must act collectively and the mechanism
of synchronization has been actively debated in recent years.
We show that the factor responsible for the cooperativity is the
inherent non-locality of the system ensured by a network of
cross-linked elastic backbones. The cooperation is amplified
because of the possibility to actively tune the internal stiff-
ness of the system towards a critical state where correlation
length diverges. The reviewed body of work clarifies the role
of non-locality and criticality in securing the targeted mechan-
ical response of muscle type systems in various physiological
regimes. It also reveals that the “unusual” features of muscle
mechanics, that one can associate with the idea of allosteric
regulation, are generic in biological systems [40–43] and sev-
eral non-muscle examples of such behavior are discussed in the
concluding section of the paper.

1.1. Background

We start with recalling few minimally necessary anatomical
and biochemical facts about muscle contraction.

Skeletal muscles are composed of bundles of non ramified
parallel fibers. Each fiber is a multi-nuclei cell, from 100 µm
to 30 cm long and 10 µm to 100 µm wide. It spans the whole
length of the tissue. The cytoplasm of eachmuscle cell contains
hundreds of 2 µm wide myofibrils immersed in a network of
transverse tubules whose role is to deliver the molecules that
fuel the contraction. When activated by the central nervous
system the fibers apply tensile stress to the constraints. The
main goal of muscle mechanics is to understand the working
of the force generating mechanism which operates at sub-
myofibril scale.

The salient feature of the skeletal muscle myofibrils is
the presence of striations, a succession of dark an light bands
visible under transmission electron microscope [16]. The 2 µm
regions between two Z-disks, identified as half-sarcomeres
in Fig. 1, are the main contractile units. As we see in this
figure, each half-sarcomere contains smaller structures called
myofilaments.

The thin filaments, which are 8 nm wide and 1 µm long,
are composed of polymerized actin monomers. Their helix
structure has a periodicity of about 38 nm, with each monomer
having a 5 nm diameter. The thick filaments contain about
300 myosin II molecules per half-sarcomere. Each myosin
II is a complex protein with 2 globular heads whose tails are
assembled in a helix [44]. The tails of different myosins
are packed together and constitute the backbone of the thick
filament fromwhich the heads, known as cross-bridges, project
outward toward the surrounding actin filaments. The cross-
bridges are organized in a 3 stranded helix with a periodicity
of 43.5 nm and the axial distance between two adjacent double
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M line half-sarcomere cross-bridgeZ disk

myosin actintitin

Figure 1. Schematic representation of a segment of myofibril
showing the elementary force generating unit: the half-sarcomere. Z-
disks are passive cross-linkers responsible for the crystalline structure
of the muscle actin network; M-lines bundle myosin molecules into
global active cross-linkers. Titin proteins connect the Z-disks inside
each sarcomere.

heads of about 14.5 nm [45].
Another important sarcomere protein, whose role in muscle

contraction remains ambigous, is titin. This gigantic molecule
is anchored on the Z-disks, spans the whole sarcomere structure
and passively controls the overstretching; about its potentially
active functions see Refs. [46–49].

A broadly accepted microscopic picture of muscle con-
traction was proposed by A.F Huxley and H.E. Huxley in the
1950’s, see a historical review in Ref [50]. The development
of electron myograph and X ray diffraction techniques at that
time allowed the researcheres to observe the dynamics of the
dark and light bands during fiber contraction [51–53]. The
physical mechanism of force generation was first elucidated
in [54], where contraction was explicitly linked to the rela-
tive sliding of the myofilaments and explained by a repeated,
millisecond long attachement-pulling interaction between the
thick and thin filaments; some conceptual alternatives are dis-
cussed in Refs. [55–57]

The sliding-filament hypothesis [53; 58] assumes that
during contraction actin filaments move past myosin filaments
while actively interacting with them through the myosin cross-
bridges. Biochemical studies in solution showed that acto-
myosin interaction is powered by the hydrolysis of ATP into
ADP and phosphate Pi [59]. The motor part of the myosin
head acts as an enzyme which, on one side, increases the
hydrolysis reaction rate and on the other side converts the
released chemical energy into useful work. EachATPmolecule
provides 100 zJ (zepto = 10−21) which is equivalent to ∼
25 kbT at room temperature, where kb = 1.381 × 10−23 JK−1
is the Boltzmann constant and T is the absolute temperature
in K. The whole system remains in permanent disequilibrium
because the chemical potentials of the reactant (ATP) and the
products of the hydrolysis reaction (ADP and Pi) are kept out
of balance by a steadily operating exterior metabolic source of
energy [16; 17; 60].

The stochastic interaction between individual myosin cross
bridges and the adjacent actin filaments includes, in addition
to cyclic attachment of myosin heads to actin binding sites,
concurrent conformational change in the core of the myosin
catalytic domain (of folding-unfolding type). A lever arm
amplifies this structural transformation producing the power
stroke, which is the crucial part of a mechanism allowing the
attached cross bridges to generate macroscopic forces [16; 17].
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Figure 2. Representation of the Lymn–Taylor cycle, where each
mechanical state (1 → 4) is associated with a chemical state (M-
ADP-Pi, A-M-ADP-Pi, A-M-ADP and M-ATP). During one cycle,
the myosin motor executes one power-stroke and splits one ATP
molecule.

A basic biochemical model of the myosin ATPase reaction
in solution, linking together the attachment-detachment and
the power stroke, is known as the Lymn–Taylor (LT) cycle
[59]. It incorporates themost important chemical states, known
as M-ATP, A-M-ADP-Pi, AM-ADP and AM, and associates
them with particular mechanical configurations of the acto-
myosin complex, see Fig. 2. The LT cycle consists of 4 steps
[17; 35; 62; 63]:
(i) 1→2 Attachment. The myosin head (M) is initially

detached from actin in a pre-power stroke configuration.
ATP is in its hydrolyzed form ADP+Pi, which generates
a high affinity to actin binding sites (A). The attachment
takes place while the conformational mechanism is in pre-
power stroke state.

(ii) 2→3 Power-stroke. Conformational change during which
the myosin head executes a rotation around the binding
site accompanied with a displacement increment of a few
nm and a force generation of a few pN. During the power
stroke, phosphate (Pi) is released.

(iii) 3→4 Detachment. Separation from actin filament occurs
after the power stroke is completed while the myosin
head remains in its post power stroke state. Detachment
coincides with the release of the second hydrolysis
product ADP which considerably destabilize the attached
state. As the myosin head detaches, a fresh ATP molecule
is recruited.

(iv) 4→1Re-cocking (or repriming). ATP hydrolysis provides
the energy necessary to recharge the power stroke
mechanism.

While this basic cycle has been complicated progressively
to match an increasing body of experimental data [64–68],
the minimal LT description is believed to be irreducible [69].
However, its association with microscopic structural details
and relation to specific micro-mechanical interactions remain
a subject of debate [70–72]. Another complication is that the
influence of mechanical loading on the transition rates, that is
practically impossible to simulate in experiments on isolated
proteins, remains unconstrained by the purely biochemical
models.
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Figure 3. Isometric contraction (a) and isotonic shortening (b) experiments. (a) Isometric force T0 as function of the sarcomere length linked
to the amount of filament overlap. (b) Force-velocity relation obtained during isotonic shortening. Data in (b) are taken from Ref. [61].

An important feature of the LT cycle, which appears to
be loading independent, is the association of vastly different
timescales to individual biochemical steps, see Fig. 2. For
instance, the power stroke, taking place at ∼1ms time scale, is
the fastest step. It is believed to be independent of ATP activity
which takes place at the orders of magnitude slower time scale,
30-100 ms [67; 73]. The rate limiting step of the whole cycle
is the release of ADP with a characteristic time of ∼100ms,
which matches the rate of tension rise in an isometric tetanus.

1.2. Mechanical response

1.2.1. Isometric force and isotonic shortening velocity.
Typical experimental setup for measuring the mechanical
response of a muscle fibers involves a motor and a force
transducer between which the muscle fiber is mounted. The
fiber is maintained in an appropriate physiological solution
and is electro stimulated. When the distance between the
extremities of the fibers is kept constant (length clamp or hard
device loading), the fully activated (tetanized) fiber generates
an active force called the isometric tension T0 which depends
on the sarcomere length L [77; 78].

The measured “tension-elongation” curve T0(L) , shown
in Fig. 3(a), reflects the degree of filament overlap in each
half sarcomere. At small sarcomere lengths ( L ∼ 1.8 µm),
the isometric tension level increases linearly as the detrimental
overlap (frustration) diminishes. Around L = 2.1 µm, the
tension reaches a plateauTmax, the physiological regime, where
all available myosin cross-bridges have a possibility to bind
actin filament. The descending limb corresponds to regimes
where the optimal filament overlap progressively reduces (see
more about this regime in Section 5).

One of the main experiments addressing the mechanical
behavior of skeletal muscles under applied forces (load clamp
or soft loading device) was conducted by A.V. Hill [79],
who introduced the notion of “force-velocity” relation. First
the muscle fiber was stimulated under isometric conditions
producing a force T0. Then the control device was switched
to the load clamp mode and a load step was applied to the fiber
which shortened (or elongated) in response to the new force
level. After a transient [80] the system reached a steady state
where the shortening velocity could be measured. A different
protocol producing essentially the same result was used in

Ref. [81] where a ramp shortening (or stretch) was applied to
a fiber in length clamp mode and the tension measured at a
particular stage of the time response. Note that in contrast to
the case of passive friction, the active force-velocity relation
for tetanized muscle enters the quadrant where the dissipation
is negative, see Fig. 3(b).

1.2.2. Fast isometric and isotonic transients. The mechani-
cal responses characterized by the tension-elongation relation
and the force-velocity relation are associated with timescales
of the order of 100 µs. To shed light on the processes at the
millisecond time scale, fast load clamp experiments were per-
formed in Refs. [82–84]. Length clamp experiments were first
conducted in Ref. [74], where a single fiber was mounted be-
tween a force transducer and a loudspeaker motor able to de-
liver length steps completed in 100 µs. More specifically, af-
ter the isometric tension was reached, a length step δL (mea-
sured in nanometer per half sarcomere, nm hs−1) was applied to
the fiber, with a feedback from a striation follower device that
allowed to control the step size per sarcomere, see Fig. 4(a).
Such experimental protocols have since become standard in the
field [76; 85–88].

The observed response could be decomposed into 4 phases:
(0 → 1) from 0 to about 100 µs (phase 1). The tension

(respectively sarcomere length) is altered simultaneously with
the length step (respectively force step) and reaches a level
T1 (respectively L1 ) at the end of the step. The values T1
and L1 depend linearly on the loading (see Fig.5, circles), and
characterize the instant elastic response of the fiber. Various T1
and L1 measurements in different conditions allow one to link
the instantaneous elasticity with different structural elements
of the sarcomere, in particular to isolate the elasticity of the
cross bridges from the elasticity of passive structures such as
the myofilaments [89–91].

(1 → 2) from about 100 µs to about 3ms (phase 2). In
length clamp experiments, the tension is quickly recovered up
to a plateau level T2 close but below the original level T0; see
Fig. 4(a) and open squares in Fig. 5. Such quick recovery is
too fast to engage the attachment-detachment processes and
can be explained by the synchronized power stroke involving
the attached heads [74]. For small step amplitudes δL, the
tension T2 is practically equal to the original tension T0, see
the plateau on the T2 vs. elongation relation in Fig. 5. In load
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Figure 5. Tension-elongation relation reflecting the state of the
system at the end of phase 1 (circles) and phase 2 (squares) in both
length clamp (open symbols) and force clamp (filled symbols). Data
are taken from Refs. [80; 85; 87; 93–95].

clamp experiment, the fiber shortens or elongates towards the
level L2, see filled squares in Fig. 5. Note that on Fig. 5, the
measured L2 points overlap with the T2 points except that the
plateau appears to be missing. In load clamp the value of L2

at loads close to T0 has been difficult to measure because of
the presence of oscillations [92]. At larger steps, the tension T2
start to depend linearly on the length step because the power
stroke capacity of the attached heads has been saturated.

(2 → 3 → 4) In force clamp transients after ∼ 3ms the
tension rises slowly from the plateau to its original value T0,
see Fig. 4(a). This phase corresponds to the cyclic attachment
and detachment of the heads see Fig. 2, which starts with
the detachment of the heads that where initially attached in
isometric conditions (phase 3). In load clamp transients phase
4 is clearly identified by a shortening at a constant velocity, see
Fig. 4(c), which, being plotted against the force, reproduces the
Hill’s force-velocity relation, see Fig. 3(b).

First attempts to rationalize the fast stages of these
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Figure 6. Drastically different kinetics in phase 2 of the fast
load recovery in length clamp (circles) and force clamp (squares)
experiments. Data are from Refs. [74; 80; 85–87; 93].

experiments [74] have led to the insight that we deal here
with mechanical snap-springs performing a transition between
two configurations. The role of the external loading reduces
to biasing mechanically one of the two states. The idea of
bistability in the structure of myosin heads has been later fully
supported by crystallographic studies [96–98].

Based on the experimental results shown in Fig. 5 one may
come to a conclusion that the transient responses of muscle
fibers to fast loading in hard (length clamp) and soft (load
clamp) devices are identical. However, a careful analysis
of Fig. 5 shows that the data for the load clamp protocol
are missing in the area adjacent to the state of isometric
contractions (around T0). Moreover, the two protocols are
clearly characterized by different kinetics.

Recall that the rate of fast force recovery can be interpreted
as the inverse of the time scale separating the end of phase
1 and the end of phase 2. The experimental results obtained
in soft and hard device can be compared if we present the
recovery rate as a function of the final elongation of the system.
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In this way, one can compare kinetics in the two ensembles
using the same initial and final states; see dashed lines in
Fig. 5. A detailed quantitative comparison, shown in Fig. 6,
reveals considerably slower response when the system follows
the soft device protocol (filled symbols). The dependence of
the relaxation rate on the type of loading was first noticed in
Ref. [99] and then confirmed by the direct measurements in
Ref. [100]. These discrepancies will be addressed in Section 2.

We complement this brief overview of the experimental
results with an observation that a seemingly natural, purely
passive interpretation of the power stroke is in apparent
disagreement with the fact that the power stroke is an active
force generating step in the Lymn–Taylor cross bridge cycle.
The challenge of resolving this paradox served as a motivation
for several theoretical developments reviewed in this paper.

1.3. Modeling approaches

1.3.1. Chemomechanical models. The idea to combine
mechanics and chemistry in themodeling ofmuscle contraction
was proposed by A.F. Huxley [54]. The original model was
focused exclusively on the attachment-detachment process
and the events related to the slow time scale (hundreds
of milliseconds). The attachment-detachment process was
interpreted as an out-of-equilibrium reaction biased by a drift
with a given velocity [67; 73]. The generated force was linked
to the occupancy of continuously distributed chemical states
and the attempt was made to justify the observed force-velocity
relations [see Fig. 3(b)] using appropriately chosen kinetic
constants. This approach was brought to full generality by T.L.
Hill and collaborators [101–105]. More recently, the chemo-
mechanical modelling was extended to account for energetics,
to include the power-stroke activity and to study the influence
of collective effects [67; 86; 106–114].

In the general chemo-mechanical approachmuscle contrac-
tion is perceived as a set of reactions among a variety of chem-
ical states [67; 68; 86; 115; 116]. The mechanical feedback is
achieved through the dependence of the kinetic constants on
the total force exerted by the system on the loading device.
The chemical states form a network which describes on one
side, various stages of the enzymatic reaction, and on the other
side, different mechanical configurations of the system. While
some of crystallographic states have been successfully identi-
fied with particular sites of the chemical network (attached and
detached [54], strongly and weakly attached [67], pre and post
power stroke [74], associated with the first or second myosin
head [94], etc.), the chemo-mechanical models remain largely
phenomenological as the functions characterizing the depen-
dence of the rate constants on the state of the force generating
springs are typically chosen to match the observations instead
of being derived from a microscopic model.

In other words, due to the presence of mechanical
elements, the standard discrete chemical states are replaced
by continuously parameterized configurational “manifolds”.
Even after the local conditions of detailed balance are fulfilled,
this leads to the functional freedom in assigning the transition
rates. This freedom originates from the lack of information
about the actual energy barriers separating individual chemical
states and the uncertainty was used as a tool to fit experimental
data. This has led to the development of a comprehensive
phenomenological description of muscle contraction that is
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Figure 7. Biochemical vs purely mechanistic description of the
power stroke in skeletal muscles: (a) The Lymn–Taylor four-state
cycle, LT(71) and (b) the Huxley-Simmons two-state cycle, HS (71).
Adapted from Ref. [121].

almost fully compatible with available measurements, see,
for instance, Ref. [68] and the references therein. The
use of phenomenological expressions, however, gives only
limited insight into the micro-mechanical functioning of the
force generating mechanism, leaves some lagoons in the
understanding, as in the case of ensemble dependent kinetics,
and ultimately has a restricted predictive power.

1.3.2. Power-stroke modes To model fast force recovery
A.F. Huxley and R.M. Simmons (HS) [74] proposed to
describe it as a chemical reaction between the folded and
unfolded configurations of the attached cross-bridges with the
reaction rates linked to the structure of the underlying energy
landscape. Almost identical descriptions of mechanically
driven conformational changes were proposed, apparently
independently, in the studies of cell adhesion [117; 118], and
in the context of hair cell gating [119; 120]. For all these
systems the HS model can be viewed as a fundamental mean-
field prototype [121].

While the scenario proposed by HS is in agreement with
the fact that the power stroke is the fastest step in the Lymn–
Taylor (LT) enzymatic cycle [16; 59], there remained a formal
disagreement with the existing biochemical picture, see Fig. 7.
Thus, HS assumed that the mechanism of the fast force
recovery is passive and can be reduced to a mechanically
induced conformational change. In contrast, the LT cycle
for actomyosin complexes is based on the assumption that
the power stroke can be reversed only actively through the
completion of the biochemical pathway including ADP release,
myosin unbinding, binding of uncleaved ATP, splitting of ATP
into ADP and Pi, and then rebinding ofmyosin to actin [59; 68],
see Fig. 2. While HS postulated that the power stroke can
be reversed by mechanical means, most of the biochemical
literature is based on the assumption that the power-stroke
recocking cannot be accomplished without the presence of
ATP. In particular, physiological fluctuations involving power
stroke are almost exclusively interpreted in the context of
active behavior [122–128]. Instead the purely mechanistic
approach of HS, presuming that the power-stroke-related leg of
the LT cycle can be decoupled from the rest of the biochemical
pathway, was pursued in Refs [116; 129], but did not manage
to reach the mainstream.

1.3.3. Brownian ratchet models. In contrast to chemo-
mechanical models, the early theory of Brownian motors
followed largely a mechanically explicit path [130–138]. In
this approach, the motion of myosin II was represented by
a biased diffusion of a particle on a periodic asymmetric
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landscape driven by a colored noise. The white component
of the noise reflects the presence of a heat reservoir while the
correlated component mimics the non-equilibrium chemical
environment. Later, such purely mechanical approach was
parallelled by the development of the equivalent chemistry-
centered discretemodels of Brownian ratchets, see for instance,
Refs. [38; 139–142].

First direct applications of the Brownian ratchet models to
muscle contraction can be found in Refs. [143–145], where
the focus was on the attachment-detachment process at the
expense of the phenomena at the short time scales (power
stroke). In other words, the early models had a tendency to
collapse the four state Lymn–Taylor cycle onto a two states
cycle by absorbing the configurational changes associated
with the transitions M-ATP → M-ADP-Pi and A-M-ADP-
Pi → A-M-ADP into more general transitions M-ATP →
AM-ADP and AM-ADP→ M-ATP. Following Ref. [54], the
complexity of the structure of the myosin head was reduced
to a single degree of freedom representing a stretch of a
series elastic spring. This simplification offered considerable
analytical transparency and opened the way towards the study
of stochastic thermodynamics and efficiency of motor systems,
e.g. Refs. [140; 146; 147].

Later, considerable efforts were dedicated to the devel-
opment of synthetic descriptions, containing both ratchet
and power stroke elements [112; 113; 143; 144; 148–
150]. In particular, numerous attempts have been made to
unify the attachement-detachment-centered models with the
power stroke-centered ones in a generalized chemo-mechanical
framework [60; 67; 68; 86; 87; 105; 114; 116; 144; 151–
154]. The ensuing models have reached the level of so-
phistication allowing their authors to deal with collective ef-
fects, including the analysis of traveling waves and coher-
ent oscillations [60; 110; 114; 143; 155–159]. In particular,
myosin-myosin coupling was studied in models of interact-
ing motors [113; 152] and emergent phenomena character-
ized by large scale entrainment signatures were identified in
Refs. [36; 110; 114; 122; 123; 148].

The importance of these discoveries is corroborated by the
fact that macroscopic fluctuations in the groups of myosins
have been also observed experimentally. In particular, consid-
erable coordination between individual elements was detected
in close to stall conditions giving rise to synchronized oscilla-
tions which could be measured even at the scale of the whole
myofibril [26; 82; 92; 149; 160–162]. The synchronization also
revealed itself through macro-scale spatial inhomogeneities re-
ported near stall force condition [163–166].

In ratchet models the cooperative behavior was explained
without direct reference to the power stroke by the fact that
the mechanical state of one motor influences the kinetics
of other motors. The long-range elastic interactions were
linked to the presence of filamental backbones which are
known to be elastically compliant [167; 168]. The fact,
that similar cooperative behavior of myosin cross-bridges
has been also detected experimentally at short time scales,
during fast force recovery [92], suggests that at least some
level of synchronization should be already within reach of
the power-stroke-centered models disregarding motor activity
and focusing exclusively on passive mechanical behavior.
Elucidating the mechanism of such passive synchronization
will be one of our main goals of Section 2.

1.4. Organization of the paper

In this review, we focus exclusively on models emphasizing
the mechanical side of the force generation processes. The
mechanical models affirm that in some situations the micro-
scale stochastic dynamics of the force generating units can be
adequately represented by chemical reactions. However, they
also point to cases when one ends up unnecessarily constrained
by the chemo-mechanical point of view.

The physical theories, emphasized in this review, are in
tune with the approach pioneered by Huxley and Simmons
in their study of fast force recovery and with the general
approach of the theory of molecular motors. The elementary
contractile mechanisms are modeled by systems of stochastic
differential equations describing random walk in complex
energy landscapes. These landscapes serve as a representation
of both the structure and the interactions in the system, in
particular, they embody various local and nonlocal mechanical
feedbacks.

In contrast to fully microscopic molecular dynamical
reconstructions of multi-particle dynamics, the reviewed
mechano-centered models operate with few collective degrees
of freedom. The loading is transmitted directly by applied
forces while different types of noises serve as a representation
of non-mechanical external driving mechanisms that contain
both equilibrium and non-equilibrium components. Due to
the inherent stochasticity of such mesoscopic systems [140],
the emphasis is shifted from the averaged behavior, favored
by chemo-mechanical approaches, to the study of the full
probability distributions.

In Section 2 we show that even in the absence of metabolic
fuel, long-range interactions, communicated by passive cross-
linkers, can ensure a highly nontrivial cooperative behavior
of interacting muscle cross-bridges. This implies ensemble
dependence, metastability and criticality which all serve to
warrant efficient collective stroke in the presence of thermal
fluctuations. We argue that in the near critical regimes the
barriers are not high enough for the Kramers approximation
to be valid [169; 170] which challenges chemistry-centered
approaches. Another important contribution of the physical
theory is in the emphasis on fluctuations as an important source
of structural information. A particularly interesting conclusion
of this section is the realization that a particular number of
cross-bridges in realistic half-sarcomeres may be a signature
of an (evolutionary) fine tuning of the mechanical response to
criticality.

In Section 3 we address the effects of correlated noise
on force generation in isometric conditions. We focus on
the possibility of the emergence of new noise-induced energy
wells and stabilization of the states that are unstable in strictly
equilibrium conditions. The implied transition from negative
to positive rigidity can be linked to time correlations in the
out-of-equilibrium driving and the reviewed work shows that
subtle differences in the active noise may compromise the
emergence of such “non-equilibrium” free energy wells. These
results suggest that ATP hydrolysis may be involved in tuning
the muscle system to near-criticality which appears to be a
plausible description of the physiological state of isometric
contraction.

In Section 4 we introduce mechanical models bringing
together the attachment-detachment and the power stroke.
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To make a clear distinction between these models and the
conventional models of Brownian ratchets we operate in a
framework when the actin track is nonpolar and the bistable
element is unbiased. The symmetry breaking is achieved
exclusively through the coupling of the two subsystems. Quite
remarkably, a simple mechanical model of this type formulated
in terms of continuous Langevin dynamics can reproduce all
four discrete states of the minimal LT cycle. In particular, it
demonstrates that contraction can be propelled directly through
a conformational change, which implies that the power stroke
may serve as the leading mechanism not only at short but also
at long time scales.

Finally, in Section 5 we address the behavior of the
contractile system on the descending limb of the isometric
tetanus, a segment of the force length relation with a
negative stiffness. Despite potential mechanical instability,
the isometric tetanus in these regimes is usually associated
with a quasi-affine deformation. The mechanics-centered
approach allows one to interpret these results in terms of
energy landscape whose ruggedness is responsible for the
experimentally observed history dependence and hysteresis
near the descending limb. In this approach both the ground
states and the marginally stable states emerge as fine mixtures
of short and long half-sarcomeres and the negative overall slope
of the tetanus is shown to coexists with a positive instantaneous
stiffness. A version of the mechanical model, accounting for
surrounding tissues, produces an intriguing prediction that the
energetically optimal variation of the degree of nonuniformity
with stretch must exhibits a devil’s staircase-type behavior.

The review part ends with Section 7where we go over some
non-muscle applications of the proposed mechanical models In
this Section 7 we formulate conclusions and discuss directions
of future research.

2. Passive force generation

In this Section, we limit ourselves to models of passive force
generation.

First of all we need to identify an elementary unit whose
force producing function is irreducible. The second issue
concerns the structure of the interactions between such units.
The goal here is to determine whether the consideration of an
isolated force-producing element is meaningful in view of the
presence of various feedback loops. The pertinence of this
question is corroborated by the presence of hierarchies that
undermine the independence of individual units.

The schematic topological structure of the force generating
network in skeletal muscles is shown in Fig. 8. Here we see
that behind the apparent series architecture that one can expect
to dominate in crystals, there is a system of intricate parallel
connections accomplished by passive cross-linkers. Such
elastic elements play the role of backbones linking elements
at smaller scales. The emerging hierarchy is dominated by
long-range interactions which make the “muscle crystal” rather
different from the conventional inert solids.

The analysis of Fig. 8 suggests that the simplest nontrivial
structural element of the network is a half-sarcomere that can
be represented as a bundle of finite number of cross-bridges.
The analysis presented below shows that such model cannot be
simplified further because for instance themechanical response

of individual cross-bridges is not compatible by itself with
observations.

The minimal model of this type was proposed by Huxley
and Simmons (HS) who described myosin cross-bridges as
hard spin elements connected to linear springs loaded in
parallel [74]. In this Section, we show that the stochastic
version of the HSmodel is capable of reproducing qualitatively
the mechanical response of a muscle submitted to fast external
loading in both length clamp (hard device) and force clamp
(soft device) settings (see Fig. 6). We also address the question
whether the simplest series connection of HS elements is
compatible with the idea of an affine response of the whole
muscle fiber.

Needless to say that the oversimplified model of HS does
not address the full topological complexity of the cross-bridge
organization presented in Fig. 8. Furthermore, the 3D steric
effects that appear to be crucially important for the description
of spontaneous oscillatory contractions [148; 162; 164; 166;
171–173], and the effects of regulatory proteins responsible
for steric blocking [174–178], are completely outside the HS
framework.

2.1. Hard spin model

Consider now in detail the minimal model [74; 99; 121;
179; 180] which interprets the pre- and post-power-stroke
conformations of the myosin heads as discrete (chemical)
states. Since these states can be viewed as two configurations
of a “digital” switch such model belongs to the hard spin
category.

The potential energy of an individual spin unit can be
written in the form

uHS(x) =

{
v0 if x = 0,

0 if x = −a.
(2.1)

where the variable x takes two values, 0 and −a, describing
the unfolded and the folded conformations, respectively. By a
we denoted the “reference” size of the conformational change
interpreted as the distance between the two energy wells. With
the unfolded state we associate an energy level v0 while the
folded configuration is considered as a zero energy state, see
Fig. 9(a). In addition to a spin unit with energy (2.1) we assume
that each cross-bridge contains a linear spring with stiffness κ0
in series with the bi-stable unit; see Fig. 9(b).

The attached cross-bridges are connectingmyosin and actin
filaments which play the role of elastic backbones. Their
function is to provide mechanical feedback and coordinate the
mechanical state of the individual cross-bridges [167; 168].
There is evidence [89; 95] that a lump description of the
combined elasticity of actin and myosin filaments by a single
spring is rather adequate, see also Refs. [89; 100; 181–183]).
Hence we represent a generic half sarcomere as a cluster of
N parallel HS elements and assume that this parallel bundle is
connected in series to a linear spring of stiffness κb .

We chose a as the characteristic length of the system, κ0a
as the characteristic force, and κ0a2as the characteristic energy.
The resulting dimensionless energy of the whole system (per
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Figure 8. Structure of a myofibril. (a) Anatomic organization of half sarcomeres linked by Z disks (A) and M lines (B). (b) Schematic
representation of the network of half sarcomeres; (c) Topological structure of the same network emphasizing the dominance of long-range
interactions.
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Figure 9. Hard spin model of a parallel bundle of bistable cross-
bridges connected to a common elastic backbone. (a) Energy
landscape of an individual power-stroke element; (b) N cross-bridges
connected to an elastic backbone with stiffness κb . Adapted from
Ref. [99].

cross bridge) at fixed total elongation z takes the form

v(x; z)=
1

N

N∑
i=1

[
(1 + xi) v0 +

1

2
(y − xi)2 +

λb
2
(z − y)2

]
,

(2.2)
where λb = κb/(Nκ0), y represents the elongation of the
cluster of parallel cross bridges and xi = {0,−1}, see Fig. 9(b).
Here, for simplicity, we did not modify the notations as we
switched to non-dimensional quantities.

It is important to note that here we intentionally depart from
the notations introduced in Section 1.2. For instance, the length
of the half sarcomere was there denoted by L, which is now z.
Furthermore, the tension which was previously T will be now
denoted by σ while we keep the notation T for the ambient
temperature.

2.1.1. Soft and hard devices. It is instructive to consider first
the two limit cases, λb = ∞ and λb = 0.

Zero temperature behavior. If λb = ∞, the backbone is
infinitely rigid and the array of cross-bridges is loaded in a
hard device with y being the control parameter. Due to the
permutational invariance of the energy

v(x; y) =
1

N

N∑
i=1

[
(1 + xi) v0 +

1

2
(y − xi)2

]
, (2.3)

each equilibrium state is fully characterized by a discrete order
parameter representing the fraction of cross-bridges in the

folded (post power stroke) state

p = − 1

N

N∑
i=1

xi .

At zero temperature all equilibrium configurations with a
given p correspond to local minima of the energy (2.3), see
Ref. [179]. These metastable states can be viewed as simple
mixtures the two states, one fully folded with p = 1, and the
energy (1/2)(y + 1)2, and the other one fully unfolded with
p = 0, and the energy (1/2)y2+v0. The energy of the mixture
reads

v̂(p; y) = p
1

2
(y + 1)2 + (1 − p)

[
1

2
y2 + v0

]
. (2.4)

The absence of a mixing energy is a manifestation of the fact
that the two populations of cross-bridges do not interact.

The energies of the metastable states parameterized by p
are shown in Fig.10 (c–e). Introducing the reference elongation
y0 = v0 − 1/2, one can show that the global minimum of the
energy corresponds either to folded state with p = 1, or to
unfolded state with p = 0. At the transition point y = y0,
all metastable states have the same energy, which means that
the global switching can be performed at zero energy cost, see
Fig. 10(d).

The tension-elongation relations alongmetastable branches
parameterized by p can be presented as σ̂(p; z) = ∂

∂z v̂(p; y) =
y + p, where σ denotes the tension (per cross-bridge). At
fixed p, we obtain equidistant parallel lines, see Fig. 10 [(a)
and (b)]. At the crossing (folding) point y = y0, the system
following the global minimum exhibits a singular negative
stiffness. Artificial metamaterial showing negative stiffness
has been recently engineered by drawing on the Braess paradox
for decentralized globally connected networks [13; 184; 185].
Biological examples of systems with non-convex energy and
negative stiffness are provided by RNA and DNA hairpins and
hair bundles in auditory cells [120; 186–188].

In the other limit λb → 0, the backbone becomes infinitely
soft (z − y → ∞) and if λb(z − y) → σ the system behaves
as if it was loaded in a soft device, where now the tension σ
is the control parameter. The relevant energy can be written in
the form

w(x, y;σ) = v(x, y) − σz

=
1

N

N∑
i=1

[
(1 + xi) v0 +

1

2
(y − xi)2 − σy

]
, (2.5)
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Figure 10. Behavior of a HS model with N = 10 at zero temperature. [(a) and (b)] Tension-elongation relations corresponding to the
metastable states (gray) and along the global minimum path (thick lines), in hard (a) and soft (b) devices. (c–e) [respectively (f–h)] Energy
levels of the metastable states corresponding to p = 0, 0.1, . . . , 1, at different elongations y (respectively tensions σ). Corresponding transitions
(E→B, P→Q, ...) are shown in (a) and (b). Adapted from Ref. [179].

The order parameter p parametrizes again the branches of local
minimizers of the energy (2.5), see Ref. [179]. At a given value
of p, the energy of a metastable state reads

ŵ(p;σ) = −1
2
σ2 + pσ +

1

2
p(1 − p) + (1 − p)v0. (2.6)

In contrast to the case of a hard device [see Eq. (2.4)], here there
is a nontrivial coupling term p(1 − p) describing the energy of
a regular solution. The presence of this term is a signature of a
mean-field interaction among individual cross-bridges.

The tension-elongation relations describing the set of
metastable states can be now written in the form ẑ(p;σ) =
− ∂

∂σ ŵ(p;σ) = σ − p. The global minimum of the energy
is again attained either at p = 1 or p = 0, with a sharp
transition at σ = σ0 = v0, which leads to a plateau on the
tension-elongation curve, see Fig. 10 (b). Note that even in the
continuum limit the stable “material” response of this system in
hard and soft devices differ and this ensemble nonequivalence
is a manifestation of the presence of long-range interactions.
To illustrate this point further, we consider the energetic cost
of mixing in the two loading devices at the conditions of the
switch between pure states, see Fig. 10 [(d) and (g)]. In the hard
device [see (d)] the energy dependence on p in this state is flat
suggesting that there is no barrier, while in the soft device [see
(g)] the energy is concave which means that there is a barrier.

To develop intuition about the observed inequivalence, it
is instructive to take a closer look at the minimal system with
N = 2, see Fig. 11. Here for simplicity we assumed that v0 = 0
implying σ0 = 0 and y0 = −1/2. The two pure configurations
are labeled as A (p = 0) andC (p = 1) atσ = σ0 and as D (p =
0) and B (p = 1) at y = y0. In a hard device, where the two
elements do not interact, the transition from state D to state B at
a given y = y0 goes through the configuration B+D, which has
the same energy as configurations D and B: the cross-bridges
in folded and unfolded states are geometrically compatible and
their mixing requires no additional energy. Instead, in a soft
device, where individual elements interact, a transition from
state A to state C taking place at a given σ = 0 requires
passing through the transition state A+C which has a nonzero
pre-stress. Pure states in this mixture state have different

−1 1

−1

1

B

D
AC

y − y0

σ
C +C A+ A

B + DA+C

B + B

D + D

Figure 11. Behavior of two cross-bridges. Thick line: global
minimum in a soft device (σ0 = 0). Dashed lines, metastable states
p = 0, and p = 1. The intermediate stress-free configuration is
obtained either by mixing the two geometrically compatible states
B and D in a hard device, which results in a B + D structure
without additional internal stress, or by mixing the two geometrically
incompatible states A and C in a soft device, which results in a A+C
structure with internal residual stress. Adapted from Ref. [179].

values of y, and therefore the energy of themixed configuration
A + C, which is stressed, is larger than the energies of the
pure unstressed states A and C. We also observe that in a
soft device the transition between the pure states is cooperative
requiring essential interaction of individual elements while in
a hard device it takes place independently in each element.

Finite temperature behavior. We now turn to finite temper-
ature to check the robustness of the observations made in the
previous section.

Consider first the hard device case λb = ∞, consid-
ered chemo-mechanically in the seminal paper of HS [74], see
Ref. [121] for the statistical interpretation. With the variable
y serving now as the control parameter, the equilibrium prob-
ability density for a micro-state x with N elements takes the
form ρ(x; y, β) = Z(y, β)−1 exp [−βv(x; y)] where the par-
tition function is Z(y, β) =

∑
x∈{0,−1}N exp [−βNv(x; y)] =

[Z1(y, β)]
N . Here Z1 represents the partition function of a sin-
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gle element given by

Z1(y, β) = exp
[
− β
2
(y + 1)2

]
+exp

[
−β

(
y2

2
+ v0

)]
. (2.7)

Therefore one can write ρ(x; y, β) =
∏N

i=1 ρ1(xi; y, β), where
we have introduced the equilibrium probability distribution for
a single element

ρ1(x; y, β) = Z1(y, β)
−1 exp [−βv(x; y)] , (2.8)

with v(x; y) - the energy of a single element.
The lack of cooperativity in this case is clear if one

considers the marginal probability density at fixed p

ρ(p; y, β) =
(

N
Np

)
[ρ1(−1; y, β)]Np [ρ1(0; y, β)]

N(1−p)

= Z(y, β)−1 exp[−βN f (p; y, β)],

where f (p; y, β) = v̂(y, p)−(1/β) s(p) is the marginal free en-
ergy, v̂ is given by Eq. (2.4) and s(p) = 1

N log
( N
Np

)
, is the ideal

entropy, see Fig. 12. In the thermodynamic limit N → ∞ we
obtain explicit expression f∞(p; y, β) = v̂(p; y)−(1/β) s∞(p),
where s∞(p) = − [p log(p) + (1 − p) log(1 − p)] . The func-
tion f∞(p) is always convex since ∂2

∂p2 f∞(p; y, β) =
[
β p(1 −

p)
]−1

> 0, and therefore the marginal free energy always has a
single minimum p∗(y, β) corresponding to a microscopic mix-
ture of de-synchronized elements, see Fig. 12(b).

These results show that the equilibrium (average) proper-
ties of a cluster of HS elements in a hard device can be fully
recovered if we know the properties of a single element—the
problem studied in [74]. In particular, the equilibrium free en-
ergy f̃ (z, β) = f (p∗;σ, β), where p∗ is the minimum of the
marginal free energy f [see Fig. 12(c)] can be written in the
HS form

f̃ (y, β) = − 1

βN
log [Z(y, β)] =

1

2
y2 + v0 +

y − y0

2

− 1

β
ln

{
2 cosh

[
β

2
(y − y0)

]}
,

(2.9)

which is also an expression of the free energy in the simplest
paramagnetic Ising model [189]. Its dependence on elongation
is illustrated in Fig. 13(a). We observe that for β ≤ 4 (super-
critical temperatures), the free energy is convexwhile for β > 4
(sub-critical temperatures), it is non-convex. The emergence of
an unusual “pseudo-critical” temperature β = βc = 4 in this
paramagnetic system is a result of the presence of the quadratic
energy associated with the “applied field” y, see Eq. (2.9).

The ensuing equilibrium tension-elongation relation (per
cross-bridge) is identical to the expression obtained in
Ref. [74],

⟨σ⟩ (y, β) = ∂ f
∂y

= σ0+y−y0−
1

2
tanh

[
β

2
(y − y0)

]
. (2.10)

As a result of the nonconvexity of the free energy, the
dependence of the tension ⟨σ⟩ on y can be non-monotone, see
Fig. 13(b). Indeed, the equilibrium stiffness

κ(y, β) = ∂ ⟨σ⟩ (y, β)/∂y

= 1 − (β/4)
{
sech [β (y − y0) /2]

}2
,

(2.11)

is a sign-indefinite sum of two terms: κB = 1, representing the
Born elastic susceptibility associated with affine deformation
and the fluctuation part κF = (β/4)

{
sech [β (y − y0) /2]

}2
describing fluctuations induced non-affine contributions [175;
190].

In connection with these results we observe that the
difference between the quasi-static stiffness of myosin II
measured by single molecule techniques, and its instantaneous
stiffness obtained from mechanical tests on myofibrils, may
be due to the fluctuational term κF, see Refs. [91; 191; 192].
Note also that the fluctuation-related term does not disappear
in the zero temperature limit (producing a delta function type
contribution to the affine response at y = y0), which is a
manifestation of a (singular) glassy behavior [193; 194].

It is interesting that while fitting their experimental data
HS used exactly the critical value β = 4, corresponding to
zero stiffness in the state of isometric contraction. Negative
stiffness, resulting from non-additivity of the system, prevails
at subcritical temperatures; in this range a shortening of an
element leads to tension increase which can be interpreted as a
meta-material behavior [13; 99; 195].

In the soft device case λb = 0 , the probability density
associated with a microstate x is given by ρ(x, y;σ, β) =
Z(σ, β)−1 exp [−βNw(x, y;σ)] where the partition function is
now Z(σ, β) =

∫
dy

∑
x∈{0,1}N exp

{
−βN [v(x; y) − σy]

}
.

By integrating out the internal variable xi , we obtain
the marginal probability density depending on the two order
parameters, y and p,

ρ(p, y;σ, β) = Z(σ, β)−1 exp [−βNg(p; y;σ, β)] . (2.12)

Here we introduced the marginal free energy

g(p, y;σ, β) = f (p, y, β) − σy
= v̂(p, y) − σy − (1/β)s(p),

(2.13)

which is convex at large temperatures and non-convex (with
two metastable wells) at low temperatures, see Fig. 14,
signaling the presence of a genuine critical point.

By integrating the distribution (2.12) over p we obtain the
marginal distribution ρ(y;σ, β) = Z−1 exp [−βNg(y;σ, β)]
where g(y;σ, β) = f̃ (y; β)−σy, with f̃ being the equilibrium
free energy of the system in a hard device, see Eq. 2.9. This free
energy has more than one stable state as long as the equation
f̃ ′(y)−σ = 0 has more than one solution. Since f̃ ′ is precisely
the average tension elongation-relation in the hard device case,
we find that the critical temperature is exactly βc = 4. The
same result could be also obtained directly as a condition of the
positive definiteness of the Hessian for the free energy (2.13)
(in the thermodynamic limit).

The physical origin of the predicted second order phase
transition becomes clear if instead of p we now eliminate y

and introduce the marginal free energy at fixed p. In the (more
transparent) thermodynamic limit we can write

g∞(p;σ, β) = ŵ(p, σ) − β−1s∞(p), (2.14)

where ŵ = −(1/2)σ2+ p(σ−σ0)+(1/2)p(1− p)+v0, is the
zero temperature energy of the metastable states parametrized
by p, see Eq. 2.6 and Fig. 10. Since the entropy s∞(p) is convex
with a maximum at p = 1/2, the convexity of the free energy
depends on the competition between the term p(1−p) reflecting
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purely mechanical interaction and the term s∞(p)/β, with the
the later dominating at low β.

The Gibbs free energy g∞(σ, β) and the corresponding
force-elongation relations are illustrated in Fig. 15. In (a),
the energies of the critical points of the free energy (2.14) are
represented as function of the loading and the temperature, with
several isothermal sections of the energy landscape are shown
in (b). For each critical point p̂, the elongation ŷ = σ − p̂ is
shown in Fig. 15(c).

At σ = σ0 = v0, the free energy g∞ becomes symmetric
with respect to p = 1/2 and therefore we have ⟨p⟩ (σ0, β) =
1/2, independently of the value of β. The structure of the
second order phase transition is further illustrated in Fig. 16(a).

Both mechanical and thermal properties of the system
can be obtained from the probability density (2.12). By

eliminating y and taking the thermodynamic limit N → ∞
we obtain ρ∞(p;σ, β) = Z−1 exp [−βNg∞(p;σ, β)] with
Z(σ, β) =

∑
p exp[−βNg∞(p;σ, β)]. The average mechanical

behavior of the system is now controlled by the global
minimizer p∗(σ, β) of the marginal free energy g∞, for
instance, g̃(σ, β) = g∞(p∗, σ, β) and ⟨p⟩ (σ, β) = p∗(σ, β),
The average elongation ⟨y⟩ (σ, β) = σ− p∗(σ, β) is illustrated
in Fig. 16 (c), for the case β = 5. The jump at σ = σ0

corresponds to the switch of the global minimum from C to
A, see Fig. 16[(a) and (c)].

In Fig. 16[(d)–(f)] we also illustrate typical stochastic
behavior of the order parameter p at fixed tension σ = σ0

(ensuring that ⟨p⟩ = 1/2). Observe that in the ordered
(low temperature, ferromagnetic) phase [see (f)], the thermal
equilibrium is realized through the formation of temporal
microstructure, a domain structure in time, which implies
intermittent jumps between ordered metastable (long living)
configurations. Such transition are systematically observed
during the unzipping of biomolecules, see, for instance,
Ref. [196].

In Fig. 17 we show the equilibrium susceptibility
χ(σ, β) = − ∂

∂σ ⟨p⟩ (σ, β) = Nβ⟨[p − ⟨p⟩ (σ, β)]2⟩ ≥ 0,
which diverges at β = βc and σ = σ0. We can also com-
pute the equilibrium stiffness κ(σ, β)−1 = 1

N
∂
∂σ ⟨y⟩ (σ, β) =

β⟨[y − ⟨y⟩ (σ, β)]2⟩ ≥ 0, where ⟨y⟩ (σ, β) = σ − ⟨p⟩ (σ, β),
and see that it is always positive in the soft device. This is
another manifestation of the fact that the soft and hard device
ensembles are not equivalent.

At the critical point (β = 4, σ = σ0), the marginal
energy of the system has a degenerate minimum corresponding
to the configuration with p = 1/2; see Fig. 15[(c) dashed
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line]. Near the critical point, we have the asymptotics p ∼
1/2 ± (

√
3/4)[β − 4]1/2, for σ = σ0, and p ∼ 1/2 − sign[σ −

σ0] [(3/4) |σ − σ0 |]1/3 , for β = 4. showing that the critical
exponents take the classical mean field values [189]. Similarly
we obtain ⟨y⟩ − y0 = ±(

√
3/4) [β − 4]1/2, for σ = σ0, and

⟨y⟩ − y0 = sign[σ − σ0] [(3/4) |σ − σ0 |]1/3, for β = 4. In
critical conditions, where the stiffness is equal to 0, the system
becomes anomalously reactive; for instance, being exposed

to small positive (negative) force increment it instantaneously
unfolds (folds).

In Fig. 18 we summarize the mechanical behavior of the
system in hard [(a) and (b)] and soft devices [(c) and (d)]. In
a hard device, the system develops negative stiffness below
the critical temperature while remaining de-synchronized and
fluctuating at fast time scale. Instead, in the soft device the
stiffness is always non-negative. However, below the critical
temperature the tension elongation relation develops a plateau
which corresponds to cooperative (macroscopic) fluctuations
between two highly synchronized metastable states. In the
soft device ensemble, the pseudo-critical point of the hard
device ensemble becomes a real critical point with diverging
susceptibility and classical mean field critical exponents. For
the detailed study of the thermal properties in soft and hard
devices, see Refs. [121; 180].

2.1.2. Mixed device. Consider now the general case when
λb is finite. In the muscle context this parameter can be
interpreted as the lump description of myofilaments elasticity
[89; 91; 95], in cell adhesion it can be identified either with
the stiffness of the extracellular medium or with the stiffness
of the intracellular stress fiber [118; 197; 198], and for protein
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folding in optical tweezers, it can be viewed as the elasticity of
the optical trap or the DNA handles [186; 188; 199–204].

The presence of an additional series spring introduces a new
macroscopic degree of freedom because the elongation of the
bundle of parallel cross-bridges y can now differ from the total
elongation of the system z, see Fig. 9. At zero temperature,
the metastable states are again fully characterized by the order
parameter p, representing the fraction of cross-bridges in the
folded (post-power-stroke) configuration. At equilibrium, the
elongation of the bundle is given by ŷ = (λbz − p) /(1 + λb),
so that the energy of a metastable state is now v̂b(p; z) =
v̂(p; ŷ) + (λb/2)(z − ŷ)2, which can be rewritten as

v̂b(p; z) =
λb

2(1 + λb)

[
p(z + 1)2 + (1 − p)z2

]
+ (1 − p)v0 +

p(1 − p)
2(1 + λb)

. (2.15)

Notice the presence of the coupling term ∼ p(1 − p),
characterizing the mean field interaction between cross-
bridges. One can see that this term vanishes in the limit
λb → ∞. Again, when λb → 0 and z − y → ∞, while
λb(z − y) → σ, we recover the soft device potential modulo
an irrelevant constant.

The global minimum of the energy (2.15) corresponds to
one of the fully synchronized configurations (p = 0 or p = 1).
These two configurations are separated at the transition point
z = z0 = (1 + λb)v0/λb − 1/2, by an energy barrier whose
height now depends on the value of λb , see Ref. [179] for more
details.

At finite temperature, the marginal free energy at fixed p
and y can be written in the form

fm(p, y; z, β) = f (p; y, β) +
λb
2
(z − y)2, (2.16)

where f is the marginal free energy for the system in a
hard device (at fixed y). Averaging over y brings about the
interaction among cross-bridges exactly as in the case of a soft
device. The only difference with the soft device case is that

the interaction strength now depends on the new dimensionless
parameter λb .

The convexity properties of the energy (2.16) can be
studied by computing the Hessian,

H(p, y; z, β) =
(
1 + λb 1

1 [βp (1 − p)]−1

)
(2.17)

which is positive definite if β < βc where the critical
temperature is now β∗c = 4(1 + λb). The latter relation also
defines the critical line λb = λc(β) = β/4 − 1, separating
disordered phase (λb > λc), where themarginal free energy has
a single minimum, from the ordered phase (λb < λc), where
the system can be bi-stable.

As in the soft device case, elimination of the internal
variable p allows one to write the partition function in a mixed
device as Z =

∫
exp

{
−βN [ fm(y; z, β)]

}
dy. Here fm denotes

the marginal free energy at fixed y and z

fm(y; z, β) = f̃ (y; β) + (λb/2)(z − y)2 (2.18)

and f̃ is the equilibrium free energy at fixed y, given by
Eq. (2.9). We can now obtain the equilibrium free energy f̃m =
−(1/β) log [Z(z, β)] and compute its successive derivatives.
In particular the tension-elongation relation ⟨σ⟩ (⟨y⟩) and the
equilibrium stiffness κm can be written the form

⟨σ⟩ = λb [z − ⟨y⟩] ,
κm = λb

{
1 − βNλb

[⟨
y2

⟩
− ⟨y⟩2

]}
.

As in the soft device case, we have in the thermodynamic
limit, ⟨y⟩ (z, β) = y∗(z, β), where y∗ is the global minimum
of the marginal free energy (2.18). We can also write κm =
κ(y∗,β)λb

κ(y∗,β)+λb
, where κ is the thermal equilibrium stiffness of the

system at fixed y, see Eq. (2.11). Since λb > 0, we find that
the stiffness of the system becomes negative when κ becomes
negative, which takes place at low temperatures when β > 4.

Our results in the mixed device case are summarized in
Fig. 19(a) where we show the phase diagram of the system in
the (λb, β−1) plane. The hard and soft device limits, which
we have already analyzed, correspond to points (a)–(d). At
finite λb there are three “phases”: (i) In phase I, corresponding
to β < 4, the marginal free energy (2.18) is convex and the
equilibrium tension elongation relation is monotone; (ii) In
phase II [4 < β < 4(1 + λb), see (e)] the free energy is still
convex but the tension-elongation becomes nonmonotone; (iii)
In phase III [β > 4(1+ λb)], the marginal free energy (2.18) is
non convex and the equilibrium response contains a jump, see
(f) in the right panel of Fig. 19.

2.1.3. Kinetics. Consider bi-stable elements described by
microscopic variables xi whose dynamics can be represented
as a series of jumps between the two states. The probabilities
of the direct and reverse transitions in the time interval dt can
be written as

P(xi(t + dt) = −1|xi(t) = 0) = k+(y, β)dt,

P(xi(t + dt) = 0|xi(t) = −1) = k−(y, β)dt .
(2.19)

Here k+(y, β) [resp. k−(y, β)] is the transition rate for the
jump from the unfolded state (resp. folded state) to the
folded state (resp. unfolded state). The presence of the
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jumps is a shortcoming of the hard spin model of Huxley and
Simmons [74] and in the model with non-degenerate elastic bi-
stable elements (soft spins) they are replaced by a continuous
Langevin dynamics [99; 205], see Section 2.2.4.

To compute the transition rates k±(y, β) without knowing
the energy landscape separating the two spin states, we first
follow [74] who simply combined the elastic energy of the
linear spring with the idea of the flat microscopic energy
landscape between the wells, see Fig. 20(a,b) for the notations.
Assuming further that the resulting barriers E0 and E1 =
E0 + v0 are large comparing to kbT, we can use the Kramers
approximation and write the transition rates in the form

k+(y, β) = k− exp [−β (y − y0)] ,

k−(y, β) = exp [−β E1] = const,
(2.20)

where k− determines the timescale of the dynamic response:
τ = 1/k− = exp [β E1] . The latter is fully controlled by a
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Figure 21. (a) Generalization of the Huxley and Simmons model
of the energy barriers based on the idea of the transition state v∗
corresponding to the conformation ℓ. (b) Equilibration rate between
the states as function of the loading parameter at different values of ℓ.
The original HS model corresponds to the case ℓ = −1. In (b) v0 = 1,
v∗ = 1.2 and β = 2. Dotted lines in (b) is a schematic representation
of diffusion (versus reaction) dominated processes. Adapted from
[180]

single parameter E1 whose value was chosen by HS to match
the observations.

Note that Eq. (2.20) is only valid if y > −1/2 [see
Fig. 20(a)], which ensures that the energy barrier for the
transition from pre- to post- power stroke is actually affected
by the load. In the range y < −1/2, omitted by HS, the forward
rate becomes constant, see Fig. 20(a).

The fact that only one transition rate in the HS approach
depends on the load makes the kinetic model non-symmetric:
the overall equilibration rate between the two states r =
k+ + k− monotonously decreases with stretching. For a
long time this seemed to be in accordance with experiments
[74; 85; 87; 206], however, a recent reinterpretation of the
experimental results in Ref. [207] suggested that the recovery
rate may eventually increase with the amplitude of stretching.
This finding can be made compatible with the HS framework if
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we assume that both energy barriers, for the power stroke and
for the reverse power stroke, are load dependent, see Fig. 21,
and Ref. [180] for more details. This turns out to be a built-in
property of the soft spin model considered in Section 2.2.

In the hard spin model with N elements, a single stochastic
trajectory can be viewed as a randomwalk characterized by the
transition probabilities

P
[
pt+dt = pt + 1/N

]
= ϕ+(pt, t)dt,

P
[
pt+dt = pt − 1/N

]
= ϕ−(pt, t)dt,

P
[
pt+dt = pt

]
= 1 −

[
ϕ+(pt, t) + ϕ−(pt, t)

]
dt
(2.21)

where the rate ϕ+ (resp. ϕ−) describes the probability for
one of the unfolded (resp. folded) elements to fold (resp.
unfold) within the time-window dt. While in the case of a hard
device we could simply write ϕ+(t) = N(1− pt)k+(y, β), and
ϕ−(t) = Npt k−, in both soft and mixed devices, y becomes
an internal variable whose evolution become dependent on p,
making the corresponding dynamics non-linear.

The isothermal stochastic dynamics of the system specified
by the transition rates (2.20) is most naturally described in
terms of the probability density ρ(p, t). It satisfies the master
equation,

∂

∂t
ρ(p, t) = ϕ+ (1 − p + 1/N, t) ρ (p − 1/N, t)

+ ϕ− (p + 1/N; t) ρ (p + 1/N, t)

− [ϕ+(1 − p; t) + ϕ−(p; t)] ρ (p, t) , (2.22)

where ϕ+ and ϕ− are the transition rates introduced in
Eq. (2.21). This equation generalizes the HS mean-field
kinetic equation dealing with the evolution of the first moment
⟨p⟩ (t) = ∑

pρ(p, t), namely

∂

∂t
⟨p⟩ (t) =

⟨
ϕ+(1 − p, t)

⟩
−

⟨
ϕ−(p, t)

⟩
. (2.23)

In the case of a hard device, studied by HS, the linear
dependence of ϕ± on p allows one to compute the averages
on the right hand side of (2.23) explicitly. The result is the first
order reaction equation of HS

∂

∂t
⟨p⟩ = k+(y) (1 − ⟨p⟩) − k−(y) ⟨p⟩ . (2.24)

In (2.24) the transition probabilities (2.19) depend only on
the control parameter y and the trajectories of individual
elements are independent. Hence, at a given y each macro-
configuration can be viewed as a realization of N equivalent
Bernoulli processes with the probability of success ρ1(t) =
ρ1(−1; y(t), β) = ⟨p(y(t), β)⟩ represented by a solution of the
HS reaction equation (2.24). Therefore the probability density
ρ(p, t) = P(pt = p) is a binomial distribution with parameters
N and ⟨p(t)⟩:

ρ(p, t) =
(

N
Np

)
[⟨p(t)⟩]Np [1 − ⟨p(t)⟩]N−Np . (2.25)

The entire distribution is then enslaved to the dynamics of the
order parameter ⟨p⟩ (t) captured by the original HS model.
It is then straightforward to show that in the long time limit
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Figure 22. Energy landscape characterizing the sequential folding
process of N = 10 bistable elements in a soft device with σ = σ0.
Parameters are v0 = 1, v∗ = 1.2, and ℓ = −0.5. Adapted from
Ref. [180]

the distribution (2.25) converges to the Boltzmann distribution
(2.8).

In the soft and mixed devices the cross-bridges interact and
the kinetic picture is more complex. To simplify the setting,
we assume that the relaxation time associated with the internal
variable y is negligible comparing to other time scales. This
implies that the variable y can be considered as equilibrated,
meaning in turn that y = ŷ(p, σ) = σ − p in a soft device
and y = ŷ(p, z) = (1 + λb)

−1(λbz − p), in a mixed device.
Below, we briefly discuss the soft device case, which already
captures the effect of the mechanical coupling in the kinetics of
the system. Details of this analysis can be found in Ref. [180].

To characterize the transition rates in a cluster of N > 1
elements under fixed external force, we introduce the energy
w̃(p, p∗) corresponding to a configuration where p elements
are folded (xi = −1) and p∗ elements are at the transition
state (xi = ℓ), see Fig. 21. The energy landscape separating
two configurations p and q can be represented in terms of
the “reaction coordinate” ξ = p − x(q − p), see Fig. 22.
The transition rates between neighboring metastable states can
be computed explicitly using our generalized HS model (see
Fig. 21),

τϕ+(p;σ, β) = N(1 − p) exp [−β∆w̃+(p;σ)] ,

τϕ−(p;σ, β) = Np exp [−β∆w̃−(p;σ)] ,
(2.26)

where ∆w̃± are the energy barriers separating neighboring
states,

∆w̃+(p;σ) = −ℓ(σ − p) − σ0 + (1 + 3
N ) ℓ

2

2

∆w̃−(p;σ) = −(ℓ + 1)(σ − p) + (1 + 3
N ) ℓ

2

2 −
1+N+2ℓ

2N .

In (2.26) 1/τ = α exp[−β v∗], with α = const, determining
the overall timescale of the response. The mechanical coupling
appearing in the exponent of (2.26) makes the dynamics non-
linear.

To understand the peculiarities of the time dependent
response of the parallel bundle of N cross-bridges brought
about by the above nonlinearity, it is instructive to first examine
the expression for the mean first passage time τ(p → p′)
characterizing transitions between two metastable states with
Np and Np′ (p < p′) folded elements.

Following Ref. [208] (and omitting the dependence on σ
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Figure 23. Intra- and inter-bassin relaxation rates in a soft device. (a) Relaxation towards to the metastable state in the case of a reflecting
barrier at p = p̂ (intra-bassin relaxation). [(b) and (c)] Transition between the two macroscopic configurations p0(σ) and p1(σ) (interbassin
relaxation). (b) Forward [k̃(p0 → p1)] and reverse [k̃(p1 → p0)] rates. (c) Equilibration rate k̃(p0 ↔ p1) = k̃(p0 → p1) + k̃(p1 → p0).
Solid line, computation based on Eq. (2.27); dot-dashed line, thermodynamic limit approximation, see Eq. (2.29). The parameters are N = 200,
β = 5 and ℓ = −0.5. Adapted from Ref. [180].

and β), we can write

τ(p→ p′) =
Np′∑

Nk=Np

[ρ (k) ϕ+(k)]
−1

Nk∑
Ni=0

ρ (i) , (2.27)

where ρ is the marginal equilibrium distribution at fixed p and
ϕ+ is the forward rate. In the case β > βc for the interval
of loading [σ−, σ+], the marginal free energy g∞ [see (2.14)]
has two minima which we denote p = p1 and p = p0, with
p0 < p1. The minima are separated by a maximum located
at p = p̂. We can distinguish two process: (i) The intra-bassin
relaxation, which corresponds to reaching the metastable states
(p = 0 or p = 1) starting from the top of the energy barrier p̂
and (ii) The inter-basin relaxation, which deals with transitions
between macro-states.

For the intra-basin relaxation, the first passage time can be
computed using Eq. (2.27), see Ref. [180]. The resulting rates
ϕ̃(p̂ → p0,1) ≡ 1/[τ(p̂ → p0,1)] are practically independent
of the load and scale with 1/N , see Fig. 23(a).

Regarding the transition between the two macrostates, we
note that Eq. (2.27) can be simplified if N is sufficiently large.
In this case, the sums in Eq. (2.27) can be transformed into
integrals

τ(p0 → p1) = N2

p1∫
p0

[ρ∞(u)ϕ+(u)]
−1

[ u∫
0

ρ∞(v) dv
]
du ,

(2.28)
where ρ∞ ∼ exp[−βNg∞] is the marginal distribution in the
thermodynamic limit. The inner integral in Eq. (2.28) can be
computed using Laplace method. Noticing that the function g∞
has a single minimum in the interval [0, u > p0] located at p0,
we can write

τ(p0 → p1) =

[
2πN

β
��g′′∞(p0)��

] 1
2

p1∫
p0

[ρ∞(u) ϕ+(u)]
−1ρ∞(p0) du.

In the remaining integral, the inverse density (1/ρ∞) is
sharply peaked at p = p̂ so again using Laplace method we
obtain

τ(p0 → p1) = 2π (N/β) ϕ+(p̂)−1
�� g′′∞(p0) g′′∞(p̂) ��− 1

2

× exp
{
β N [g∞(p̂) − g∞(p0)]

}
. (2.29)

We see that the first passage time is of the order of
exp[N∆g∞], see Eq. (2.29), where ∆g∞ is the height of the
energy barrier separating the two metastable states. In the
thermodynamic limit, this energy barrier grows exponentially
with N , which freezes collective inter-basin dynamics and
generates metastability, see Fig. 23[(b) and (c)] and Ref. [180].
The above analysis can be generalized for the case of a mixed
device by replacing the soft device marginal free energy g by
its mixed device analog.

The kinetic behavior of the system in the general case is
illustrated in Fig. 24. The individual trajectories generated
by the stochastic Eq. 2.21 are shown for N = 100. The
system is subjected to a slow stretching in hard [(a) and (b)],
soft [(c) and (d)] and mixed [(e) and (f)] devices. These
numerical experiments mimic various loading protocols used
for unzipping tests in biological macro-molecules [186; 199;
203; 209].

Observe that individual trajectories at finite N show
a succession of jumps corresponding to collective folding-
unfolding events. At large temperatures, see Fig. 24[(a), (c)
and (e)], the transition between the folded and the unfolded
state is smooth and is associated with a continuous drift of a
unimodal density distribution, see inserts in Fig. 24. In the hard
device such behavior persists even at low temperatures, see
(b), which correlates with the fact that the marginal free energy
in this case is always convex. Below the critical temperature
[(d) and (f)], the mechanical response becomes hysteretic. The
hysteresis is due to the presence of the macroscopic wells in the
marginal free energy which is also evident from the bimodal
distribution of the cross-bridges shown in the inserts. A study
of the influence of the loading rate on the mechanical response
of the system can be found in Ref. [180].

To illustrate the fast force recovery phenomenon, consider
the response of the system to an instantaneous load increment.
We compare the behaviors predicted by the master equation
(2.22) and by the mean-field chemical kinetic equation of
HS. In Fig. 25 we see the anticipated slowing down induced
by the collective effects at high loads and low temperatures
[see (b) and (c), solid lines]. The corresponding probability
distributions at different times are illustrated in Fig. 25[(e) and
(f)]. The chemical kinetics approximation is accurate at large
temperatures [see thin lines in Fig. 25(a)] but fails to reproduce
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Figure 25. Relaxation of the average conformation in response to fast force drops at different temperatures and initial conditions ⟨p⟩in. Thick
lines, solutions of the master equation (2.22); thin lines, solutions of the mean-field HS equation. In (b), the initial condition corresponds to
thermal equilibrium: bimodal distribution and ⟨p⟩in = 1/2. In (c), the initial condition corresponds to the unfolded metastable state: unimodal
distribution and ⟨p⟩in ≈ 0.06. Snapshots at different times show the probability density profiles.

the exact two scale dynamics at low temperatures, event though
the final equilibrium states are captured correctly.

The difference between the chemo-mechanical description
of HS and the stochastic simulation targeting the full probabil-
ity distribution is due to the fact that in the equation describing
the mean-field kinetics the transition rates are computed based
on the average values of the order parameter. At large temper-
atures, where the distribution is uni-modal, the average values
faithfully describe the most probable states and therefore the
mean-field kinetic theory captures the timescale of the response
adequately; see Fig. 25 (a). Instead, at low temperatures, when
the distribution is bi-modal, the averaged values correspond
to the states that are poorly populated; see Fig. 25 (b) where
⟨p⟩in = 1/2. The value of the order parameter , which actually
makes kinetics slow, describes a particular metastable config-
uration rather than the average state and therefore the mean-

field kinetic equation fails to reproduce the real dynamics; see
Fig. 25[(b) and (c)].

2.2. Soft spin model

The hard spin model states that the slope of the T1 curve,
describing instantaneous stiffness of the fiber, and the slope of
the T2 curve are equal, which differs from what is observed
experimentally, see Fig. 5. The soft spin model [99; 205] was
developed to overcome this problem and to provide a purely
mechanical continuous description of the phenomenon of fast
force recovery. To this end, the discrete degrees of freedom
were replaced by the continuous variables (xi); the latter can
be interpreted as projected angles formed by the segment S1
of the myosin head with the actin filament. Most importantly,
the introduction of continuous variables has eliminated the
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necessity of using multiple intermediate configurations for the
head domain [67; 68; 86].

The simplest way to account for the bistability in the
configuration of the myosin head is to associate a bi-quadratic
double-well energy uSS(xi)with each variable xi , see Fig. 26(a);
interestingly, a comparison with the reconstructed potentials
for unfolding biological macro-molecules shows that a bi-
quaqdratic approximation may be quantitavely adequate [186].
A nondegenerate spinodal region can be easily incorporated
into this model, however, in this case we lose the desirable
analytical transparency. It is sufficient for our purposes to
keep the other ingredients of the hard spin model intact; the
original variant of the soft spin model model (see Ref. [210])
corresponded to the limit κb/(Nκ0)→∞.

In the soft spin model the total energy of the cross bridge
can be written in the form

v(x, y) = uSS(x) + (κ0/2)(y − x)2, (2.30)

where

uSS(x) =

{
1
2 κ1(x)2 + v0 if x > ℓ,
1
2 κ2(x + a)2 if x ≤ ℓ.

(2.31)

The parameter ℓ describes the point of intersection of
the 2 parabolas in the interval [−a, 0], and therefore
v0 = (κ2/2)(ℓ + a)2 − (κ1/2) ℓ2, is the energy difference be-
tween the pre-power-stroke and the post-power-stroke config-
urations. It will be convenient to use normalized parame-
ters to characterize the asymmetry of the energy wells: λ2 =
κ2/(1 + κ2) and λ1 = κ1/(1 + κ1).

The dimensionless total internal energy per element of a
cluster now reads

v(x, y; z) =
1

N

N∑
i=1

[
uSS(xi) +

1

2
(y − xi)2 +

λb
2
(z − y)2

]
,

(2.32)
where λb = κb/(Nκ0). Here z is the control parameter. In a
soft device case, the energy takes the form

w(x, y;σ) =
1

N

N∑
i=1

[
uSS(xi) +

1

2
(y − xi)2 − σy

]
. (2.33)

where σ is the applied tension per cross-bridge, see Ref. [179]
for the details.

2.2.1. Zero temperature behavior. By minimizing out the
internal variable y and introducing again the fraction of cross
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Figure 27. Energy landscape along the global minimum path for the
soft-spin model in a hard device at different values of the coupling
parameter λb with N = 20. Adapted fromRef. [179]. The asymmetry
in the potential is the results of choosing λ2 , λ1. Parameters are,
λ2 = 0.4, λ1 = 0.7, ℓ = −0.3.

cross bridges in the post power stroke state, p = 1
N

∑
αi ,

where αi = 1 if xi > ℓ and 0 otherwise, we find that the
global minimum of the energy again corresponds to one of the
homogeneous states p = 0, 1 with a sharp transition at z = z0.
We can also take advantage of the fact the soft spin model deals
with continuous variables xi and define a continuous reaction
path connecting metastable states with different number of
folded units. Each folding event is characterized by a micro
energy barrier that can be now computed explicitly. The typical
structure of the resulting energy landscape is illustrated in
Fig. 27 for different values of the coupling parameter λb , see
Ref. [179] for the details. In Fig. 28 we illustrate the zero
temperature behavior of the soft-spin model with a realistic set
of parameters, see Tab. 1 below.

2.2.2. Finite temperature behavior. When z is the con-
trol parameter (mixed device), the equilibrium probabil-
ity distribution for the remaining mechanical degrees of
freedom can be written in the form ρ(x, y; z, β) =
Z−1(z, β) exp [−βNv (x, y; z)] , where β = (κ0a2)/(kbT) and
Z(z, β) =

∫
exp [−βNv (x, y; z)] dxdy. In the soft device en-

semble, z becomes a variable and the equilibrium distribution
takes the form,

ρ(x, y, z;σ, β) = Z−1(σ, β) exp [−βNw (x, y, z;σ)] , (2.34)

with Z(σ, β) =
∫
exp [−βNw (x, y, z, σ)] dxdydz.

When z is fixed, the internal state of the system can be
again characterized by the two mesoscopic paramters y and
p. By integrating (2.34) over x and y we can define the
marginal density ρ(p; z, β) = Z−1 exp [−βN f (p; z, β)]. Here
f is the marginal free energy at fixed (p, z) which is illustrated
in Fig. 29.

As we see, the system undergoes an order-disorder phase
transition which is controlled by the temperature and by the
elasticity of the backbone. If the double well potential is
symmetric (λ1 = λ2), this transition is of second order as in
the hard spin model. A typical bifurcation diagrams for the
case of slightly nonsymmetric energy wells are shown in Fig.
30. The main feature of the model without symmetry is that
the second order phase transition becomes a first order phase
transition.
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β = 20. Here z is such that ⟨p⟩ = 1/2 at β = 20 and λb = 0.5.

A phase diagram obtained with realistic parameters (justi-
fied later in the paper) is shown in Fig. 31[(a) and (b)]. Recall-
ing that λb = κb/(Nκ0), we use (T, λb) [see Fig. 31(a)] and
(T, N) [see Fig. 31(b)] planes to represent the same configu-
ration of phases. In Phases I and II, the marginal free energy
f has a single minimum while in Phase III it may have three
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Figure 31. Phase diagram of the soft spin model. [(a) and (b)]
Boundaries between the phases I, II and III in the (T, λb) space and in
the (T, N) space, respectively. [(c)-(e)] Typical free energy f̃ , tension-
elongation relation ⟨σ⟩(z) and marginal free energy in each phase.
The parameters are listed in Tab.1, see Section 2.2.3.

critical points, two corresponding to metastable states and one
to an unstable state. The equilibrium response can be obtained
by computing the partition function Z numerically. In the ther-
modynamic limit, we can employ the same methods as in the
previous section and identify the equilibrium mechanical prop-
erties of the system with the global minimum of the marginal
free energy f . In Fig. 31[(c)–(e)], we illustrate the equilibrium
mechanical response of the system : similar phase diagrams
have been also obtained for other systems with long-range in-
teractions [211].

While the soft spin model is analytically much less
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stochastic simulations. Minima are arbitrarily set to 0. Parameters
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transparent than the hard spin model, we can still show
analytically that the system develops negative stiffness at
sufficiently low temperatures. Indeed, we can write

f̃ ′′ = ⟨σ⟩′ = λb

[
1 − βNλb

⟨
(y − ⟨y⟩)2

⟩]
,

where f̃ is the equilibrium free energy of the system in a mixed
device. This expression is sign indefinite and by the same
reasoning as in the hard spin case, on can show that the critical
line separating Phase I and Phase II is represented in Fig. 31
by a vertical line T = Tc . In phase I (T > Tc) the equilibrium
free energy is convex and the resulting tension-elongation is
monotone. In Phase II (T < Tc) the equilibrium free energy
is non-convex and the tension-elongation relation exhibits an
interval with negative stiffness. In phase III the energy is non-
convex within a finite interval around z = z0, see dotted line
in Fig. 31(e). As a result the system has to oscillate between
two metastable states to remain in the global minimum of the
free energy [solid line in Fig. 31(e)]. The ensuing equilibrium
tension-elongation curve is characterized by a jump located at
z = z0.

Observe that the critical line separating Phase II and Phase
III in Fig. 31 (b) represents the minimum number of cross-
bridges necessary to obtain a cooperative behavior at a given
value of the temperature. We see that for temperatures around
300K, the critical value of N is about 100 which corresponds
approximately to the number of cross-bridges involved in
isometric contraction in each half-sarcomere, see Section 2.2.3.
This observation suggests that muscle fibers may be tuned to
work close to the critical state [99]. A definitive statement of
this type, however, cannot be made at this point in view of the
considerable error bars in the data presented in Table 1.

In a soft device, a similar analysis can be performed
in terms of the marginal Gibbs free energy g(p;σ, β). A
comparison of the free energies of a symmetric system in the
hard and the soft device ensembles is presented in Fig. 32,
where the parameters are such that the system in the hard device
is in phase III, see Fig. 31.

We observe that both free energies are bi-stable in this range
of parameters, however the energy barrier separating the two
wells in the hard device case is about three times smaller than in
the case of a soft device. Since the macroscopic energy barrier
separating the two state is proportional to N , the characteristic
time of a transition increases exponentially with N as in the
hard spin model, see Section 2.1.3. Therefore the kinetics of
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Figure 33. Soft spin model in hard [(a) and (b)] and soft [(c) and (d)]
devices. [(a) and (c)] Free energies; [(b) and (d)] tension elongation
relations. The solid lines correspond to the parameters listed in Tab.1
and the gray regions indicate the corresponding domains of bistability.
The tension and elongation are normalized to their values at the
transition point where ⟨p⟩ = 1/2.

the power-stroke will be exponentially slower in the soft device
than in the hard device as it is observed in experiment, see more
about this in the next section. Note also that the macroscopic
oscillations are more coherent in a soft device than in a hard
device.

By differentiating the equilibrium Gibbs free energy
g̃(σ, β) = −1/(βN) log [Z(σ, β)] with respect to σ, we obtain
the tension-elongation relation, which in a soft device is always
monotone since

g̃′′ = −
[
1 + βN

⟨
(z − ⟨z⟩)2

⟩]
< 0.

This shows once again that soft and hard device ensembles are
non-equivalent, in particular, that only the system in a hard
device can exhibit negative susceptibility.

In Fig. 33, we illustrate the behavior of the equilibrium free
energies f̃ and g̃ in thermodynamic limit [(a) and (b)] together
with the corresponding tension-elongation relations [(b) and
(d)], see Ref. [212] for the details. The tension and elongation
are normalized by their values at the transition point where
⟨p⟩ = 1/2 while the value of β is taken from experiments
(solid line). The bi-stability (metastability) takes place in the
gray region and we see that this region is much wider in the
soft device than in the hard device, which corroborates that the
energy barrier is higher in a soft device.

2.2.3. Matching experiments. The next step is to match the
model with experimental data. The difficulty of the parameter
identification lies in the fact that the experimental results vary
depending on the species, and here we limit our analysis to
the data obtained from rana temporaria [73; 80; 87; 89].
Typical values of the parameters of the non-dimensional model
obtained from these data are listed in Table 1.

The first parameter a is obtained from structural analysis of
myosin II [73; 96–98]. It has been shown that that its tertiary
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Dimensional Non-dimensional

a 10 ± 1 nm
κ0 2.7 ± 0.9 pN nm−1 N 100 ± 30
T 277.15 K β 80 ± 30
κb 150 ± 10 pN nm−1 λb 0.56 ± 0.25
κ1 3 ± 1 pNnm−1 λ1 0.5 ± 0.1
κ2 1.05 ± 0.75 pNnm−1 λ2 0.25 ± 0.15
v0 50 ± 10 zJ v0 0.15 ± 0.30

Table 1. Realistic values (with estimated error bars) for the
parameters of the snap-spring model ( 1 zJ = 10−21 J).

structure can be found in two conformations forming an angle
of ∼70°. This corresponds to an axial displacement of the lever
arm end of ∼10 nm. We therefore fix the characteristic length
in our model at a = (10 ± 1) nm.

The absolute temperature T is set to 277.15K which
correspond to 4 ◦C. This is the temperature at which most
experiments on frog muscles are performed [206].

Several experimental studies aimed at measuring the
stiffness of the myosin head and of the myofilaments (our
backbone). One technique consists in applying rapid (100 µs)
length steps to a tetanized fiber to obtain its overall stiffness
κtot, which corresponds to the elastic backbone in series with
N cross-bridges: κtot = (Nκ0 κb)/(Nκ0 + κb). The stiffness
associated with the double well potential (κ1,2) is not included
into this formula because the time of the purely elastic response
is shorter than the time of the conformational change. This
implies an assumption that the conformational degree of
freedom is “frozen” during the purely elastic response. Such
assumption is supported by experiments reported in Ref. [213],
where shortening steps were applied at different stages of the
fast force recovery, which means during the power-stroke. The
results show that the overall stiffness is the same in the recovery
process and in the isometric conditions.

If we change the chemical environment inside the fiber by
removing the cell membrane (“skinning”) it is possible to per-
form the length steps under different calcium concentrations.
We recall that calcium ions bind to the tropomyosin complex
to allow the attachment of myosin heads to actin. Therefore, by
changing the calcium environment, one can change the number
of attached motors (N) and thus their contribution to the to-
tal stiffness while the contribution of the filaments remains the
same [87; 89; 214]. Another solution is to apply rapid oscilla-
tions during the activation phase when force rises [100; 215].
These different techniques give κb = (150 ± 10) pNnm−1, a
value which is compatible with independent X-ray measure-
ments [76; 91; 93; 100; 167; 168; 181; 216].

To determine the stiffness of a single element, elastic
measurements have been performed on fibers in rigor mortis
where all the 294 cross-bridges of a half-sarcomere are
attached, see Ref. [89]. Under the assumption that the filament
elasticity is the same in rigor and in the state of tetanus,
one can deduce the stiffness of a single cross-bridge. The
value extracted from experiment is κ0 = (2.7 ± 0.9) pNnm−1
[80; 91; 100]. Given that we know the values of κ and a, we
can estimate the non-dimensional inverse temperature, β =
(κ0a2)/(kbT) = 71 ± 26.

Once κb and κ0 are known, the number of cross-bridges
attached in the state of isometric contraction can be obtained

directly from the formula κtot = (Nκ0 κb)/(Nκ0 + κb).
Experimental data indicate that N = 106 ± 11 [80; 87; 100].
We can then deduce the value of our coupling parameter, λb =
κb/(Nκ0) = 0.54 ± 0.19.

As we have seen, the phase diagram shown in Fig. 31(b),
suggests a way to understand why N ≈ 100. Larger values
of N are beneficial from the perspective of the total force
developed by the system. However, reaching deep inside phase
III means highly coherent response, which gets progressively
more sluggish as N increases. In this sense being around
the would be a compromise between a high force and a high
responsiveness. It follows from the developed theory that for
the normal temperature the corresponding value of N would be
exactly around 100; for an attempt of a similar evolutionary
justification for the size of titin molecule [217]. There are,
of course, other functional advantages of a near-criticality
associated, for instance, with diverging correlation length and
the possibility of fast coherent response.

At the end of the second phase of the fast force recovery
(see Section 1.2.2), the system reaches an equilibrium state
characterized by the tension T2 in a hard device or by the
shortening L2 in a soft device. The values of these parameters
are naturally linked with the equilibrium tension ⟨σ⟩ in a hard
device and equilibrium length ⟨z⟩ in a soft device. In particular,
the theory predicts that in the large deformation (shortening
or stretching) regimes, the tension-elongation relation must
be linear, see Fig. 33. The linear stiffness in these regimes
corresponds to the series arrangement of N elastic elements,
each one with stiffness equal to either κ1 or κ2 and with a series
spring characterized by the stiffness κb . Using the classical
dimensional notations—(T, L) instead of the non dimensional
(σ, z)—the tension elongation relation at large shortening takes
the form

T2(L) =
κ0κ2
κ0+κ2

κb
κ0κ2
κ0+κ2

+ κb
(L + a)

In experiment, the tension T2 drops to zero when a step L2 ≃
−14 nmhs−1 (nanometer per half-sarcomere) is applied to the
initial configuration L0. Therefore L0 = −a − L2. Sincea =
11 nm, we obtain L0 = 3.2 nm. Using a linear fit of the
experimental curve shown in Fig. 5 (shortening) we finally
obtain κ2 ≃ 1 pN nm−1.

The value of κ1 is more difficult to determine since there are
only few papers dealing with stretching [94; 218]. Based on the
few available measurements, we conclude that the stiffness in
stretching is 1.5 larger than in shortening which gives κ1 ≃
3.6 pN nm−1. A recent analysis of the fast force recovery
confirms this estimate [207].

The last parameter to determine is the intrinsic bias of the
double well potential, v0, which controls the active tension
in the isometric state. The tetanus of a single sarcomere in
physiological conditions is of the oder of 500 pN [80; 100].
If we adjust v0 to ensure that the equilibrium tension matches
this value, we obtain v0 ≃ 50 zJ. This energetic bias can also
be interpreted as the maximum amount of mechanical work
that the cross-bridge can produce during one stroke. Since
the amount of metabolic energy resulting from the hydrolysis
of one ATP molecule is of the order of 100 zJ we obtain a
maximum efficiency around 50% which agrees with the value
currently favoured in the literature [18; 219].
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Figure 34. Soft-spin model compared with experimental data from Fig. 5 and 6. [(a) and (b)] Average trajectories were obtained from
stochastic simulations, after the system was exposed to various load steps in hard (a) and soft (b) devices. (b’) Schematic representation of the
regime shown in (b) for large times illustrating eventual equilibration (dotted line). (c) Tension-elongation relation obtained from the numerical
simulations (sim.) compared with experimental data (symbols, exp.); dotted line, thermal equilibrium in a soft device. (d) Comparison of the
rates of recovery: crosses show the result of the chemomechanical model from Ref [207]; asterisks show the “fast component” of the recovery
rate (see explanations of such fast-slow decomposition in Ref [207]). Figure adapted from Ref. [99]. Here parameters are: κ2 = 0.41 pN nm−1,
κ1 = 1.21 pN nm−1, λb = 0.72, ℓ = −0.08 nm, N = 112, β = 52 (κ0 = 2 pN nm−1, a = 10 nm, T = 277.13K, z0 = 4.2 nmhs−1.

2.2.4. Kinetics. After the values of the nondimensional
parameters are identified, one can simulate numerically the
kinetics of fast force recovery by exposing the mechanical
system to a Langevin thermostat. For simplicity, we
assume that the macroscopic variables y and z are fast
and are always mechanically equilibrated. Such quasi-
adiabatic approximation is not essential but it will allow us
to operate with a single relaxation time-scale associated with
the microscopic variables xi . Denoting by η the corresponding
drag coefficient we construct the characteristic timescale τ =
η/κ, which will be adjusted to fit the overall rate of fast force
recovery.

The response of the internal variables xi is governed by the
non-dimensional system

dxi = b(xi)dt +
√
2β−1dBi

where the drift is

b(x, z) = −u′SS(xi) + (1 + λb)
−1(λbz + 1

N

∑
xi) − xi,

b(x, σ) = −u′SS(xi) + σ + N−1
∑

xi − xi

in a hard and a soft device, respectively. In both cases the
diffusion term dBi represents a standard Wiener processes.

In Fig. 34, we illustrate the results of stochastic simulations
imitating fast force recovery , using the same notations as

in actual experiments. The system, initially in thermal
equilibrium at fixed L0 (or T0), was perturbed by applying fast
(∼100 µs) length (load) steps with different amplitudes.

Typical ensemble-averaged trajectories are shown in
Fig. 34[(a) and (b)] in the cases of hard and soft device, respec-
tively. In a soft device (b) the system was not able to reach
equilibrium within the realistic time scale when the applied
load was sufficiently close to T0 , see, for instance, the curve
T = 0.9T0 in Fig. 34(b), where the expected equilibrium value
is L2 = −5 nmhs−1. Instead, it remained trapped in a quasi-
stationary (glassy) state because of the high energy barrier re-
quired to be crossed in the process of the collective power-
stroke. The implied kinetic trapping, which fits the pattern
of two-stage dynamics exhibited by systems with long-range
interactions [211; 220; 221], may explain the failure to reach
equilibrium in experiments reported in Refs. [92; 161; 222]. In
the hard device case, the cooperation among the cross-bridges
is much weaker and therefore the kinetics is much faster, which
allows the system to reach equilibrium at experimental time
scale.

A quantitative comparison of the obtained tension-
elongation curves with experimental data [see Fig. 34(c)]
shows that for large load steps the equilibrium tension fits the
linear behavior observed in experiment as it can be expected
from our calibration procedure. For near isometric tension in
a soft device the model also predicts the correct interval of ki-
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netic trapping, see the gray region in Fig. 34(c).
While the model suggests that negative stiffness should be

a characteristic feature of the realistic response in a hard device
for a single half-sarcomere (see Fig. 31), such behavior has
not been observed in experiments on whole myofibrils. Note,
however, that in the model all cross bridges are considered
to be identical and, in particular, it is assumed that they are
attached with the same initial pre-strain. If there exists a
considerable quenched disorder resulting from the randomness
of the attachment/detachment positions, the effective force
elongation curve will be flatter [151]. Another reason for the
disappearence of the negative susceptibility may be that the
actual spring stiffness inside a cross-bridge is smaller due to
nonlinear elasticity [223]. One can also expect the unstable
half-sarcomeres to be stabilized actively through processes
involving ATP , see Refs. [158; 224] and our Section 3. The
softening can be also explained by the collective dynamics of
many half sarcomeres organized in series, see our Section 2.3.

The comparison of the rates of fast recovery obtained in our
simulations with experimental data (see Fig. 34) shows that the
soft-spin model reproduces the kinetic data in both hard and
soft ensembles rather well. Note, in particular, that the rate of
recovery in both shortening and stretching protocols increases
with load. This is a direct consequence of the fact that the
energy barriers for forward and the reverse transitions depend
on the mechanical load. Instead, in the original formulation
of the HS, and in most subsequent chemomechanical models,
the reverse rate was kept constant and this effect was missing.
In Ref. [207], the authors proposed to refine the HS model
by introducing a load dependent barrier also for the reversed
stroke, see the results of their modeling in Fig. 34.

2.3. Interacting half-sarcomeres

So far, attention has been focused on (passive) behavior of
a single force generating unit, a half-sarcomere. We dealt
with a zero dimensional, mean field model without spatial
complexity. However, as we saw in Fig. 8(a), such elementary
force generating units are arranged into a complex, spatially
extended structure. Various types of cross-links in this structure
can be roughly categorized as parallel or series connections.

A prevalent perspective in physiological literature is that
interaction among force generating units is so strong that
the mean field model of a single unit provides an adequate
description of the whole myofibril. The underlying assumption
is that the deformation, associated with muscle contractions, is
globally affine.

To challenge this hypothesis, we consider in this Section
the simplest arrangement of force generating units. We
assume that the whole section of a muscle myofibril between
the neighboring Z disk and M-line deforms in an affine
way and treat such transversely extended unit as a (macro)
half-sarcomere. The neighboring (macro) half-sarcomeres,
however, will be allowed to deform in an non-affine way. The
resulting model describes a chain of (macro) half-sarcomeres
arranged in series and the question is whether the fast force
recovery in such a chain takes place in an affine way [225].

Chain models of a muscle myofibril were considered in
Refs. [2; 114; 226] where the nonaffinity of the deformation
was established based on the numerical simulations of kinetics.
Analytical studies of athermal chain models with bi-stable

(A)
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(B)
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z1
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ussκ0

N

κb

y2

z2

Figure 35. Model of a single sarcomere. A single sarcomere is
located between two Z-disks (A). The M-line (B) separates the two
half-sarcomeres. A single sarcomere contains two arrays of N parallel
cross-bridges connected by two linear springs

elements were conducted in Refs [227–230] where the non-
affinity of the deformation (a non-Cauchy-Born behavior) was
linked to phase coexistence. More recent studies of the finite
temperature behavior can be found in Refs. [196; 231–234].

Herewe present a simple analytical study of the equilibrium
properties of a chain of half-sarcomeres which draws on
Ref. [231] and allows one to understand the outcome of the
numerical experiments conducted in Ref. [114].

2.3.1. Two half-sarcomeres. Consider first the most elemen-
tary series connection of two half-sarcomeres, each of them
represented as a parallel bundle of N cross-bridges. This sys-
tem can be viewed as a schematic description of a single sar-
comere, see Fig.35(b). To understand the mechanics of this
system, we begin with the case where the temperature is equal
to zero. The total (nondimensional) energy per cross bridge
reads

v =
1

2

{
1

N

N∑
i=1

[
uSS(x1i) +

1

2
(y1 − x1i)2 +

λb
2
(z1 − y1)

2

]
+

1

N

N∑
i=1

[
uSS(x2i) +

1

2
(y2 − x2i)2 +

λb
2
(z2 − y2)

2

]}
.

(2.35)

In a hard device case, when we impose the average elongation
z = (1/2)(z1 + z2), none of the half-sarcomeres is loaded
individually in either soft or hard device. In a soft device case,
the applied tension σ, which we normalized by the number of
cross bridges in a half-sarcomere, is the same in each half-
sarcomere when the whole system is in equilibrium. The
corresponding dimensionless energy per cross bridge is w =
v − σ z̄.

The equilibrium equations for the continuous variables
xi are the same in hard and soft devices, and have up to 3
solutions,

x̂k1(yk) = (1 − λ1) ŷk, if xki ≥ ℓ,
x̂k2(yk) = (1 − λ2) ŷk − λ1, if xki < ℓ,

x̂k∗ = ℓ,

(2.36)

where again λ1,2 = κ1,2/(1 + κ1,2) and ŷk denotes the
equilibrium elongation of the half-sarcomere with index k =
1, 2.

We denote by ξ = {ξ1, ξ2}, the micro-configuration of
a sarcomere where the triplets ξk = (pk, rk, qk), with pk +
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Figure 36. Mechanical equilibrium in a half-sarcomere chain with N = 2 and symmetric double well potential in a hard device. (a) Energy
levels; (b) Tension-elongation relation. Solid lines, metastable states; dashed lines, unstable states; bold lines:, global minimum. Parameters:
λ1 = λ2 = 0.5, u0 = 0, ℓ = −0.5, λb = 1.
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Figure 37. Mechanical equilibrium with N = 2 and symmetric double well potential in a soft device. (a) Energy levels; (b) Tension-elongation
relation. Solid lines, metastable states; dashed lines, unstable states; bold lines, global minimum. Parameters are as in Fig.36.

qk + rk = 1, characterize the fractions of cross bridges in half-
sarcomere k that occupy position x̂k1, x̂k∗ (spinodal state) and
x̂k0, respectively. For a given configuration ξk , the equilibrium
value of yk is given by

ŷk(ξk, zk) =
λb ẑk + rkℓ − pkλ2
λb + λxb(ξk)

,

where λxb(ξk) = pkλ2+qkλ1+rk , is the stiffness of each half-
sarcomere. The elongation of a half-sarcomere in equilibrium
is ẑk = ŷk +σ/λb , where σ is a function of z and ξ in the hard
device case and a parameter in the soft device case.

To close the system of equations we need to add the
equilibrium relation between the tension σ and the total
elongation z = (1/2)(ŷ1 + ŷ2) + σ/λb . After simplifications,
we obtain

σ̂(z, ξ) = λ(ξ)

[
z +

1

2

(
p1λ2 − r1ℓ
λxb(ξ2)

+
p2λ2 − r2ℓ
λxb(ξ2)

)]
,

(2.37)

ẑ(σ, ξ) =
σ

λ(ξ)
− 1

2

(
p1λ2 − r1ℓ
λxb(ξ1)

+
p2λ2 − r2ℓ
λxb(ξ2)

)
(2.38)

in a hard and a soft devices, respectively, where λ(ξ)−1 =
λ−1
b
+(1/2)[λxb(ξ1)

−1+λxb(ξ2)−1] is compliance of the whole
sarcomere. The stability of a configuration (ξ1, ξ2) can be
checked by computing the Hessian of the total energy and one
can show, that configurations containing cross-bridges in the
spinodal state are unstable, see Refs. [212; 227] for detail.

We illustrate the metastable configurations in Fig.36
(hard device) and Fig.37 (soft device). For simplicity, we
used a symmetric double well potential (λ1 = λ2 =
0.5, ℓ = −0.5). Each metastable configuration is la-
beled by a number representing a micro-configuration in
the form {(p1, q1), (p2, q2)} where pk = 0, 1/2, 1 (resp.
qk = 0, 1/2, 1) denotes the fraction of cross bridges in
the post-power-stroke state (resp. pre-power-stroke) in half-
sarcomere k. The correspondence between labels and con-
figurations goes as follows: 1: {(1, 0), (1, 0)} – 2 and 2’:
{(1, 0), (12,

1
2 )} and {(

1
2,

1
2 ), (1, 0)} – 3: {(

1
2,

1
2 ), (

1
2,

1
2 )} – 4 and

4’: {(1, 0), (0, 1)} and {(0, 1), (1, 0)} – 5 and 5’: {(12,
1
2 ), (0, 1)}

and {(0, 1), (12,
1
2 )} – 6: {(0, 1), (0, 1)}. For instance the label

2’: {(12,
1
2 ), (1, 0)} corresponds to a configuration where in the

first half-sarcomere, half of the cross bridges are in post-power-
stroke and another half are in pre-power-stroke; in the second
half-sarcomere, all the cross bridges are in post-power-stroke.
In the hard device case (see Fig.36) the system, following the
global minimum path (bold line), evolves through non affine
states 4 {(1, 0), (0, 1)} and 4’ {(0, 1), (1, 0)}, where one half-
sarcomere is fully in pre-power-stroke, and the other one is
fully in post-power-stroke. This path is marked by two tran-
sitions located at z∗1 and z∗2 see Fig.36(a).

The inserted sketches in Fig.36 (b) show a single sarcomere
in the 3 configurations encountered along the global minimum
path. Note that along the two affine branches, where the
sarcomere is in affine state (1 and 6), theM-line (see the middle
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Figure 38. Equilibrium response of a single sarcomere in the
thermodynamic limit. [(a) and (b)] Hard device; [(c) and (d)] soft
device. [(a) and (c)] Gibbs and Helmholtz free energy; [(b) and
(d)] corresponding tension-elongation . Parameters are, λ1 = 0.7,
λ2 = 0.4, ℓ = −0.3, λb = 1.

vertical dashed line) is in the middle of the structure. Instead,
in the non-affine state (branch 4), the two half-sarcomeres
are not equally stretched, and the M-line is not positioned in
the center of the sarcomere. As a result of the (spontaneous)
symmetry breaking, the M-line can be shifted in any of the two
possible directions to form either configuration 4 or 4’, see also
Ref. [225]. In the soft device case [see Fig. 37], the system
following the global minimum path never explores non-affine
states. Instead both half-sarcomeres undergo a full unfolding
transition at the same threshold tension σ∗.

If the temperature is different from zerowe need to compute
the partition functions

Z2(z, β) =
∫

exp [−2βNv(z, x)] δ(z1 + z2 − 2z) dx (2.39)

Z2(σ, β) =

∫
exp [−2βNw(σ, x)] dx, (2.40)

in a hard and a soft device, respectively, where again β =
(κa2/(kbT). The corresponding free energies are f̃2(z, β) =
−(1/β) log[Z2(z)] and g̃2(σ, β) = −(1/β) log[Z2(σ)].

The explicit expressions of these free energies can be
obtained in the thermodynamic limit N → ∞, but they are
too long to be presented here, see Refs. [212; 231] for more
details. We illustrate the results in Fig.38 where we show both,
the energies and the tension-elongation isotherms.

We see that a sarcomere exhibits different behavior in
the two loading conditions. In particular, the Gibbs free
energy remains concave in the soft device case for all
temperatures while the Helmholtz free energy becomes non-
convex at low temperatures in the hard device case. Non-
convexity of the Helmholtz free energy results in non-
monotone tension-elongation relations with the developments
of negative stiffness.

It is instructive to compare the obtained non-affine
tension-elongation relations with the ones computed under
the assumption that each half-sarcomere is an elementary
constitutive element with a prescribed tension-elongation
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(a) HD constitutive relation

−1 −0.5 0 0.5

z̄

(b) SD constitutive relation

Figure 39. Tension-elongation relations for a sarcomere in a hard
device. Thick lines: equilibrium tension-elongation relations based
on the computation of the partition function (2.39). Thin lines:
response of two half-sarcomere in series, each one endowed with
the constitutive relation illustrated in Fig. 33(b). (a) Hard device
constitutive law. (b) Soft device constitutive law, see Ref. [212] for
more details. Parameters are: λ1 = 0.7, λ2 = 0.4, ℓ = −0.3,
N = 10, β = 20 and λb = 1.
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Figure 40. Tension-elongations for a sarcomere in a soft device.
Thick lines: equilibrium tension-elongation relations based on the
computation of the partition function (2.40). Thin lines: response of
two half-sarcomere in series, each one endowed with the constitutive
relation illustrated in Fig. 33(d). (a) Hard device constitutive law.
(b) Soft device constitutive law, see Ref. [212] for more details.
Parameters are as in Fig. 39.

relation. We suppose that such a relation can be extracted from
the response of a half-sarcomere in either soft or hard device
which allows us to use expressions obtained earlier, see Fig. 33.

The hard device case is presented in Fig. 39. With
thick lines we show the equilibrium tension-elongation rela-
tion while thin lines correspond to the behavior of the two phe-
nomenologically modeled half-sarcomeres in series exhibiting
each either soft or hard device constitutive behavior. Note that
if the chosen constitutive relation corresponds to the hard de-
vice protocol [illustrated in Fig 33(b)], we obtain several equi-
librium states for a given total elongation which is a result
of the imposed constitutive constraints, see Fig. 39(a). The
global minimum path predicted by the “constitutive model”
shows discontinuous transitions between stable brancheswhich
resemble continuous transitions along the actual equilibrium
path. If instead we use the soft device constitutive law for
the description of individual half-sarcomeres [illustrated in
Fig. 33(d)], the tension-elongation response becomes mono-
tone and is therefore completely unrealistic, see Fig. 39(b).
We reiterate that in both comparisons, the misfit is due to the
fact that in a fully equlibrated sarcomere none of the half-
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sarcomeres is loaded in either soft or hard device. It would
be interesting to show that a less schematic system of this type
can reproduce non-affinities observed experimentally [235].

In Fig.40 we present the result of a similar analysis for
a sarcomere loaded in a soft device. In this case, if the
“constitutive model” is based on the hard device tension-
elongation relations [from Fig. 33(b)], we obtain the same
(constrained) metastable states as in the previous case, see
Fig. 39(a), thin lines. This means, in particular, that the
response contains jumps while the actual equilibrium response
is monotone, see Fig. 40(a). Instead, if we take the soft
device tension-elongation relation as a “constitutive model”,
we obtain the correct overall behavior, see Fig. 40(b). This
is expected since in the (global) soft device case both half-
sarcomeres are effectively loaded in the same soft device and
the overall response is affine.

2.3.2. A chain of half-sarcomeres. Next, consider the
behavior of a chain of M half-sarcomeres connected in series.
As before, each half-sarcomere is modeled as a parallel bundle
of N cross bridges.

We first study the mechanical response of this system at
zero temperature. Introduce xki—the continuous degrees of
freedom characterizing the state of the cross bridges in half-
sarcomere k, yk—the position of the backbone that connects
all the cross bridges of the half-sarcomere k and zk—the total
elongation of the half-sarcomere k. The total energy (per cross
bridge) of the chain takes the form

v(x, y, z) =
1

MN

M∑
k=1

{
N∑

i=1

[
uSS(xki) +

1

2
(yk − xki)

2

+λb
1

2
(zk − yk)

2

] }
, (2.41)

where x = {xki}, y = {yk} and z = {zk}. In the hard
device, the total elongation of the chain is prescribed: Mz̄ =
M∑

k=1
zk , where z is the average imposed elongation (per half-

sarcomere). In the soft device case, the tension σ is imposed
and the energy of the system also includes the energy of the
loading device w = v − σ∑M

k=1 zk .
We again characterize the microscopic configuration of

each half-sarcomere k by the triplet ξk = (pk, qk, rk), denoting
as before the fraction of cross bridges in each of the wells and in
the spinodal point, with pk+qk+rk = 1 for all 1 ≤ k ≤ M . The
vector ξ = (ξ1, . . . , ξM) then characterizes the configuration of
the whole chain.

In view of the complexity of the ensuing energy landscape,
here we characterize only a subclass of metastable configura-
tions describing homogeneous (affine) states of individual half-
sarcomeres. More precisely, we limit our attention to configu-
rations with qk = 0, pk = 1, 0 and rk = 1, 0 for all 1 ≤ k ≤ M .
In this case, a single half-sarcomere can be characterized by a
spin variable mk = 1, 0.

The resulting equilibrium tension-elongation relations in
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Figure 41. Global minimum of the (hard device) energy in the zero
temperature limit (β → ∞) for a sarcomere chain with different M:
(a) - energies; (b) - tension-elongation relations. In (b) the solid line
represents the tension-elongation relation in a soft device. Parameters
are: λ1 = 0.7, λ2 = 4, ℓ = −0.3.

hard and soft devices take the form

σ̂(z,m) =

[
1

λb
+

1

M

M∑
k=1

1

mkλ2 + (1 − mk)λ1

]−1
×

[
z +

1

M

M∑
k=1

mkλ1
mkλ2 + (1 − mk)λ1

]
,

(2.42)

ẑ(σ,m) =

[
1

λb
+

1

M

M∑
k=1

1

mkλ2 + (1 − mk)λ1

]
σ

− 1

M

M∑
k=1

mkλ2
mkλ2 + (1 − mk)λ1

,

(2.43)

where m = (m1, . . . ,mM).
In Fig. 41 we show the energy and the tension-elongation

relation for the system following the global minimum path in
a hard device. Observe that the tension-elongation relation
contains a series of discontinuous transitions as the order
parameter M−1

∑
mk increases monotonously from 0 to 1 and

their number increases with M while their size decreases. In
the limit M → ∞, the relaxed (minimum) energy is convex
but not strictly convex, see the interval where the energy
depends linearly on the elongation for the case M = 20
in Fig.41(a), see also Refs. [227; 236]. The corresponding
tension-elongation curves [see Fig. 41(b)] exhibit a series of
transitions. In contrast to the case of a single half sarcomere,
the limiting behavior of a chain is the same in the soft and hard
devices (see the thick line). The obtained analytical results are
in full agreement with the numerical simulations reported in
Refs. [114; 164; 235; 237].

Fig. 42 illustrates the distribution of elongations of
individual half-sarcomere in a hard device case as the system
evolves along the global minimum path. One can see that
when deformation becomes non-affine the population of half-
sarcomere splits into 2 groups: one group is stretched at the
level above average (top trace above diagonal) and the other
one at the level below average (bottom trace below diagonal).
The numbers beside the curves indicates the amount of half-
sarcomeres in each group. In the soft device case, the system
always remains in the affine state: all half-sarcomeres change
conformation at the same moment and therefore the system
stays on the diagonal (the dashed lines) in Fig. 42.

Assume now that the temperature is different from zero.
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Figure 42. Elongation of half-sarcomeres along the global minimum
path for M = 2 (a) and M = 20 (b) in a hard device. Upper
branch, pre-power-stroke half-sarcomeres; lower branch, post-power-
stroke half-sarcomeres. Numbers indicate how many half-sarcomere
are in each branch at a given z. Dashed lines, Soft device response.
Parameters are: λ1 = 0.7, λ2 = 0.4, ℓ = −0.3.

The partition function for the chain in a soft device can be
obtained as the product of individual partition functions:

ZM(σ, β) = [Zs(σ, β)]
M

=

[√
2π

Nβλb

∫
exp [−βNg(σ, x, β)] dx

]M
,

which reflects he fact that the half-sarcomeres in this setting are
independent. In the hard device, the analysis is more involved
because of the total length constraint. In this case we need to
compute

ZM(z, β) =
∫

exp [−βN Mv(z, x)] δ
[
1

M

∑
zk − z

]
dx

(2.44)
A semi-explicit asymptotic solution can be obtained for

the hard device case in the limit β → ∞ and M → ∞.
Note first, that the partition function depends only on the
“average magnetization” m – the fraction of half-sarcomeres
in post-power-stroke conformation. At MN → ∞ we obtain
asymptotically (see Ref. [212; 231] for the details)

ZM(z, β) ≈ C
ϕ(m∗) exp [−βMNΨ(m∗; z, β)][
βMN ∂2mΨ(m; z, β)

��
m=m∗

] 1
2

, (2.45)

where C =
(
2π
β

) (N+2)M−1
2 N

1
2−M . Using the notations µ1,2 =

(λ1,2λb)/(λ1,2 + λb), we can now write the expression for the
marginal free energy at fixed m in the form

Ψ(m; z, β) =
1

2

[
m
µ2

+
1 − m
µ1

]−1
(z + m)2 + (1 − m) v0

− 1

2β

[
m log (1 − λ2) + (1 − m) log (1 − λ1)

]
+

1

βN

[
m log (m) + (1 − m) log (1 − m)

+
m
2
log (λ2λb) +

1 − m
2

log (λ1λb)
]
,

(2.46)

where ϕ(m) =
{
[m/µ2 + (1 − m)/µ1] [m (1 − m)]

}− 1
2 . Here

m∗ is the minimum of Ψ in the interval ]0, 1[. A direct
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Figure 43. Influence of the parameter N on the equilibrium response
of an infinitely long chain (M → ∞) in a hard device: (a) free
energy; (b) tension-elongation relation. The asymmetry of the tension
curve is a consequence of the asymmetry of the double well potential.
Parameters are: λ1 = 0.7, λ2 = 0.4, ℓ = −0.3, λb = 1, and β = 10.

computation of the second derivative of (2.46) with respect
to m shows that Ψ is always convex. In other words, our
assumption that individual half-sarcomeres respond in an affine
way, implies that the system does not undergo a phase transition
in agreement with what is expected for a 1D system with short
range interactions.

Now we can compute the Helmholtz free energy and the
equilibrium tension-elongation relation for a chain in a hard
device

f̃∞(z, β) = Ψ(m∗; z, β), (2.47)

σ̃∞(z, β) =
(

m∗

µ2
+

1 − m∗

µ1

)−1
(z + m∗) . (2.48)

In the case of a soft device, the Gibbs free energy and
the corresponding tension-elongation relation are simply the
re-scaled versions of the results obtained for a single half-
sarcomere, see Section 2.2.

In Fig. 43 we illustrate a typical equilibrium behavior
of a chain in a hard device. The increase of temperature
enhances the convexity of the energy, as in the case of a single
half-sarcomere, however, when the temperature decreases
we no longer see the negative stiffness. Instead, when
N is sufficiently large, we see a tension-elongation plateau
similar to what is observed in experiments on myofibrils, see
Fig. 43(b).

The obtained results can be directly compared with
experimental data. Consider, for instance, the response of a
chain with M = 20 half-sarcomeres submitted to a rapid length
step. The equilibrium model with realistic parameters predicts
in this case a tension-elongation plateau close to the observed
T2 curve, see dashed line in 44(a). Our numerical experiments,
however, could not reproduce the part of this plateau in the
immediate vicinity of the state of isometric contractions. This
may mean that even in the chain placed in a hard device,
individual half-sarcomeres end up being loaded in a mixed
device and can still experience kinetic trapping. Our stochastic
simulations for a chain in a soft device reproduce the whole
trapping domain around the state of isometric contractions, see
Fig. 44(a).

The computed rate of the quick recovery for the chain
is shown in Fig. 44(b). We see that the model is able to
capture quantitatively the difference between the two loading
protocols. However, the hard device response of the chain
(see squares) is more sluggish than in the case of a single
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Figure 44. Quick recovery response of a chain with M = 20 half-sarcomeres. (a) Tension elongation relation obtained with M = 20 in a
hard device (circles) and in a soft device (squares) compared with the same experiments as in Fig. 5 (triangles). (b) Corresponding rates in hard
(circles) and soft (squares) devices compared with experimental data from Fig. 6 (triangles).

half-sarcomere. Once again, we see an interval around the
state of isometric contractions where our system cannot reach
its equilibrium state at the experimental time scale. Note,
however, that the rate of relaxation to equilibrium increases
with both stretching and shortening, saturating for large applied
steps as it was experimentally observed in Ref. [207].

3. Active rigidity

As we have seen in Section 2.2.3, individual half-sarcomeres
with attached cross-bridges operate in an unstable (spinodal)
or near critical regime, see Refs. [99; 159]. The analysis in
Section 2.3 shows that it warrants strain inhomogeneities at
the level of a myofibril, see also Refs. [227; 238]. However,
the implied non-affinity has not been observed in experiment.
Purely entropic stabilization is excluded in this case because
the temperature alone is not sufficiently high to ensure positive
stiffness of individual half-sarcomeres [114].

Here we discuss a possibility that the homogeneity of
the myofibril configuration is due to active stabilization
of individual half-sarcomeres [224]. We conjecture that
metabolic resources are used to modify the mechanical
susceptibility of the system and to stabilize configurations that
would not have existed in the absence of ATP hydrolysis [239–
241].

We present the simplest model showing that active
rigidity can emerge through resonant non-thermal excitation
of molecular degrees of freedom. The idea is to immitate
the inverted Kapitza pendulum [242], aside from the fact
that in biological systems the inertial stabilization has to be
replaced by its overdamped analog. The goal is to show
that a macroscopic mechanical stiffness can be controlled at
the microscopic scale by a time correlated noise which in
biological setting may serve as a mechanical representation of
a nonequilibrium chemical reaction [243].

3.1. Mean field model

To justify the prototypical model with one degree of freedom,
wemotivate it using themodeling framework developed above.

Suppose that we model a half-sarcomere by a parallel
array of N cross-bridges attached to a single actin filament

following Section 2.2. We represent again attached cross
bridges as bistable elements in series with linear springs but
now assume additionally that there is a nonequilibrium driving
provided through stochastic rocking of the bi-stable elements.
More specifically, we replace the potential uSS(x) for individual
cross-bridges by uSS(x)−x f (t),where f (t) is a correlated noise
with zero average simulating out of equilibrium environment,
see Ref. [244] for more details.

If such a half-sarcomere is subjected to a time dependent
deterministic force fext(t), the dynamics can be described by
the following system of nondimensional Langevin equations

ẋi = −∂xiW +
√
2Dξ(t),

ν ẏ = −∂yW,
(3.1)

where ξ(t) a white noise with the properties
⟨
ξ(t)

⟩
= 0,

and
⟨
ξ(t1)ξ(t2)

⟩
= δ(t2 − t1). Here D is a temperature-like

parameter, the analog of the parameter β−1 used in previous
sections. The (backbone) variable y, coupled to N fast soft-spin
type variables xi through identical springs with stiffness κ0, is
assumed to be macroscopic, deterministic and slow due to the
large value of the relative viscosity ν. We write the potential
energy in the formW =

∑N
i=1 v(xi, y, t)− fexty,where v(x, y, t)

is the energy (2.30) with a time dependent tilt in x and the
function fext(t) is assumed to be slowly varying. The goal now
is to average out fast degrees of freedom xi and to formulate
the effective dynamics in terms of a single slow variable y.

Note, that the equation for y can be re-written as

ν

N
ẏ = κ0

(
1

N

N∑
i=1

xi − y

)
+

fext
N
, (3.2)

which reveals the mean field nature of the interaction between
y and xi . If N is large, we can replace 1

N

∑N
i=1 xi by ⟨x⟩

using the fact that the variables xi are identically distributed
and exchangeable [245]. Denoting ν0 = ν/N and gext =
fext/(κ0N) and assuming that these variables remain finite in
the limit N →∞, we can rewrite the equation for y in the form

ν0 ẏ = κ0[(⟨x⟩ − y) + gext(t)].

Assume now for determinacy that the function fext(t) is
periodic and choose its period τ0 in such a way that Γ =
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ν0/κ0 ≫ τ0. We then split the force κ0(⟨x⟩ − y) acting
on y into a slow component κ0ψ(y) = κ0(⟨x⟩ − y) and a
slow-fast component κ0ϕ(y, t) = κ0(⟨x⟩ − ⟨x⟩) where ⟨x⟩ =
lim
t→∞

(1/t)
∫ t

0

∫ ∞
−∞ xρ(x, t) dx dt, and ρ(x, t) is the probability

distribution for the variable x. We obtainΓẏ = ψ(y)+ϕ(y, t)+
gext and the next step is to average this equation over τ.

To this end we introduce a decomposition y(t) = z(t) +
ζ(t), where z is the averaged (slow) motion and ζ is a
perturbation with time scale τ. Expanding our dynamic
equation in ζ , we obtain,

Γ(ż + ζ̇) = ψ(z) + ∂zψ(z)ζ

+ ϕ(z, t) + ∂zϕ(z, t)ζ + gext. (3.3)

Since gext(t) ≃ τ−10

∫ t+τ0

t
gext(u) du, we obtain at fast time

scale Γζ̇ = ϕ(z, t), see Ref. [246] for the general theory of
these type of expansions. Integrating this equation between
t0 and t ≤ t0 + τ0 at fixed z we obtain ζ(t) − ζ(t0) =

Γ−1
∫ t

t0
ϕ(z(t0), u)du and since ϕ is τ periodic with zero

average, we can conclude that ζ(t) is also τ0 periodic with
zero average. If we now formally average (3.3) over the fast
time scale τ0, we obtain Γż = ψ(z) + r + gext, where r =

(Γτ0)
−1 ∫ τ

0

∫ t

0
∂zϕ(z, t)ϕ(z, u) dudt .Given that both ϕ(z, t) and

∂zϕ(z, t) are bounded, we can write |r | ≤ (τ0/Γ)c ≪ 1, where
the “constant” c depends on z but not on τ0 and Γ. Therefore, if
N ≫ 1 and ν/(κ0N) ≫ τ0, the equation for the coarse grained
variable

z(t) = τ−10

∫ t+τ0

t

y(u) du

can be written in terms of an effective potential

(ν/N)ż = −∂zF + fext/N .

To find the effective potential we need to compute the primitive
of the averaged tension F(z) =

∫ z
σ(s) ds, where σ(y) =

κ0[y − ⟨x⟩]. The problem reduces to the study of the stochastic
dynamics of a variable x(t) described by a dimensionless
Langevin equation

ẋ = −∂xw(x, y, t) +
√
2Dξ(t). (3.4)

The potential w(x, y, t) = wp(x, t) + ve(x, y) is the sum of
two components: wp(x, t) = uSS(x) − x f (t), mimicking an out
of equilibrium environment and ve(x, y) = (κ0/2)(x − y)2,
describing the linear elastic coupling of the “probe” with a
“measuring device” characterized by stiffness κ0. We assume
that the energy is supplied to the system through a time-
correlateded rocking force f (t) which is characterized by an
amplitude A and a time scale τ. To have analytical results,
we further assume that the potential uSS(x) is bi-quadratic,
uSS(x) = (1/2) (|x | − 1/2)2 . Similar framework has been used
before in the studies of directional motion of molecular motors
[247].

The effective potential F(z) can be viewed as a non-
equilibrium analog of the free energy [248–251]. While in our
case, themean-field nature of themodel ensures the potentiality
of the averaged tension, in a more general setting, the averaged
stochastic forces may lose their gradient structure and even the
effective “equations of state” relating the averaged forces with
the corresponding generalized coordinates may not be well
defined [252–257].

Figure 45. Tension elongation curves σ(z) in the case of periodic
driving (adiabatic limit). The equilibrium system (A = 0) is shown
in (a) and and out-of-equilibrium system (A , 0) - in (b). The insets
show the effective potential F(z). Here κ0 = 0.6. Adapted from
Ref. [224].

3.2. Phase diagrams

Suppose first that the non-equilibrium driving is represented by
a periodic (P), square shaped external force

f (t) = A(−1)n(t) with n(t) = ⌊2t/τ⌋, (3.5)

where the brackets denote the integer part. The Fokker-Planck
equation for the time dependent probability distribution ρ(x, t)
reads

∂t ρ = ∂x [ρ ∂xw(x, t) + D∂xρ] . (3.6)

Explicit solution of (3.6) can be found in the adiabatic limit
when the correlation time τ is much larger than the escape time
for the bi-stable potential uSS [132; 258]. The idea is that the
time average of the steady state probability can be computed
from the mean of the stationary probabilities with constant
driving force (either f (t) = A or f (t) = −A).

The adiabatic approximation becomes exact in the special
case of an equilibrium system with A = 0, when the stationary
probability distribution can be written explicitly

ρ0(x) = Z−1 exp [−ṽ(x)/D] .

Here Z =
∫ ∞
−∞ exp(−ṽ(x)/D)dx, and ṽ(x, z) = (1/2)(|x | −

1/2)2+(κ0/2)(x− z)2. The tension elongation curve σ(z) can
then be computed analytically, since we know ⟨x⟩ = ⟨x⟩ =∫ ∞
−∞ xρ0(x) dx. The resulting curve and the corresponding
potential F(z) are shown in Fig. 45(a). At zero temperature
the equilibrium system with A = 0 exhibits negative stiffness
at z = 0 where the effective potential F(z) has a maximum
(spinodal state). As temperature increases we observe a
standard entropic stabilization of the configuration z = 0, see
Fig. 45(a).

By solving equation ∂zσ |z=0 = 0, we find an explicit
expression for the critical temperature De = r/[8(1 +
κ0)] where r is a root of a transcendental equation 1 +√

r/πe−1/r/[1 + erf (1/
√

r)] = r/(2κ0). The behavior of the
roots of the equation σ(z) = −κ0(⟨x⟩ − z) = 0 at A = 0
is shown in Fig. 46 (b) which illustrates a second order phase
transition at D = De.

In the case of constant force f ≡ A the stationary
probability distribution is also known [259]

ρA(x) = Z−1 exp [− (ṽ(x) − Ax) /D] ,
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Figure 46. The parameter dependence of the roots of the equation
σ(z) = 0 in the adiabatic limit: (a) fixed D = 0.04 and varying A,
first order phase transition [line CA − MA in Fig. 47 (a)]; (b) fixed
A = 0 and varying D, second order phase transition [line De −CA in
Fig. 47 (a)]. The dashed lines correspond to unstable branches. Here
κ = 0.6. Adapted from Ref. [224].

Figure 47. Phase diagram in (A,D) plane showing phases I,II and III:
(a) - adiabatic limit, (b) - numerical solution at τ = 100 (b). CA is the
tri-critical point, De is the point of a second order phase transion in the
passive system. The “Maxwell line” for a first order phase transition
in the active system is shown by dots. Here κ0 = 0.6. Adapted from
Ref. [224].

where again Z =
∞∫
−∞

exp(−ṽ(x)/D)dx. In adiabatic approx-

imation we can write the time averaged stationary distribu-
tion in the form, ρAd(x) = 1

2 [ρA(x) + ρ−A(x)], which gives
⟨x⟩ = 1

2 [⟨x⟩(A) + ⟨x⟩(−A)] .
The force-elongation curves σ(z) and the corresponding

potentials F(z) are shown in Fig. 45 (b). We see the main
effect: as the degree of non-equilibrium, characterized by
A, increases, not only the stiffness in the state z = 0,
where the original double well potential uSS had a maximum,
changes from negative to positive, as in the case of entropic
stabilization, but we also see that the effective potential F(z)
develops around this point a new energy well.

We interpret this phenomenon as the emergence of active
rigidity because the new equilibrium state becomes possible
only at a finite value of the driving parameter A, while the
temperature D can be arbitrarily small. The behavior of the
roots of the equation σ(z) = −κ0(⟨x⟩ − z) = 0 at A , 0 is
shown in Fig. 46(a) which now illustrates a first order phase
transition.

The full steady state regime map (dynamic phase diagram)
summarizing the results obtained in adiabatic approximation
is presented in Fig. 47 (a). There, the “paramagnetic” phase
I describes the regimes where the effective potential F(z) is
convex, the “ferromagnetic” phase II is a bi-stability domain
where the potential F(z) has a double well structure and,

Figure 48. (a-c) Typical tension-length relations in phases I, II and
III . Points α, β and γ are the same as in Fig. 47 (b); (d) shows the
active component of the force. Inserts show the behavior of stochastic
trajectories in each of the phases at z ≃ 0 (gray lines) superimposed
on their ensemble averages (black lines); the stationary hysteretic
cycles, the structure of the effective potentials F(z) and the active
potential Fa(z) defined as a primitive of the active force σa(z). The
parameters: κ0 = 0.6, τ = 100. Adapted from Ref. [224].

finally, the “Kapitza” phase III is where the function F(z)
has three convex sections separated by two concave (spinodal)
regions. We interpret the boundary CA − De separating phases
I and II as a line of (zero force) second order phase transitions
and the dashed line CA − MA as a Maxwell line for the (zero
force) first order phase transition, see Fig. 46. Then CA can be
interpreted as a tri-critical point.

The adiabatic approximation fails at low temperatures
(small D) where the escape time diverges and for these regimes
the phase diagram has to be corrected numerically, see Fig. 47
(b). Direct numerical simulation based on Eq. 3.4 shows that
the main features of the resulting diagram (tri-critical point,
point De and the vertical asymptote of the boundary separating
phases I and III at large values of A) have been captured
adequately by the adiabatic approximation. The new features
of the non-adiabatic phase diagram is a dip of the boundary
separating Phases II and III at some D < De leading to an
interesting re-entrant behavior (see Refs. [260; 261]). This is
an effect of stochastic resonance which is beyond reach of the
adiabatic approximation.

Force-elongation relations characterizing the mechanical
response of the system at different points on the (A,D) plane
[see Fig. 47 (b)] are shown in Fig. 48 where the upper insets
illustrate the typical stochastic trajectories and the associated
cycles in {⟨x(t)⟩, f (t)} coordinates. We observe that while
in phase I thermal fluctuations dominate periodic driving
and undermine the two well structure of the potential, in
phase III the jumps between the two energy wells are fully
synchronized with the rocking force. In phase II the system
shows intermediate behavior with uncorrelated jumps between
the wells.
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In Fig. 48(d) we illustrate the active component of the
force σa(z) = σ(z; A) − σ(z; 0) in phases I, II and III. A
salient feature of Fig. 48(d) is that active force generation
is significant only in the resonant (Kapitza) phase III. A
biologically beneficial plateau (tetanus) is a manifestation of
the triangular nature of a pseudo-well in the active landscape
Fa(z) =

∫ z
σa(s)ds; note also that only slightly bigger

( f , ⟨x⟩) hysteresis cycle in phase III, reflecting a moderate
increase of the extracted work, results in considerably larger
active force. It is also of interest that the largest active rigidity
is generated in the state z = 0 where the active force is equal
to zero.

If we now estimate the non-dimensional parameters of
the model by using the data on skeletal muscles, we obtain
A = 0.5,D = 0.01, τ = 100 [224]. This means that muscle
myosins in stall conditions (physiological regime of isometric
contractions), may be functioning in resonant phase III. The
model can therefore provide an explanation of the observed
stability of skeletal muscles in the negative stiffness regime
[99]; similar stabilization mechanism may be also assisting the
titin-based force generation at long sarcomere lengths [262].

The results presented in this Section for the case of periodic
driving were shown in Ref. [224] to be qualitatively valid also
for the case of dichotomous noise. However, the Ornstein-
Uhlenbeck noise was unable to generate a nontrivial Kapitza
phase.

To conclude, the prototypical model presented in this Sec-
tion shows that by controlling the degree of non-equilibrium in
the system, one can stabilize apparently unstable or marginally
stable mechanical configurations and in this way modify the
structure of the effective energy landscape (when it can be de-
fined). The associated pseudo-energy wells with resonant na-
ture may be crucially involved not only in muscle contraction
but also in hair cell gating [119], integrin binding [263], fold-
ing/unfolding of proteins subjected to periodic forces [264] and
other driven biological phenomena [265–268].

4. Active force generation

In this Section we address the slow time scale phase of force
recovery which relies on attachment-detachment processes
[79]. We review two types of models. In models of the first
type the active driving comes from the interaction of themyosin
head with actin filament, while the power stroke mechanism
remains passive [269]. In models of the second type, the active
driving resides in the power stroke machinery [244]. The latter
model is fully compatible with the biochemical Lynm-Taylor
cycle of muscle contractions.

4.1. Contractions driven by the attachment-detachment
process

Aphysiological perspective that the power-stroke is the driving
force of active contraction was challenged by the discovery that
myosin catalytic domain can operate as a Brownian ratchet,
which means that it can move and produce contraction without
any assistance from the power-stroke mechanism [136; 137;
142]. It is then conceivable that contraction is driven directly
by the attachment-detachment machinery which can rectify
the correlated noise and select a directionality following the
polarity of actin filaments [60; 143].
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Figure 49. Schematic representation of a parallel bundle of cross-
bridges that can attach and detach. Each cross bridge is modeled as a
series connection of a ratchetΦ, a bi-stable snap-spring uSS, and linear
elastic element ve.

To represent the minimal set of variables characterizing
skeletal Myosin II in both attached and detached states—
position of themotor domain, configuration of the lever domain
and the stretch state of the series elastic element—we use three
continuous coordinates [269]. To be maximally transparent
we adopt the simplest representation of the attachement-
detachment process provided by the rocking Brownian ratchet
model [132; 247; 270; 271].

We interpret again a half-sarcomere as a HS type parallel
bundle of N cross bridges. We assume, however, that now
each cross-bridge is a three-element chain containing a linear
elastic spring, a bi-stable contractile element, and a molecular
motor representing the ATP-regulated attachment-detachment
process, see Fig. 49. The system is loaded either by a force
fext representing a cargo or is constrained by the prescribed
displacement of the backbone.

The elastic energy of the linear spring can be written as
ve(x) = 1

2 κ0(z−y−ℓ)2,where κ0 is the elastic modulus and ℓ is
the reference length. The energy uSS of the bi-stable mechanism
is taken to be three-parabolic

uSS(y − x) =


1
2 κ1(y − x)2 y − x ≥ b1
−1

2 κ3 (y − x − b)2 + c b2 ≤ y − x < b1
1
2 κ2(y − x − a)2 + v0 y − x < b2

(4.1)
where κ1,2 are the curvatures of the energy wells representing
pre-power stroke and post-power stroke configurations, respec-
tively and a < 0 is the characteristic size of the power stroke.
The bias v0 is again chosen to ensure that the two wells have
the same energy in the state of isometric contraction. The en-
ergy barrier is characterized by its position b, its height c and
its curvature κ3. The values of parameters b1 and b2 are chosen
to ensure the continuity of the energy function.

We model the myosin catalytic domain as the Brownian
ratchet of Magnasco type [132]. More specifically, we view it
as a particle moving in an asymmetric periodic potential while
being subjected to a correlated noise. The periodic potential is
assumed to be piece-wise linear in each period

Φ(x) =

{
Q

λ1L
(x − nL), 0 < x − nL < λ1L

Q
λ2
− Q

λ2L
(x − nL), λ1L < x − nL < L

(4.2)

where Q is the amplitude, L is the the period, λ1 − λ2 is the
measure of the asymmetry; λ1+λ2 = 1. The variable x marks
the location of a particle in the periodic energy landscape: the
head is attached if x is close to one of the minima of Φ(x) and
detached if it is close to one of the maxima.
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Figure 50. Contour plot of the effective energy v(x, y; z0) at z0 = 0.
Inserts illustrate the states of various mechanical subunits.

The system of N cross-bridges of this type connected in
parallel is modeled by the system of Langevin equations [269]

νx ẋi = −Φ′(xi) + u′SS(yi − xi)+ f (t + ti) +
√
2Dxξx(t)

νy ẏi = −u′SS(yi − xi) − κ0(yi − z − ℓi) +
√
2Dyξy(t)

νz ż =
N∑

i=1

κ0(yi − z − ℓi) + fext +
√
2Dzξz(t)

(4.3)
with Dx,y,z = νx,y,zkbT , where νx,y,z denote the relative
viscosities associated with the macroscopic variables, and ξ is
a standard white noise. The correlated component of the noise
f (t), imitating the activity of the ATP, is assumed to be periodic
and piece-wise constant, see Eq. (3.5).

Since our focus here is on active force generation rather
than on active oscillations, we de-synchronize the dynamics
by introducing phase shifts ti , assumed to be independent
random variables uniformly distributed in the interval [0,T ];
we also allow the pre-strains ℓi to be random and distribute
them in the intervals [iL − a/2, iL + a/2]. Quenched disorder
disfavors coherent oscillations observed under some special
conditions (e.g. Ref. [166]). While we leave such collective
effects outside our review, several comprehensive expositions
are availbale in the literature, see Refs. [12; 36; 38; 112; 114;
143; 157; 158; 165; 166; 171; 171; 173; 272–282].

To illustrate the behavior of individual mechanical units
we first fix the parameter z = 0 and write the total energy
of a cross-bridge as a function of two remaining mechanical
variables y and x:

v(x, y) = Φ(x) + uSS(y − x) + ve(−y) (4.4)

The associated energy landscape is shown in Fig. 50, where
the upper two local minima A and B indicate the pre-power
stroke and the post-power stroke configurations of a motor
attached in one position on actin potential, while the two lower
local minima A′ and B′ correspond to the pre-power stroke and
the post-power stroke configurations of a motor shifted to a
neighboring attached position. We associate the detached state
with an unstable position around the maximum separating the
minima (A, B) and (A′,B′), see Ref. [269] for more details.

In Fig. 51 we show the results of numerical simulations
of isotonic contractions at fext = 0.5 T0, where T0 is the
stall tension. One can see that the catalytic domain of an

Figure 51. The numerical simulation of the time histories for different
mechanical units in a load clamp simulation at zero external force:
(a) the behavior of the myosin catalytic domain; (b) the behavior of
the power stroke element (snap-spring); (c) the behavior of the elastic
element; (d) the total displacement of the backbone.

individual head, described by the variable x, evolves through
three different attachment sites [see Fig. 51(a)]. In Fig. 51(b)
we show the time history of the variable x−y characterizing the
conformational state of a single myosin head during the cycle.
The first vertical line shows the moment in which the power
stroke A→ B takes place. The second vertical line shows the
motion from the active site i on the actin filament to the next site
i′ = i+1, corresponding to the transition B→ A′. This motion
induces a change of state in the bi-stable element which brings
the lever arm into the pre-power stroke position. Due to the
advance of the variable z during such isotonic contractions, see
Fig. 51(d), the elastic element whose configuration can be read
on Fig. 51(c), relaxes and the post-power stroke minimum B′

becomes preferable. The third vertical line shows the moment
in which the new power stroke A′→ B′ takes place.

Observe that the position of the backbone can be considered
stationary during the recharging of the power stroke. In
this situation, the key-factor for the possibility of recharging
(after the variable x has overcome the barrier in the periodic
potential) is that the total energy v(x, y) has a minimum
when the snap-spring is in the pre-power stroke state. The
corresponding analytical condition is (Q/v0) > (λ1L)/a
which places an important constraint on the choice of
parameters [269].

A direct comparison of the simulatedmechanical cyclewith
the Lymn–Taylor cycle (see Fig. 2) shows that while the two at-
tached configurations are represented in this model adequately,
the detached configurations appear only as transients. In fact,
one can see that the (slow) transition B → A′ represents a
combined description of the detachment, of the power stroke
recharge and then of another attachment. Since in the actual
biochemical cycle such a transition are described by at least
two distinct chemical states, the ratchet driven model is only in
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partial agreement with biochemical data.

4.2. Contractions driven by the power stroke

We now consider a possibility that acto-myosin contractions
are propelled directly through a conformational change. The
model where the power-stroke is the only active mechanism
driving muscle contraction was developed in Ref. [244].

To justify such change of the modeling perspective, we
recall that in physiological literature active force generation
is largely attributed to the power-stroke which is perceived
as a part of active rather than passive machinery [153]. This
opinion is supported by observations that both the power-stroke
and the reverse-power-stroke can be induced by ATP even in
the absence of actin filaments [71], that contractions can be
significantly inhibited by antibodies which impair lever arm
activity [283], that sliding velocity in mutational myosin forms
depends on the lever arm length [192] and that the directionality
can be reversed as a result of modifications in the lever arm
domain [284; 285].

Although the simplest models of Brownian ratchets neglect
the conformational change in the head domain, some phases
of the attachment-detachment cycle have been interpreted as
a power-stroke viewed as a part of the horizontal shift of the
myosin head [144; 286]. In addition, ratchet models were
consideredwith the periodic spatial landscape supplemented by
a reaction coordinate, representing the conformational change
[287; 288]. In all these models, however, power stroke was
viewed as a secondary element and contractions could be
generated even with the disabled power stroke. The main
functionality of the power-stroke mechanism was attributed to
fast force recovery which could be activated by loading but was
not directly ATP-driven [74; 99; 289].

The apparently conflicting viewpoint that the power-stroke
mechanism consumes metabolic energy remains, however,
the underpinning of the phenomenological chemo-mechanical
models that assign active roles to both the attachment-
detachment and the power-stroke [86; 102]. These models pay
great attention to structural details and in their most compre-
hensive versions faithfully reproduce the main experimental
observations [68; 115; 290].

In an attempt to reach a synthetic description, several
hybrid models, allowing chemical states to coexist with springs
and forces, have been also proposed, see Refs. [112; 152; 291].
These models, however, still combine continuous dynamics
with jump transitions which makes the precise identification
of structural analogs of the chemical steps and the underlying
micro-mechanical interactions challenging [154].

4.2.1. The model. Here, following Ref. [244], we sketch
a mechanistic model of muscle contractions where power
stroke is the only active agent. To de-emphasize the ratchet
mechanism discussed in the previous section, we simplify the
real picture and represent actin filaments as passive, non-polar
tracks. The power-stroke mechanism is represented again by a
symmetric bi-stable potential and the ATP activity is modeled
as a center-symmetric correlated force with zero average acting
on the corresponding configurational variable.

A schematic representation of the model for a single cross-
bridge is given in Fig. 52(b), where x is the observable position
of a myosin catalytic domain, y − x is the internal variable

Figure 52. (a) An illustration of the steric effect associated with the
power-stroke; (b) sketch of the mechanical model. Adapted from
Ref. [244].

Figure 53. The functions Φ, uSS, f and the coupling function Φ used
in numerical experiments. Analytic expressions for (a),(b) and (c)
are given by Eqs. [(4.1),(4.2) and (4.8)], respectively. Adapted from
Ref. [244].

characterizing the phase configuration of the power stroke
element and d is the distance between the myosin head and
the actin filament. Through the variable d we can take into
account that when the lever arm swings, the interaction of the
head with the binding site weakens, see Fig. 52(a). The implied
steric rotation-translation coupling in ratchet models has been
previously discussed in Refs. [154; 292; 293].

We write the energy of a single cross-bridge in the form

Ĝ(x, y, d) = d Φ(x) + uSS(y − x), (4.5)

where Φ(x) is a non-polar periodic potential representing the
binding strength of the actin filament and uSS(y − x) is a
symmetric double-well potential describing the power-stroke
element, see Fig. 49. The coupling between the state of the
power-stroke element y − x and the spatial position of the
motor x is implemented through the variable d. In the simplest
version of the model d is assumed to be a function of the state
of the power-stroke element

d(x, y) = Ψ(y − x). (4.6)

To mimic the underlying steric interaction, we assume that
when a myosin head executes the power-stroke, it moves away
from the actin filament and therefore the control functionΨ(y−
x) progressively switches off the actin potential, see Fig. 52(b).
Similarly, as the power-stroke is recharging, the myosin head
moves progressively closer to the actin filament and therefore
the function Ψ(y − x) should be bringing the actin potential
back into the bound configuration.

In view of (4.6), we can eliminate the variable d and
introduce the redressed potential G(x, y) = Ĝ[x, y,Ψ(y − x)].
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Figure 54. The dependence of the average velocity v on temperature
D and the amplitude of the ac signal A. The pre- and post-power-
stroke states are labeled in such a way that the purely mechanical
ratchet would move to the left. Adapted from Ref. [244].

Then the overdamped stochastic dynamics can be described by
the system of dimensionless Langevin equations

ẋ = − ∂xG(x, y) − f (t) +
√
2Dξx(t)

ẏ = − ∂yG(x, y) + f (t) +
√
2Dξy(t).

(4.7)

Here ξ(t) is the standard white noise with ⟨ξi(t)⟩ = 0, and
⟨ξi(t)ξj(s)⟩ = δi jδ(t − s) and D is a dimensionless measure
of temperature; for simplicity the viscosity coefficients are
assumed to be the same for variables x and y. The time
dependent force couple f (t) with zero average represents a
correlated component of the noise. In the computational
experiments a periodic extension of the symmetric triangular
potential Φ(x) with amplitude Q and period L was used, see
Fig. 53(a). The symmetric potential uSS(y − x) was taken to
be bi-quadratic with the same stiffness k in both phases and
the distance between the bottoms of the wells denoted by a,
see Fig. 53(b). The correlated component of the noise f (t)
was described by a periodic extension of a rectangular shaped
function with amplitude A and period τ, Fig. 53(c). Finally, the
steric control ensuring the gradual switch of the actin potential
is described by a step function

Ψ(s) = (1/2) [1 − tanh (s/ε)] , (4.8)

where ε is a small parameter, see Fig. 53(d).
The first goal of any mechanical model of muscle con-

traction is to generate a systematic drift v = limt→∞⟨x(t)⟩/t
without applying a biasing force. The dependence of the av-
erage velocity v on the parameters of the model is summa-
rized in Fig. 54. It is clear that the drift in this model is ex-
clusively due to A , 0. When A is small, the drift velocity
shows a maximum at finite temperatures which implies that
the system exhibits stochastic resonance [294]. At high am-
plitudes of the ac driving, the motor works as a purely mechan-
ical ratchet and the increase of temperature only worsens the
performance [136; 137; 143].

One can say that the system (4.7) describes a power-stroke-
driven ratchet because the correlated noise f (t) acts on the
relative displacement y − x. It effectively “rocks” the bi-
stable potential and the control functionΨ(y− x) converts such
“rocking” into the “flashing” of the periodic potential Φ(x).

Figure 55. The hysteresis operator Ψ̂{y(t) − x(t)} linking the
degree of attachment d with the previous history of the power-stroke
configuration y(t) − x(t). Adapted from Ref. [244].

It is also clear that the symmetry breaking in this problem is
imposed exclusively by the asymetry of the coupling function
Ψ(y−x). Various other types of rocked-pulsated ratchetmodels
have been studied in Refs. [295; 296].

The idea that the source of non-equilibrium in Brownian
ratchets is resting in internal degrees of freedom [297; 298]
originated in the theory of processive motors [299–302].
For instance, in the description of dimeric motors it is
usually assumed that ATP hydrolysis induces a conformational
transformation which then affects the position of the motor legs
[303]. Here the same idea is used to describe a non-processive
motor with a single leg that remains on track due to the presence
of a thick filament. By placing emphasis on active role of
the conformational change in non-processive motors the model
brings closer the descriptions of porters and rowers as it was
originally envisaged in Ref. [304].

4.2.2. Hysteretic coupling The analysis presented in
Ref. [244] has shown that in order to reproduce the whole
Lymn–Taylor cycle, the switchings in the actin potential must
take place at different values of the variable y− x depending on
the direction of the conformational change. In other words, we
need to replace the holonomic coupling (4.6) by the memory
operator

d{x, y} = Ψ̂{y(t) − x(t)} (4.9)

whose output depends on whether the system is on the
“striking” or on the “recharging” branch of the trajectory, see
Fig. 55. Such memory structure can be also described by a rate
independent differential relation of the form ḋ = Q(x, y, z)ẋ +
R(x, y, d)ẏ, which makes the model non-holonomic.

Using (4.9) we can rewrite the energy of the system as a
functional of its history y(t) and x(t)

G{x, y} = Ψ̂{y(t) − x(t)}Φ(x) + uSS(y − x). (4.10)

In the Langevin setting (4.7), the history dependence may
mean that the underlyingmicroscopic stochastic process is non-
Markovian (due to, say, configurational pinning [305]), or that
there are additional non-thermalized degrees of freedom that
are not represented explicitly, see Ref. [306]. In general, it is
well known that the realistic feedback implementations always
involve delays [307].

To simulate our hysteretic ratchet numerically we used two
versions of the coupling function (4.8) shifted by δ with the
branches Ψ(y − x ± δ) blended sufficiently far away from the
hysteresis domain, see Fig. 55. Our numerical experiments
show that the performance of the model is not sensitive to the
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Figure 56. Stationary particle trajectories in the model with the
hysteretic coupling (4.9). Parameters are: D = 0.02 and A = 1.5.
Adapted from Ref. [244].

Figure 57. The dependence of the average velocity v on temperature
D in the hysteretic model with δ = 0.5. Adapted from Ref. [244].

shape of the hysteresis loop and depends mostly on its width
characterized by the small parameter δ.

In Fig. 56 we illustrate the “gait” of the ensuing motor.
The center of mass advances in steps and during each step
the power-stroke mechanism gets released and then recharged
again, which takes place concurrently with attachment-
detachment. By coupling the attached state with either pre- or
post-power-stroke state, we can vary the directionality of the
motion. The average velocity increases with the width of the
hysteresis loop which shows that the motor can extract more
energy from the coupling mechanism with longer delays.

The results of the parametric study of the model are
summarized in Fig. 57. The motor can move even in the
absence of the correlated noise, at A = 0, because the non-
holonomic coupling (4.10) breaks the detailed balance by itself.
At finite A the system can use both sources of energy (hysteretic
loop and ac noise) and the resulting behavior is much richer
than in the non-hysteretic model, see Ref. [244] for more
details.

4.2.3. Lymn-Taylor cycle. The mechanical “stroke” in the
space of internal variables (d, y− x) can be now compared with
the Lymn–Taylor acto-myosin cycle [59] shown in Fig. 2 and
in the notations of this Section in Fig. 58(a).

We recall that the chemical states constituting the Lymn–
Taylor cycle have been linked to the structural configurations
(obtained from crystallographic reconstructions): A(attached,
pre-power-stroke → AM*ADP*Pi), B(attached, post-power-
stroke → AM*ADP), C(detached, post-power-stroke →
M*ATP), D(detached, pre-power-stroke → M*ADP*Pi). In
the discussedmodel the jump events are replaced by continuous
transitions and the association of chemical states with particu-
lar regimes of stochastic dynamics is not straightforward.

In Fig. 58(b), we show a fragment of the averaged trajectory
of a steadily advancing motor projected on the (x, y − x)
plane. In Fig. 58(c) the same trajectory is shown in the (x, y −
x, d) space with fast advances in the d direction intentionally
schematized as jumps. By using the same letters A, B,C,D
as in Fig. 58(a) we can visualize a connection between
the chemical/structural states and the transient mechanical
configurations of the advancing motor.

Suppose, for instance, that we start at point A correspond-
ing to the end of the negative cycle of the ac driving f (t). The
system is in the attached, pre-power-stroke state and d = 1.
As the sign of the force f (t) changes, the motor undergoes a
power-stroke and reaches point B while remaining in the at-
tached state. When the configurational variable y−x passes the
detachment threshold, the myosin head detaches which leads
to a transition from point B to B′ on the plane d = 0. Since
the positive cycle of the force f (t) continues, the motor com-
pletes the power-stroke by moving from B′ to point C. At
this moment, the rocking force changes sign again which leads
to recharging of the power-stroke mechanism in the detached
state, described in Fig. 58(a) as a transition from C to D. In
point D, the variable y − x reaches the attachment threshold.
The myosin head reattaches and the system moves to point D′

where d = 1 again. The recharging continues in the attached
state as the motor evolves from D′ to a new state A, shifted by
one period.

One can see that the chemical states constituting the
minimal enzyme cycle can be linked to the mechanical
configurations traversed by this stochastic dynamical system.
The detailed mechanical picture, however, is more complicated
than in the prototypical Lymn–Taylor scheme. In some stages
of the cycle one can use the Kramers approximation to build
a description in terms of a discrete set of chemical reactions,
however, the number of such reactions should be larger than in
the minimal Lymn–Taylor model.

In conclusion, we mention that the identification of the
chemical states, known from the studies of the prototypical
catalytic cycle in solution, with mechanical states, is a
precondition for the bio-engineering reproduction of a wide
range of cellular processes. In this sense, the discussed
schematization of the contraction phenomenon can be viewed
as a step towards building engineering devices imitating acto-
myosin enzymatic activity.

4.2.4. Force-velocity relations. The next question is how fast
such motor can move against an external cargo. To answer
this question we assume that the force fext acts on the variable
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Figure 58. (a) Schematic illustration of the four-step Lymn–Taylor cycle in the notations of this Section. (b) A steady-state cycle in the
hysteretic model projected on the (x, y − x) plane; color indicates the sign of the rocking force f (t): black if f (t) > 0 and gray if f (t) < 0; (c)
Representation of the same cycle in the (d, x, y−x) space with identification of the four chemical states A, B,C,D constituting the Lymn–Taylor
cycle shown in (a). The level sets represent the energy landscape G at d = 0 (detached state) and d = 1 (attached state). The parameters are:
D = 0.02, A = 1.5, and δ = 0.75. Adapted from Ref. [244].

Figure 59. The force-velocity relation in the model with hysteretic
coupling at different amplitudes of the ac driving A and different
temperatures D. The hysteresis width is δ = 0.5. Adapted from
Ref. [244].

y which amounts to tilting of the potential (4.10) along the y

direction

G{x, y} = Ψ̂{y(t) − x(t)}Φ(x) + uSS(y − x) − y fext. (4.11)

A stochastic systemwith energy (4.11) was studied numerically
in Ref. [244] and in Fig. 59 we illustrate the obtained force-
velocity relations. The quadrants in the ( fext , v) plane where
R = fextv > 0 describe dissipative behavior. In the other the
other two quadrants, where R = fextv < 0, the system shows
anti-dissipative behavior.

Observe that at low temperatures the convexity properties
of the force-velocity relations in active pushing and active
pulling regimes are different. In the case of pulling the
typical force-velocity relation is reminiscent of the Hill’s curve
describing isotonic contractions, see Ref. [79]. In the case
of pushing, the force-velocity relation can be characterized as
convex-concave and such behavior has been also recorded in
muscles, see Refs. [161; 308; 309]. The asymmetry is due to
the dominance of different mechanisms in different regimes.
For instance, in the pushing regimes, the motor activity fully
depends on ac driving and at large amplitudes of the driving
the system performs as a mechanical ratchet. Instead, in the
pulling regimes, associated with small amplitudes of external

driving, the motor advances because of the delayed feedback.
Interestingly, the dissimilarity of convexity properties of the
force-velocity relations in pushing and pulling regimes has
been also noticed in the context of cell motility where acto-
myosin contractility is one of the two main driving forces, see
Ref. [310].

5. Descending limb

In this Section, following Ref. [238], we briefly address one
of the most intriguing issues in mesoscopic muscle mechanics:
an apparently stable behavior on the “descending limb” which
is a section of the force-length curve describing isometrically
tetanized muscle [17–19; 39].

As we have seen in the previous Sections, the active force
f generated by a muscle in a hard (isometric) device depends
on the number of pulling cross-bridge heads. The latter is
controlled by the filament overlap which may be changed by
the (pre-activation) passive stretch ∆ℓ. A large number of
experimental studies have been devoted to the measurement of
the isometric tetanus curve f (∆ℓ), see Fig. 60 and Fig. 3.

Since the stretch beyond a certain limit would necessarily
decrease the filament overlap, the active component of f (∆ℓ)
must contain a segment with a negative slope known as the
“descending limb” [78; 311–315]. The negative stiffness
associated with active response is usually corrected by the
positive stiffness provided by passive crosslinkers that connect
actin and myosin filaments. However, for some types of
muscles the total force-length relation f (∆ℓ) describing active
and passive elements connected in parallel, still has a range
where force decreases with elongation. It is this overall
negative stiffness that will be the focus of the following
discussion.

If the curve f (∆ℓ) is interpreted as a description of the
response of the “muscle material” shown in Fig. 61, the
softening behavior associated with negative overall stiffness
should lead to localization instability and the development
of strain inhomogeneities [227; 316]. In terms of the
observed quantities, the instability would mean that any initial
imperfection would cause a single myosin filament to be pulled
away from the center of the activated half-sarcomeres.
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Figure 60. Schematic isometric tetanus with a descending limb.
Adapted from Ref. [238].

Some experiments seem to be indeed consistent with
non-uniformity of the Z-lines spacing, and with random
displacements of the thick filaments away from the centers
of the sarcomeres [225; 312; 314; 317; 318]. The nontrivial
half-sarcomeres length distribution can be also blamed for
the observed disorder and skewing [319; 320]. The link
between non-affine deformation and the negative stiffness is
also consistent with the fact that the progressive increase of the
range of dispersion in half-sarcomere lengths, associated with
a slow rise of force during tetanus (creep phase), was observed
mostly around the descending limb [321–323], even though the
expected ultimate strain localization leading to failure was not
recorded.

A related feature of the muscle response on the descending
limb is the non-uniqueness of the isometric tension, which was
shown to depend on the pathway through which the elongation
is reached. Experiments demonstrate that when a muscle
fiber is activated at a fixed length and then suddenly stretched
while active, the tension first rises and then falls without
reaching the value that the muscle generates when stimulated
isometrically [320; 324–330]. The difference between
tetani subjected to such post-stretch and the corresponding
isometric tetani reveals a positive instantaneous stiffness on
the descending limb. Similar phenomena have been observed
during sudden shortening of the active muscle fibers: if a
muscle is allowed to shorten to the prescribed length it develops
less tension than during direct tetanization at the final length.

All these puzzling observations have been discussed
extensively in the literature interpreting half-sarcomeres as
softening elastic springs [54; 78; 331–334]. The fact of
instability on the descending limb for such spring chain was
realized already by Hill [331] and various aspects of this
instability were later studied in Refs. [332; 335]. It is
broadly believed that a catastrophic failure in this system is
warranted but is not observed because of the anomalously
slow dynamics [313; 320; 336–338]. In a dynamical
version of the model of a chain with softening springs,
each contractile component is additionally bundled with a
dashpot characterized by a realistic (Hill-Katz) force-velocity
relation [226; 313; 320; 336–339]. A variety of numerical
tests in such dynamic setting demonstrated that around a
descending limb the half-sarcomeres configuration can become
non uniform but at the time scale which is unrealistically

long. Such over-damped dynamic model was shown to be
fully compatible with the residual force after stretch on the
descending limb, and the associated deficit of tension after
shortening.

These simulations, however, left unanswered the question
about the fundamental origin of the multi-valudness of the
muscle response around the descending limb. For instance, it
is still debated whether such non-uniqueness is a property of
individual half-sarcomeres or a collective property of the whole
chain. It is also apparently unclear how the local (microscopic)
inhomogeneity of a muscle myofibril can coexist with the
commonly accepted idea of a largely homogenous response at
the macro-level.

To address these questions we revisit here the one-
dimensional chain model with softening springs reinforced by
parallel (linear) elastic springs, see Fig. 61 and 62. A formal
analysis [238], following a similar development in the theory of
shape memory alloys [227], shows that this mechanical system
has an exponentially large (in N) number of configurationswith
equilibrated forces, see an illustration for small N in Fig. 63 and
our goal will be to explore the consequences of the complexity
of the properly defined energy landscape.

5.1. Pseudo-elastic energy.

The physical meaning of the energy associated with the parallel
passive elements is clear but the challenge is to associate an
energy function with active elements. In order to generate
active force, motors inside the active element receive and
dissipate energy, however, this not the energy we need to
account for.

As we have already seen, active elements posses their own
passive mechanical machinery which is loaded endogenously
by molecular motors. Therefore some energy is stored in these
passive structures. For instance, we can account for the elastic
energy of attached springs and also consider the energy of
de-bonding. A transition from one tetanized state to another
tetanized state, leads to the change in the stored energy of
these passive structures. Suppose that to make an elongation
dℓ along the tetanus, the external force f (ℓ) must perform the
work f dℓ = dW where W(ℓ) is the energy of the passive
structures that accounts not only for elastic stretching but also
for inelastic effect associated with the changes in the number
of attached cross-bridges.

By using the fact that the isometric tetanus curve f (ℓ)
has a up-down-up structure we can conclude that the effective
energy functionW(ℓ)must have a double-well structure. If we
subtract the contribution due to parallel elasticityWp(ℓ), we are
left with the active energyWa(ℓ), whichwill then have the form
of a Lennard-Jones potential. Shortening below the inflection
point of this potential would lead to partial “neutralization” of
cross-bridges, and as a result the elastic energy of contributing
pullers progressively diminishes. Instead, we can assume that
when the length increases beyond the inflection point (point of
optimal overlap), the system develops damage (debonding) and
therefore the energy increases. After all bonds are broken, the
energy of the active element does not change any more and the
generated force becomes equal to zero.
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Figure 61. The model of a muscle myofibril. Adapted from Ref. [238].

Figure 62. Non-dimensional tension-elongation relations for the active element (a), for the passive elastic component (b) and for the bundle
(c). Adapted from Ref. [238].

5.2. Local model.

Consider now a chain of half sarcomeres with nearest neighbor
interactions and controlled total length, see Fig. 61. Suppose
that the system selects mechanical configurations where the
energy invested by pullers in loading the passive sub-structures
is minimized. The energy minimizing configurations will then
deliver an optimal trade-off between elasticity and damage in
the whole ensemble of contractile units. This assumption is in
agreement with the conventional interpretation of how living
cells interact with an elastic environment. For instance, it is
usually assumed that active contractile machinery inside a cell
rearranges itself in such a way that the generated elastic field
in the environment minimizes the elastic energy [340; 341].

The analysis of the zero temperature chain model for a
myofibril whose series elements are shown in Fig. 62 confirms
that the ensuing energy landscape is rugged, see Ref. [238].
The possibility of a variety of evolutionary paths in such a
landscape creates a propensity for history dependence, which,
in turn, can be used as an explaination of both the “permanent
extra tension” and the “permanent deficit of tension” observed
in the areas adjacent to the descending limb. The domain
of metastability on the force-length plane, see Fig. 63, is
represented by a dense set of stable branches with a fixed
degree of inhomogeneity. Note that in this system the
negative overall slope of the force-length relation along the
global minimum path can be viewed as a combination of
a large number of micro-steps with positive slopes. Such
“coexistence” of the negative averaged stiffness with the
positive instantaneous stiffness, first discussed in Ref. [332],
can be responsible for the stable performance of the muscle
fiber on the descending limb.

Observe, however, that the strategy of global energy
minimization contradicts observations because the reported
negative overall stiffness is incompatible with the implied
convexification of the total energy. Moreover, the global
minimization scenario predicts considerable amount of vastly
over-stretched (popped) half-sarcomeres that have not been

Figure 63. The structure of the set of metastable branches of the
tension-elongation relation for N = 10. Here f is the total tension
(a) and fa is the active tension (b). The thick gray line represents the
anticipated tetanized response. Adapted from Ref. [238].

seen in experiments. We are then left with a conclusion that
along the isometric tetanus at least some of the active, non-
affine configurations correspond to local rather than global
minima of the stored energy.

A possible representation of the experimentally observed
tetanus curve as a combination of local and globalminimization
segments is presented by a solid thick line in Fig. 63. In
view of the quasi-elastic nature of the corresponding response,
it is natural to associate the ascending limb of the tetanus
curve at small levels of stretch with the homogeneous (affine)
branch of the global minimum path (segment AB in Fig. 63).
Assume that around the point where the global minimum
configuration becomes non-affine (point B in Fig. 63), the
system remains close to the global minimum path. Then, the
isometric tetanus curve forms a plateau separating ascending
and descending limbs (segment between points B and C in
Fig. 63). Such plateau is indeed observed in experiments on
myofibrils and is known to play an important physiological role
ensuring robustness of the active response. We can speculate
that a limited mixing of “strong” and “weak” (popped) half-
sarcomeres responsible for this plateau can be confined close
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to the ends of a myofibril while remaining almost invisible in
the bulk of the sample.

To account for the descending limb, we must assume that
as the length of the average half-sarcomere increases beyond
the end of the plateau (point C in Fig. 63), the tetanized
myofibril can no longer reach the global minimum of the
stored energy. To match observations we assume that beyond
point C in Fig. 63 the attainable metastable configurations are
characterized by the value of the active force, which deviates
from the Maxwell value and becomes progressively closer to
the value generated by the homogeneous configurations as we
approach the state of no overlap (point D). The numerical
simulations show [238] that the corresponding non-affine
configurations can be reached dynamically as a result of the
instability of a homogeneous state. One may argue that such,
almost affine metastable configurations, may be also favored
due to the presence of some additional mechanical signaling
, which takes a form of inter-sarcomere stiffness or next to
nearest neighbor (NNN) interaction. As the point D in Fig. 63
is reached, all cross-bridges are detached and beyond this point
the myofibril is supported exclusively by the passive parallel
elastic elements (segment DE).

Since all the metastable non-affine states involved in this
construction have an extended range of stability, the application
of a sudden deformation will take the system away from the
isometric tetanus curve BCD in Fig. 63. It is then difficult
to imagine that the isometric relaxation, following such an
eccentric loading, will allow the system to stabilize again
exactly on the curve BCD. Such “metastable” response would
be consistent with residual force enhancement observed not
only around the descending limb but also above the optimal
(physiological) plateau and even around the upper end of the
ascending limb. It is also consistent with the observations
showing that the residual force enhancement after stretch is
independent of the velocity of the stretch, that it increases with
the amplitude of the stretch and that it is most pronounced along
the descending limb.

5.3. Nonlocal model.

While the price of stability in this system appear to be the
emergence of the limited microscopic non-uniformity in the
distribution of half sarcomere lengths, we now argue that it may
be still compatible with the macroscopic (averaged) uniformity
of the whole myofibril [319]. To support this statement we
briefly discuss here a model of a myofibril which involves long
range mechanical signaling between half-sarcomeres via the
surrounding elastic medium, see Ref. [238].

The model is illustrated in Fig. 64. It includes two parallel
elastically coupled chains. One of the chains, containing
double well springs, is the same as in the local model. The
other chain contains elements mimicking additional elastic
interactions in the myofibril of possibly non-one-dimensional
nature; it is assumed that the corresponding shear (leaf) springs
are linearly elastic.

The ensuing model is nonlocal and involves competing
interactions: the double-well potential of the snap-springs
favors sharp boundaries between the “phases”, while the elastic
foundation term favors strain uniformity. As a result of this
competition the energy minimizing state can be expected to
deliver an optimal trade off between the uniformity at the

Figure 64. Schematic representation of the structure of a half-
sarcomere chain surrounded by the connecting tissue. Adapted from
Ref. [238].

macro-scale and the non-uniformity (non-affinity) at themicro-
scale.

The nonlocal extension of the chain model lacks the
permutation degeneracy and generates peculiarmicrostructures
with fine mixing of shorter half sarcomeres located on the
ascending limb of the tension-length curve and longer half
sarcomeres supported mostly by the passive structures [238].
The mixed configurations represent periodically modulated
patterns that are undistinguishable from the homogeneous
deformation if viewed at a coarse scale. The descending limb
can be again interpreted as a union of positively sloped steps
that can be now of vastly different sizes. It is interesting
that the discrete structure of the force-length curve survives
in the continuum limit, which instead of smoothening makes
it extremely singular. More specifically, the variation of the
degree of non-uniformity with elongation along the global
energyminimum path exhibits a complete devil’s staircase type
behavior first identified in a different but conceptually related
system [342], see Fig. 65 and Ref. [238] for more details.

To make the nonlocal model compatible with observations,
one should again abandon the global minimisation strategy
and associate the descending limb with metastable (rather than
stable) states. In other words, one needs to apply an auxiliary
construction similar to the one shown in Fig. 63 for the local
model, which anticipates an outcome produced by a realistic
kinetic model of tetanization.

6. Non-muscle applications

The prototypical nature of the main model discussed in this
review (HS model, a parallel bundle of bistable units in
passive or active setting ) makes it relevant far beyond the
skeletal muscle context. It provides the most elementary
description of molecular devices capable of transforming in a
Brownian environment a continuous input into a binary, all-
or-none output that is crucial for the fast and efficient stroke-
like behavior. The capacity of such systems to flip in a
reversible fashion between several metastable conformations is
essential for many processes in cellular physiology, including
cell signaling, cell movement, chemotaxis, differentiation, and
selective expression of genes [343; 344]. Usually, both the
input and the output in such systems, known as allosteric,
are assumed to be of biochemical origin. The model, dealing
with mechanical response and relying on mechanical driving,
complements biochemical models and presents an advanced
perspective on allostery in general.

The most natural example of the implied hypersensitivity
concerns the transduction channels in hair cells [345]. Each
hair cell contains a bundle of N ≈ 50 stereocilia which are
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Figure 65. (a) The force-length relation along the global energy minimum path in the continuum limit for the model shown in Fig. 64. (b)
The force-length relation along the global energy minimum path with the contribution due to connecting tissue subtracted. (c) The active force-
length relation along the global energy with the contribution due to connecting tissue and sarcomere passive elasticity subtracted. Adapted from
Ref. [238].

mechanically stimulated by the vibrations in the inner ear.
The stereocilia possess transduction channels closed by “gating
springs” which can open (close) in response to a positive
(negative) shear strain imposed on the cilia from outside.

The broadly accepted model of this phenomenon [119]
views the hair bundle as a set of N bistable springs arranged
in parallel. It is identical to the HS model if the folded
(unfolded) configurations of cross-bridges are identified with
the closed (opened) states of the channels. The applied
loading, which tilts the potential and biases in this way the
distribution of closed and open configurations, is treated in this
model as a hard device version of HS model. Experiments,
involving a mechanical solicitation of the hair bundle through
an effectively rigid glass fiber, showed that the stiffness of the
hair bundle is negative around the physiological functioning
point of the system [120], which is fully compatible with the
predictions of the HS model.

A similar analogy can be drawn between the HS model
and the models of collective unzipping for adhesive clusters
[7; 12; 118; 341; 346]. At the micro-scale we again encounter
N elements representing, for instance, integrins or cadherins,
that are attached in parallel to a common, relatively rigid
pad. The two conformational states, which can be described
by a single spin variable, are the bound and the unbound
configurations.

The binding-unbinding phenomena in a mechanically
biased system of the HS type are usually described by the Bell
model [117], which is a soft device analog of the HS model
with κ0 = ∞. In this model the breaking of an adhesive
bond represents an escape from a metastable state and the
corresponding rates are computed by using Kramers’ theory
[341; 347] as in the HS model. In particular, the rebinding rate
is often assumed to be constant [263; 348], which is also the
assumption of HS for the reverse transition from the post- to
the pre-power-stroke state. More recently, Bell’s model was
generalized through the inclusion of ligand tethers, bringing
a finite value to κ0 and using the master equation for the
probability distribution of attached units [118; 348].

The main difference between the Bell-type models and the
HS model is that the detached state cannot bear force while the
unfolded conformation can. As a result, while the cooperative
folding-unfolding (ferromagnetic) behavior in the HS model
is possible in the soft device setting [99], similar cooperative
binding-unbinding in the Bell model is impossible because

the rebinding of a fully detached state has zero probablity.
To obtain cooperativity in models of adhesive clusters, one
must use a mixed device, mimicking the elastic backbone and
interpolating between soft and hard driving [118; 179; 197;
341].

Muscle tissues maintain stable architecture over long
periods of time. However, it is also feasible that transitory
muscle-type structures can be assembled to perform particular
functions. An interesting example of such assembly is provided
by the SNARE proteins responsible for the fast release of
neurotransmitors from neurons to synaptic clefts. The fusion
of synaptic vesicles with the presynaptic plasma membrane
[349; 350] is achieved by mechanical zipping of the SNARE
complexes which can in this way transform from opened to
closed conformation [351].

To complete the analogy, we mention that individual
SNAREs participating in the collective zipping are attached to
an elastic membrane that can be mimicked by an elastic or even
rigid backbone [352]. The presence of a backbone mediating
long-range interactions allows the SNAREs to cooperate in fast
and efficient closing of the gap between the vesicle and the
membrane. The analogy with muscles is corroborated by the
fact that synaptic fusion takes place at the same time scale as
the fast force recovery (1 ms) [353].

Yet another class of phenomena that can be rationalized
within the HS framework is the ubiquitous flip-flopping of
macro-molecular hairpins subjected to mechanical loading
[187; 188; 196; 199]. We recall that in a typical experiment
of this type, a folded (zipped) macromolecule is attached
through compliant links to micron-sized beads trapped in
optical tweezers. As the distance between the laser beams is
increased, the force applied to the molecule rises up to a point
where the subdomains start to unfold. An individual unfolding
event may correspond to the collective rupture of N molecular
bonds or an unzipping of a hairpin. The corresponding drops
in the force accompanied by an abrupt increase in the total
stretch can lead to an overall negative stiffness response [186;
199; 203]. Other molecular systems exhibiting cooperative
unfolding include protein β-hairpins [354] and coiled coils
[209]. The backbone dominated internal architecture in all
these systems leads to common mean-field type mechanical
feedback exploited by the parallel bundle model [355; 356].

Realistic examples of unfolding in macromolecules may
involve complex “fracture” avalanches [357] that cannot be
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modeled by using the original HS model. However, the
HS theoretical framework is general enough to accommodate
hierarchical meta-structures whose stability can be also biased
by mechanical loading. The importance of the topology of
interconnections among the bonds and the link between the
collective nature of the unfolding and the dominance of the
HS-type parallel bonding have been long stressed in the studies
of protein folding [358]. The broad applicability of the HS
mechanical perspective on collective conformational changes
is also corroborated by the fact that proteins and nucleic acids
exhibit negative stiffness and behave differently in soft and
hard devices [209; 359; 360].

The ensemble dependence in these systems suggests
that additional structural information can be obtained if the
unfolding experiments are performed in the mixed device
setting. The type of loading may be affected through the
variable rigidity of the “handles” [361; 362] or the use of an
appropriate feedback control that can be modeled in the HS
framework by a variable backbone elasticity.

As we have already mentioned, collective conformational
changes in distributed biological systems containing coupled
bistable units can be driven not only mechanically, by applying
forces or displacements, but also biochemically by, say, vary-
ing concentrations or chemical potentials of ligand molecules
in the environment [363]. Such systems can become ultra-
sensitive to external stimulations as a result of the interaction
between individual units undergoing conformational transfor-
mation which gives rise to the phenomenon of conformational
spread [344; 364].

The switch-like input-output relations are required in a va-
riety of biological applications because they ensure both ro-
bustness in the presence of external perturbations and ability to
quickly adjust the configuration in response to selected stim-
uli [343; 365]. The mastery of control of biological machinery
through mechanically induced conformational spread is an im-
portant step in designing efficient biomimetic nanomachines
[195; 366; 367]. Since interconnected devices of this type can
be arranged in complex modular metastructures endowed with
potentially programmable mechanical properties, they are of
particular interest for micro-enginnering of energy harvesting
devices [13].

To link this behavior to the HS model, we note that
the amplified dose response, characteristic of allostery, is
analogous to the sigmoidal stress response of the paramagnetic
HS system where an applied displacement plays the role of
the controlled input of a ligand. Usually, in allosteric protein
systems, the ultrasensitive behavior is achieved as a result of
nonlocal interactions favoring all-or-none types of responses;
moreover, the required long-range coupling is provided by
mechanical forces acting inside membranes and molecular
complexes. In the HS model such coupling is modeled
by the parallel arrangement of elements, which preserves
the general idea of nonlocality. Despite its simplicity, the
appropriately generalized HS model [99] captures the main
patterns of behavior exhibited by apparently purely chemical
systems, including the possibility of a critical point mentioned
in Ref. [363].

7. Conclusions

In contrast to inert matter, mechanical systems of biological
origin are characterized by structurally complex network
architecture with domineering long-range interactions. This
leads to highly unusual mechanical properties in both statics
and dynamics. In this reviewwe identified a particularly simple
system of this type, mimicking a muscle half-sarcomere, and
systematically studied its peculiar mechanics, thermodynamics
and kinetics.

In the study of passive force generation phenomena our
starting point was the classical model of Huxley and Simmons
(HS). The original prediction of the possibility of negative
stiffness in thismodel remained largely unnoticed. For 30 years
the HSmodel was studied exclusively in the hard device setting
which concealed the important role of cooperative effects. A
simple generalization of the HS model for the mixed device
reveals many new effects, in particular the ubiquitous presence
of coherent fluctuations.

Among other macroscopic effects exhibited by the general-
ized HS model are the non-equivalence of the response in soft
and hard devices and the possibility of negative susceptibilities.
These characteristics are in fact typical for nonlinear elasticma-
terials in 3D at zero temperature. Thus, the relaxed energy of
a solid material must be only quasi-convex which allows for
non-monotone stress strain relations and different responses in
soft and hard devices [368]. Behind this behavior is the long
range nature of elastic interactions which muscle tissues appear
to be emulating in 1D.

For a long time it was also not noticed that the original
parameter fit by HS placed skeletal muscles almost exactly in
the critical point. Such criticality is tightly linked to the fact that
the number of cross-bridges in a single half sarcomere is of the
order of 100. This number is now shown to be crucial to ensure
mechanical ultra sensitivity that is not washed out by finite
temperature and it appears quite natural that muscle machinery
is evolutionaty tuned to perform close to a critical point. This
assumption is corraborated by the observation that criticality is
ubiquitous in biology from the functioning of auditory system
[120] to themacroscopic control of upright standing [369; 370].

The mechanism of fine tuning to criticality can be
understood if we view the muscle fiber as a device that can
actively modify its rigidity. To this end the system should be
able to generate a family of stall states parameterized by the
value of themeso-scopic strain. A prototypicalmodel reviewed
in this paper shows that by controlling the degree of non-
equilibrium in the system, one can indeed stabilize apparently
unstable or marginally stable mechanical configurations, and
in this way modify the structure of the effective energy
landscape (when it can be defined). The associated pseudo-
energy wells with resonant nature may be crucially involved
in securing robustness of the near critical behavior of the
muscle system. Needless to say that the mastery of tunable
rigidity in artificial conditions can open interesting prospects
not only in biomechanics [371] but also in engineering design
incorporating negative stiffness [372] or aiming at synthetic
materials involving dynamic stabilization [373; 374].

In addition to the stabilization of passive force generation,
we also discussed different modalities of how a power-stroke-
driven machinery can support active muscle contraction. We
have shown that the use of a hysteretic design for the power-
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stroke motor allows one to reproduce mechanistically the
complete Lymn–Taylor cycle. This opens a way towards
dynamic identification of the chemical states, known from
the studies of the prototypical catalytic reaction in solution,
with particular transient mechanical configurations of the acto-
myosin complex.

At the end of this review we briefly addressed the issue
of ruggedness of the global energy landscape of a tetanized
muscle myofibril. The domain of metastability on the force-
length plane was shown to be represented by a dense set of
elastic responses parameterized by the degree of cross-bridge
connectivity to actin filaments. This observation suggests that
the negative overall slope of the force-length relation may be
a combination of a large number of micro-steps with positive
slopes.

In this review we focused almost exclusively on the results
obtained in our group and mentioned only peripherally some
other related work. For instance, we did not discuss a vast body
of related experimental results, e.g. Refs. [116; 166; 375; 376].
Among the important theoretical work that we left outside, are
the results on active collective dynamics of motors [12; 377–
379]. Interesting attempts of building alternative models of
muscle contraction [56; 380] and of creating artificial devices
imitating muscle behavior [195] were also excluded from
the scope of this paper. Other important omissions concern
the intriguing mechanical behavior of smooth [381; 382] and
cardiac [383–387] muscles.

Despite the significant progress in the understanding of
the microscopic and mesoscopic aspects of muscle mechanics,
achieved in the last years, many fundamental problems remain
open. Thus, the peculiar temperature dependence of the
fast force recovery [207; 388] has not been systematically
studied, despite some recent advances [121; 180]. A similarly
important challenge presents the delicate asymmetry between
shortening and stretching, which may require the account of
the second Myosin head [94]. Left outside most of the studies
is the short-range coupling between cross-bridges due to
filaments extensibility [76], the inhomogeneity of the relative
displacement between myosin and actin filaments, and more
generally the possibility of a non-affine displacements in the
system of interacting cross bridges. Other under-investigated
issues include the mechanical role of additional conformational
states [74] and the functionality of parallel elastic elements
[389].

We anticipate that more efforts will be also focused on
the study of contractional instabilities and actively generated
internal motions [148] that should lead to the understanding
of the self-tuning mechanism bringing sarcomeric systems
towards criticality [99; 390; 391]. Criticality implies that
fluctuations become macroscopic, which is consistent with
observations at stall force conditions. The proximity to the
critical point allows the system to amplify interactions, ensure
strong feedback, and achieve considerable robustness in front
of random perturbations. In particular, it is a way to quickly
and robustly switch back and forth between highly efficient
synchronized stroke and stiff behavior in the desynchronized
state [99].
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