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It has been shown numerically in previous works that the well-posedness of the spatial
semi-discretization plays a crucial role in obtaining stable numerical schemes for elastody-
namic frictionless contact problems. The purpose of this paper is thus to introduce a mass
redistribution method adapted to elastodynamic contact with Coulomb friction that guarantees
the well-posedness of the semi-discrete problem. It is shown that a differentiated treatment has
to be applied to the friction condition. Some numerical tests illustrating the gain in stability
for the midpoint time integration scheme are presented. They suggest also that, although the
differentiated treatment is necessary for the well-posedness, it is not always mandatory from
the numerical viewpoint.

1. Introduction

The aim of this paper is to describe a spatial well-posed semi-discretization for elastodynamic uni-
lateral contact problems with Coulomb friction. This kind of problems is of interest in computa-
tional mechanics, where situations with a frictional contact condition are fairly common. Moreover,
it is well known that the full discretization of elastodynamic contact problems induces a number of
difficulties.

Numerous works have already been dedicated to the construction of numerical schemes that are
as much as possible stable, respecting the contact constraint and not leading to spurious oscillations.
Among the strategies already proposed in the literature, we refer to (1) for a time integration scheme
that is adapted to take into account a restitution coefficient coming from an impact law. Although
this approach is better fitting to the case of rigid solids, the addition of an impact law makes the
semi-discrete problem also well posed. However, the nature of this problem is a measure differential
inclusion in time (see (1 to 4)), which is a very low regular problem. Another proposed strategy is
to build energy dissipative schemes. This is the case in (5, 6), where the contact force is implicited.
The drawback of this method is that the kinetic energy of the contacting nodes is cancelled at each
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impact. A less radical solution is to build energy conserving schemes. Such schemes are introduced
in (7 to 9). However, energy conserving schemes either introduce spurious oscillations on the contact
boundary or allow a small interpenetration. It is possible to build energy conserving schemes with
a penalized contact condition (9 to 11), but this also leads to important oscillations of the normal
stress. In this context, it was detected early that a key point is the satisfaction of the complementarity
condition between the sliding velocity and the contact pressure, the so-called persistency condition
(8, 10, 12). But a compromise has to be made between the satisfaction of this condition and the
non-penetration condition.

A common point to all these works is that they are focused on finding a good time integration
scheme. However, in (13) and (14), it is shown that this is rather obtaining a well-posed and regular
spatial semi-discrete problem that allows for stable schemes (see also (15) and (16) for further
developments). The spatial semi-discretizations proposed in (13) and (14) allow the use of any
reasonable time integration scheme while almost all time integration schemes are unstable with the
standard discretization. However, these works are focused on contact conditions without friction.
One might think that the strategies developed there are directly applicable to friction condition.
We will see thereafter that this does not provide the well-posedness results and therefore a strategy
adapted to the friction condition is needed. This is also reflected in studies presented in (17) and
(18), where it was shown that adding a mass on the contact boundary regularizes the tangential
friction problem and prevents the occurrence of multiple solutions in elastodynamics. Note that the
semi-discrete problem obtained by finite elements naturally adds a mass on the nodes of the contact
boundary (but this is also the main difficulty for the unilateral contact condition!).

The method proposed in this paper is to apply the redistribution mass method introduced in (13)
only on the unilateral contact condition not on the friction one. We show that in this case, the semi-
discrete problem in space reduces to a differential inclusion with a unique Lipschitz continuous
solution (not to a measure differential inclusion as in the standard semi-discretization).

For the sake of simplicity, we limit ourselves to the small deformations framework. However, the
same kind of difficulty exists for large deformation problems and similar strategies can be applied.

The outline of the paper is the following. In Section 2, we present a classical semi-discretization
of an elastodynamic contact problem with friction. In Section 3, we propose an adaptation of the
mass redistribution method, namely to apply it only on the normal component. Then, the well-
posedness of the obtained semi-discrete problem is proved in Section 4. The unique solution of the
semi-discrete problem is proved to be energy decreasing in Section 5. An elementary example is
described in Section 6. It shows that the well-posedness of the fully discrete problem cannot be
ensured when the mass redistribution method is applied to both contact and friction conditions. Fi-
nally, Section 7 is devoted to a numerical test that confirms the advantage of the mass redistribution
method for the stability of the midpoint scheme.

2. A classical finite-element approximation

In this section, we introduce a classical spatial semi-discretization based on the finite-element
method. Since we are mainly interested in the semi-discrete problem, we do not describe the weak
formulation of the continuous problem. More details about such a discretization can be found for
instance in (19 to 21).

Let � ⊂ R2 be a bounded Lipschitz domain representing the reference configuration of a linearly
elastic body. The Neumann condition is prescribed on ƔN, the Dirichlet one on ƔD and a unilat-
eral contact with the Coulomb friction law with respect to a rigid foundation on ƔC (see Fig. 1).

2



Fig. 1 Elastic body in contact with a rigid foundation

We suppose that ƔN, ƔD and ƔC form a partition of ∂�, the boundary of �. Let also ρ, σ(u),
ε(u) and A be the mass density, the stress tensor, the linearized strain tensor and the elasticity
tensor, respectively. The elastodynamic problem consists in finding the displacement field u(t, x)

satisfying 

ρü − div σ(u) = f in (0, T ] × �,

σ(u) = Aε(u) in (0, T ] × �,

u = 0 on (0, T ] × ƔD,

σ (u)ν = g on (0, T ] × ƔN ,

u(0) = u0, u̇(0) = v0 in �,

(1)

where, additionally, T > 0 determines the time interval of interest, ν ∈ R2 is the outward unit
normal vector to � on ∂� and f , g are some given external loads. Assuming the C 1 regularity for
ƔC, we decompose the displacement and the stress vector into normal and tangential components
on ƔC as follows:

uN = u · ν, uT = u · τ,

σN(u) = (σ (u)ν) · ν, σT(u) = (σ (u)ν) · τ,

where τ ∈ R2 is a tangent unit vector orthogonal to ν. Without real loss of generality, we also
assume that there is no initial gap between the solid and the rigid foundation. Denoting by F the
friction coefficient, the unilateral contact condition with Coulomb friction is expressed as follows:

uN 6 0, σN(u) 6 0, uNσN(u) = 0

|σT(u)| 6 −FσN(u)

σT(u) = FσN(u) u̇T
|u̇T| if u̇T ̸= 0

 on (0, T ] × ƔC. (2)

Now, we consider a vector Lagrange finite-element method defined on �. Let a1, . . . , an be the
finite-element nodes and φ1, . . . , φn p the (vector) shape functions of the finite-element displace-
ment space. We denote by nc the number of nodes on ƔC and by n p the number of degrees of
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freedom. Let u(t) be the vector of degrees of freedom of the finite-element displacement field
uh(t, x) such that

uh(t, x) =
∑

16i6n p

ui (t)φi (x) and u(t) = (ui (t)) ∈ Rn p .

Let aαi , i = 1, . . . , nc, be the i-th contact node and νννi , τττ i ∈ Rn p , i = 1, . . . , nc, be the vectors
linking a displacement vector with its normal and tangential displacements at aαi , that is,{

uh
N(t, aαi ) = νννT

i u(t),

uh
T(t, aαi ) = τττ T

i u(t),
i = 1, . . . , nc, (3)

and satisfying {∥νννi∥ = 1, ∥τττ i∥ = 1, νννT
i τττ j = 0, ∀ i, j = 1, . . . nc,

νννT
i ννν j = 0, τττ T

i τττ j = 0, ∀ i, j = 1, . . . . . . nc, i ̸= j.
(4)

We denote by ∥·∥ the Euclidean norm of vectors in Rn as well as the matrix norm in Mn,m(R)

generated by the Euclidean vector norm. Using a nodal approximation of the contact condition, the
spatial semi-discretization of Problem (1) and (2) can be written as follows:

Find u: [0, T ] → Rn p , λλλν,λλλτ : [0, T ] → Rnc such that

λλλν(t) ∈ 333ν, λλλτ (t) ∈ 333τ (Fλλλν(t)) a.e. in (0, T ),

Mü(t) + Au(t) = f + BT
ν λλλν(t) + BT

τ λλλτ (t) a.e. in (0, T ),

(µµµν − λλλν(t))T Bνu(t) > 0, ∀µµµν ∈ 333ν a.e. in (0, T ),

(µµµτ − λλλτ (t))T Bτ u̇(t) > 0, ∀µµµτ ∈ 333τ (Fλλλν(t)) a.e. in (0, T ),

u(0) = u0, u̇(0) = v0,

(5)

where

Ai j =
∫

�

Aε(φi ): ε(φ j ) dx and Mi j =
∫

�

ρφi · φ j dx (1 6 i, j 6 n p)

are the components of the stiffness matrix A ∈ Mn p (R) and of the mass matrix M ∈ Mn p (R),
respectively. We assume that the tensor A of elasticity coefficients obey the usual symmetry and
uniform ellipticity conditions, the density ρ is bounded from below by a positive constant and ƔD
is of non-zero measure on ∂�. As a consequence, A and M are both symmetric positive definite
matrices. The components of the load vector f ∈ Rn p are given by

fi =
∫

�

f · φi dx +
∫

ƔC

g · φi dƔ.

We assume for simplicity that the load vector is time independent. Finally,λλλν = (λν,1, . . . , λν,nc )
T

and λλλτ = (λτ,1, . . . , λτ,nc )
T are the normal and tangential Lagrange multipliers, respectively,

Bν = (ννν1, . . . , νννnc )
T , Bτ = (τττ 1, . . . , τττ nc )

T ∈ Mnc,n p (R) and

333ν = Rnc− ,

333τ (Fµµµν) = {µµµτ ∈ Rnc : |µτ,i | 6 −Fµν,i , ∀ i = 1, . . . , nc}, µµµν ∈ 333ν,

stand for the Lagrange multiplier sets, Rnc− being the cone of all non-positive vectors in Rnc .
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Problem (5) can be viewed as a measure differential inclusion (see (1, 3)). It is ill-posed unless
an impact law is added on each contact node. Even in this case, the solutions have a very low
regularity.

3. The mass redistribution method

The analysis presented in (13) highlights the fact that the main cause of ill-posedness is due to
the inertia of the nodes on the contact boundary. It is proposed a method that consists in the
redistribution of the mass near the contact boundary. This technique allows to recover the well-
posedness of the semi-discrete problem and ensures the solution to be energy conserving. Moreover,
it transforms the measure differential inclusion corresponding to (5) into a regular Lipschitz contin-
uous ordinary differential equation, which can be approximated by any reasonable time integration
scheme.

The singular dynamic method introduced in (14) for unilateral conditions is similar and more
general than the mass redistribution method since, for instance, it can be applied to thin structures.
However, we use here the mass redistribution method. The reason is that we need a differentiated
treatment of unilateral and friction conditions, which would be more difficult to obtain with the
singular dynamic method. In Section 6, an elementary example illustrates the fact that an undiffer-
entiated treatment leads to a potential multiplicity of solutions.

Let NNN := span{ννν1, . . . , νννnc } and NNN⊥ denote the space spanned by νννi and its orthogonal com-
plement, respectively. We shall consider the redistributed mass matrix Mr ∈ Mn p (R) satisfying:

(i) Mr = MT
r ,

(ii) Ker(Mr) = NNN ,

(iii) wT Mrw > 0, ∀ w ∈ NNN⊥, w ̸= 000,

(6)

that is, being symmetric positive semi-definite with the kernel equal to NNN . In (13), a simple algo-
rithm is proposed to build the redistributed mass matrix preserving the main characteristics of the
mass matrix (total mass, center of gravity and moments of inertia).

Using the decomposition u(t) = uNNN⊥(t) + uNNN (t), uNNN⊥(t) ∈ NNN⊥, uNNN (t) ∈ NNN , of the displace-
ment vector for any time t and replacing M with Mr, Problem (5) becomes



Find uNNN⊥ : [0, T ] → NNN⊥, uNNN : [0, T ] → NNN , λλλν,λλλτ : [0, T ] → Rnc such that

λλλν(t) ∈ 333ν, λλλτ (t) ∈ 333τ (Fλλλν(t)) a.e. in (0, T ),

MrüNNN⊥(t) + A(uNNN⊥(t) + uNNN (t)) = f + BT
ν λλλν(t) + BT

τ λλλτ (t) a.e. in (0, T ),

(µµµν − λλλν(t))T BνuNNN (t) > 0, ∀µµµν ∈ 333ν a.e. in (0, T ),

(µµµτ − λλλτ (t))T Bτ u̇NNN⊥(t) > 0, ∀µµµτ ∈ 333τ (Fλλλν(t)) a.e. in (0, T ),

uNNN⊥(0) = u0
NNN⊥ , u̇NNN⊥(0) = v0

NNN⊥,

(7)

where u0
NNN⊥ and v0

NNN⊥ are the projections of the initial values of the displacement and velocity vec-
tors into NNN⊥, respectively. Moreover, it is possible to express the unilateral contact and friction
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conditions in an equivalent way (see (20) for instance) and rewrite the problem as follows:

Find uNNN⊥ : [0, T ] → NNN⊥, uNNN : [0, T ] → NNN , λλλν,λλλτ : [0, T ] → Rnc such that

MrüNNN⊥(t) + A(uNNN⊥(t) + uNNN (t)) = f +
nc∑

i=1
λν,i (t)νννi +

nc∑
i=1

λτ,i (t)τττ i a.e. in (0, T ),

−λν,i (t) ∈ NR−(νννT
i uNNN (t)), ∀ i = 1, . . . , nc a.e. in (0, T ),

λτ,i (t) ∈ Fλν,i (t)Sgn(τττ T
i u̇NNN⊥(t)), ∀ i = 1, . . . , nc a.e. in (0, T ),

uNNN⊥(0) = u0
NNN⊥ , u̇NNN⊥(0) = v0

NNN⊥ ,

(8)

where NR− denotes the normal cone of R− and the multifunction Sgn: R ⇒ R is the sub-differential
of the function a 7→ |a|, that is,

Sgn(a) =


a
|a| if a ̸= 0,

[−1, 1] if a = 0,
a ∈ R.

REMARK 3.1. From (4), it immediately follows that there exists β > 0 such that

sup
000̸=w∈Rn p

wT BT
ν µµµν + wT BT

τ µµµτ

∥w∥ > β(∥µµµν∥ + ∥µµµτ∥), ∀µµµν,µµµτ ∈ Rnc . (9)

4. Well-posedness result

In this section, we shall establish the well-posedness of Problem (7). First, owing to (4) and (6), the
first three variables of any (uNNN⊥ , uNNN ,λλλν,λλλτ ) solving (7) have to satisfy

uNNN⊥(t) ∈ NNN⊥, uNNN (t) ∈ NNN , λλλν(t) ∈ 333ν,

wT A(uNNN⊥(t) + uNNN (t)) = wT f + wT BT
ν λλλν(t), ∀ w ∈ NNN ,

(µµµν − λλλν(t))T BνuNNN (t) > 0, ∀µµµν ∈ 333ν

(10)

for almost all t ∈ (0, T ). From here, uNNN and λλλν are uniquely determined by uNNN⊥ as states the
following assertion.

LEMMA 4.1. Let (4) be satisfied and f ∈ Rn p be arbitrary. Then there exist unique functions
g1: NNN⊥ → NNN and g2: NNN⊥ → 333ν such that the triplet (uNNN⊥(t), uNNN (t),λλλν(t)) with uNNN (t) :=
g1(uNNN⊥(t)), λλλν := g2(uNNN⊥(t)), satisfies (10) for any uNNN⊥(t) ∈ NNN⊥ and any t ∈ [0, T ]. Moreover,
the functions g1 and g2 are Lipschitz continuous:

∃ L1, L2 > 0: ∥gi (w
1) − gi (w

2)∥ 6 L i∥w1 − w2∥, ∀ w1, w2 ∈ NNN⊥, i = 1, 2. (11)

Proof. In fact, it suffices to analyse the static problem:
Find (ũNNN , λ̃λλν) := (ũNNN (ũNNN⊥), λ̃λλν(ũNNN⊥)) ∈ NNN × 333ν such that

wT AũNNN = wT (f − AũNNN⊥) + wT BT
ν λ̃λλν, ∀ w ∈ NNN ,

(µµµν − λ̃λλν)
T Bν ũNNN > 0, ∀µµµν ∈ 333ν,

(12)
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for ũNNN⊥ ∈ NNN⊥ given. It is readily seen that this problem is equivalent to finding a saddle-point
(ũNNN , λ̃λλν) of the Lagrangian

LLL (w,µµµν) := 1
2

wT Aw − wT (f − AũNNN⊥) − wT BT
ν µµµν, (w,µµµν) ∈ Rn p × Rnc ,

on NNN × 333ν . Since A is positive definite and

β∥µµµν∥ 6 sup
000̸=w∈Rn p

wT BT
ν µµµν

∥w∥ = sup
000 ̸=w∈NNN

wT BT
ν µµµν

∥w∥ , ∀µµµν ∈ Rnc (13)

due to (4), where β is the constant from (9), Problem (12) possesses a unique solution for any
ũNNN⊥ ∈ NNN⊥, which depends Lipschitz continuously on the data ũNNN⊥ (see (22) for instance). This
yields the existence, the uniqueness and the Lipschitz continuity of the functions g1 and g2.

From the other side, if (uNNN⊥ , uNNN ,λλλν,λλλτ ) solves (8), then

wT MrüNNN⊥(t) + wT A(uNNN⊥(t) + uNNN (t)) = wT f + wT
( nc∑

i=1
λτ,i (t)τττ i

)
,

∀ w ∈ NNN⊥ a.e. in (0, T ),

λτ,i (t) ∈ Fλν,i (t)Sgn(τττ T
i u̇NNN⊥(t)), ∀ i = 1, . . . , nc a.e. in (0, T ),

uNNN⊥(0) = u0
NNN⊥ , u̇NNN⊥(0) = v0

NNN⊥ .

(14)

Substituting the inclusion for λτ,i (t) into the equality and taking uNNN (t) = g1(uNNN⊥(t)), λν,i (t) =
g2,i (uNNN⊥(t)) according to Lemma 4.1, this becomes

wT MrüNNN⊥(t) ∈ wT (f − AuNNN⊥(t) − Ag1(uNNN⊥(t)))

+wT
( nc∑

i=1
F g2,i (uNNN⊥(t))Sgn(τττ T

i u̇NNN⊥(t))τττ i

)
, ∀ w ∈ NNN⊥ a.e. in (0, T ),

uNNN⊥(0) = u0
NNN⊥ , u̇NNN⊥(0) = v0

NNN⊥ .

(15)

LEMMA 4.2. Let (4) and (6) be fulfilled and f ∈ Rn p , u0
NNN⊥ , v0

NNN⊥ ∈ NNN⊥ be arbitrary. Then there
exists a unique Lipschitz continuous function uNNN⊥ : [0, T ] → NNN⊥ with üNNN⊥ ∈ L1(0, T ;Rn p )

solving (15).

Proof. Introducing the matrix P ∈ Mn p,n̄(R), n̄ := dimNNN⊥, columns of which form an orthonor-
mal basis of NNN⊥, any vector w ∈ NNN⊥ can be represented by w̄ ∈ Rn̄ with

w̄ = PT w, w = PPT w = Pw̄,

and (15) is equivalent to
w̄T M̄r ¨̄u(t) ∈ w̄T (f̄ − Āū(t) − ḡ1(ū(t))) + w̄T

( nc∑
i=1

F ḡ2,i (ū(t))Sgn(τ̄ττ T
i

˙̄u(t))τ̄ττ i

)
,

∀ w̄ ∈ Rn̄ a.e. in (0, T ),

ū(0) = ū0, ˙̄u(0) = PT v0
NNN⊥ ,

where

M̄r = PT MrP, Ā = PT AP, ḡ1(ū(t)) = PT Ag1(Pū(t)),

ḡ2(ū(t)) = g2(Pū(t)), ḡ2(ū(t)) = (ḡ2,1(ū(t)), . . . , ḡ2,nc (ū(t)))T ,

ū = PT uNNN⊥ , ū0 = PT u0
NNN⊥ , f̄ = PT f, τ̄ττ i = PTτττ i , i = 1, . . . , nc.
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Having in mind (6), this can be written as ¨̄u(t) ∈ M̄−1
r

[
f̄ − Āū(t) − ḡ1(ū(t)) +

nc∑
i=1

F ḡ2,i (ū(t))Sgn(τ̄ττ T
i

˙̄u(t))τ̄ττ i

]
a.e. in (0, T ),

ū(0) = ū0, ˙̄u(0) = PT v0
NNN⊥ ,

and denoting v̄ = M̄1/2
r

˙̄u, v̄0 = M̄1/2
r PT v0

NNN⊥ , this leads to the following differential inclusion of the
first order:

( ˙̄u(t)
˙̄v(t)
)

∈
 M̄−1/2

r v̄(t)

M̄−1/2
r

[
f̄ − Āū(t) − ḡ1(ū(t)) +

nc∑
i=1

F ḡ2,i (ū(t))Sgn
(
τ̄ττ T

i M̄−1/2
r v̄(t)

)
τ̄ττ i

]
a.e. in (0, T ),(

ū(0)

v̄(0)

)
=
(

ū0

v̄0

)
.

Thus, we have to solve {
ẋ(t) ∈ h(x(t)) a.e. in (0, T ),

x(0) = x0
(16)

with the multifunction h: R2n̄ ⇒ R2n̄ defined by

h(y) =
 M̄−1/2

r y2

M̄−1/2
r

[
f̄ − Āy1 − ḡ1(y1) +

nc∑
i=1

F ḡ2,i (y1)Sgn
(
τ̄ττ T

i M̄−1/2
r y2

)
τ̄ττ i

] ,

y =
(

y1
y2

)
∈ R2n̄,

and x0 = ((ū0)T , (v̄0)T )T .
Obviously, h is upper semi-continuous, that is, h−1(C) is closed whenever C ⊂ R2n̄ is closed and

has closed convex values. Furthermore, there exists c > 0 such that

∥h(y)∥ ≡ sup{∥z∥|z ∈ h(y)} 6 c(1 + ∥y∥), ∀ y ∈ R2n̄ . (17)

Indeed,

∥h(y)∥ 6
∥∥∥M̄−1/2

r

∥∥∥
∥y2∥2 +

∥∥∥∥∥f̄ − Āy1 − ḡ1(y1) +
nc∑

i=1

F ḡ2,i (y1)Sgn
(
τ̄ττ T

i M̄−1/2
r y2

)
τ̄ττ i

∥∥∥∥∥
2
1/2

6 ∥M̄−1/2
r ∥ ×

[
∥y2∥2 + (∥f̄∥ + ∥Ā∥∥y1∥ + ∥ḡ1(y1)∥

+
∥∥∥∥∥

nc∑
i=1

F ḡ2,i (y1)Sgn
(
τ̄ττ T

i M̄−1/2
r y2

)
τ̄ττ i

∥∥∥∥∥
)2
1/2

.
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First, ∥∥∥∥∥
nc∑

i=1

F ḡ2,i (y1)Sgn
(
τ̄ττ T

i M̄−1/2
r y2

)
τ̄ττ i

∥∥∥∥∥ 6
( nc∑

i=1

(F ḡ2,i (y1))
2

)1/2

= F∥ḡ2(y1)∥

in virtue of the orthonormality of τ̄ττ i and the definition of the mapping Sgn. Second, making use of
(11) and of the form of P, we have

∥ḡ1(y1)∥ = ∥PT Ag1(Py1)∥ 6 ∥A∥∥g1(Py1)∥,
∥g1(Py1)∥ − ∥g1(P000)∥ 6 L1∥P(y1 − 000)∥ = L1∥y1∥,

consequently

∥ḡ1(y1)∥ 6 ∥A∥(∥g1(000)∥ + L1∥y1∥),
and in a similar way, one can show that

∥ḡ2(y1)∥ 6 ∥g2(000)∥ + L2∥y1∥.
Hence,

∥h(y)∥ 6 ∥M̄−1/2
r ∥ × [∥y2∥2 + (∥f̄∥ + ∥Ā∥∥y1∥ + ∥A∥(∥g1(000)∥ + L1∥y1∥)

+ F (∥g2(000)∥ + L2∥y1∥)
)2]1/2

from which the expression for the constant c in (17) follows. Therefore, Theorem 5.1 in (23) guar-
antees that (16) has an absolutely continuous solution x in [0, T ] for any x0 ∈ R2n̄ , that is, a function
x: [0, T ] → R2n̄ with ẋ ∈ L1(0, T ;R2n̄) satisfying

x(t) = x0 +
∫ t

0
ẋ(s) ds for all t ∈ [0, T ] and ẋ(t) ∈ h(x(t)) a.e. in (0, T ).

This gives the existence part of the assertion. To prove the uniqueness, it suffices to show that h is
one-sided Lipschitz (see for instance Theorem 10.4 in (23)), that is,

∃ k > 0: (y1 − y2)T (h(y1) − h(y2)) 6 k∥y1 − y2∥2, ∀ y1, y2 ∈ R2n̄ .

From the definition of h

(y1 − y2)T (h(y1) − h(y2)) = (y1
1 − y2

1)
T M̄−1/2

r (y1
2 − y2

2) + (y1
2 − y2

2)
T M̄−1/2

r Ā(y2
1 − y1

1)

+ (y1
2 − y2

2)
T M̄−1/2

r (ḡ1(y
2
1) − ḡ1(y

1
1))

+ (y1
2 − y2

2)
T M̄−1/2

r

( nc∑
i=1

F
(

ḡ2,i (y1
1)Sgn

(
τ̄ττ T

i M̄−1/2
r y1

2

)
−ḡ2,i (y2

1)Sgn
(
τ̄ττ T

i M̄−1/2
r y2

2

))
τ̄ττ i

)

=: S1 + S2 + S3 + S4.

9



Clearly,

S1 6
∥∥∥M̄−1/2

r

∥∥∥∥y1 − y2∥2, S2 6
∥∥∥M̄−1/2

r Ā
∥∥∥∥y1 − y2∥2

and

S3 6
∥∥∥M̄−1/2

r

∥∥∥∥y1 − y2∥∥ḡ1(y
2
1) − ḡ1(y

1
1)∥

6 ∥A∥
∥∥∥M̄−1/2

r

∥∥∥∥y1 − y2∥∥g1(Py2
1) − g1(Py1

1)∥ 6 L1∥A∥
∥∥∥M̄−1/2

r

∥∥∥∥y1 − y2∥2

by (11). Furthermore,

S4 =
nc∑

i=1

F
(

ḡ2,i (y1
1)Sgn

(
τ̄ττ T

i M̄−1/2
r y1

2

)
− ḡ2,i (y2

1)Sgn
(
τ̄ττ T

i M̄−1/2
r y2

2

))
×
(

y1
2

T M̄−1/2
r τ̄ττ i − y2

2
T M̄−1/2

r τ̄ττ i

)
.

Hence, fixing i and setting

a1 = ḡ2,i (y1
1), a2 = ḡ2,i (y2

1), b1 = τ̄ττ T
i M̄−1/2

r y1
2, b2 = τ̄ττ T

i M̄−1/2
r y2

2,

the i th summand of S4 takes the form

F (a1Sgn(b1) − a2Sgn(b2))(b1 − b2).

Note that a1, a2 6 0. We claim that in this case,

(a1Sgn(b1) − a2Sgn(b2))(b1 − b2) 6 |a1 − a2||b1 − b2|. (18)

Indeed, for ζ ∈ Sgn(b1) and ξ ∈ Sgn(b2), we get

(a1ζ − a2ξ)(b1 − b2) = (a1ζ − a1ξ + a1ξ − a2ξ)(b1 − b2) 6 (a1 − a2)ξ(b1 − b2)

due to the monotonicity of the multifunction Sgn. And of course (18) can be deduced from

(a1 − a2)ξ(b1 − b2) 6 |a1 − a2||b1 − b2|.
Applying this together with the Cauchy–Schwarz inequality and (11) we get

S4 6 F
nc∑

i=1

∣∣ḡ2,i (y1
1) − ḡ2,i (y2

1)
∣∣∣∣τ̄ττ T

i M̄−1/2
r y1

2 − τ̄ττ T
i M̄−1/2

r y2
2
∣∣

6 F∥ḡ2(y
1
1) − ḡ2(y

2
1)∥
∥∥∥Bτ M̄−1/2

r (y1
2 − y2

2)

∥∥∥ 6 F L2

∥∥∥M̄−1/2
r

∥∥∥∥y1 − y2∥2.

All in all, the one-sided Lipschitz property of h is verified.
On the basis of the previous two lemmas, we arrive at the announced well-posedness result.

THEOREM 4.3. Let f ∈ Rn p , u0
NNN⊥, v0

NNN⊥ ∈ NNN⊥ be arbitrary. If (4) and (6) are satisfied, then
there exist a unique Lipschitz continuous function uNNN⊥ : [0, T ] → NNN⊥ with üNNN⊥ ∈ L1(0, T ;Rn p )

and unique functions uNNN : [0, T ] → NNN and λλλν,λλλτ : [0, T ] → Rnc such that the quadruplet
(uNNN⊥ , uNNN ,λλλν,λλλτ ) solves (7). In addition, uNNN , λλλν are Lipschitz continuous in [0, T ] and λλλτ ∈
L∞(0, T ;Rnc ).

10



Proof. The existence and uniqueness as well as the Lipschitz continuity of uNNN⊥ and uNNN , λλλν are
ensured by Lemmas 4.2 and 4.1, respectively. Consequently, the existence of λλλτ is readily seen from
the relation between (14) and (15). If (uNNN⊥, uNNN ,λλλν,λλλ

1
τ ) and (uNNN⊥ , uNNN ,λλλν,λλλ

2
τ ) were two solutions

to (7), then

wT BT
τ (λλλ1

τ (t) − λλλ2
τ (t)) = 0, ∀ w ∈ Rn p , a.e. in (0, T )

by the first equation in (7) and

β∥λλλ1
τ (t) − λλλ2

τ (t)∥ 6 sup
000̸=w∈Rn p

wT BT
τ (λλλ1

τ (t) − λλλ2
τ (t))

∥w∥ = 0 a.e. in (0, T )

due to (9). In a similar way, one also obtains that λλλτ ∈ L∞(0, T ;Rnc ) from the Lipschitz continuity
of λλλν and the second inclusion of (8).

REMARK 4.4. The well-posedness result can easily be extended to three-dimensional (3D) prob-
lems since the key point of the proof is the monotonicity of the multifunction Sgn. For the 3D
problems, the friction condition can be expressed by means of the subdifferential of the function
a 7→ ∥a∥, which is also monotonic. This allows to obtain an equivalent relation to (18). An ex-
tension of the well-posedness result can also be obtained for a load vector which is a Lipschitz
continuous function of time.

REMARK 4.5. The spatial semi-discrete problem (7) being equivalent to the one-sided Lipschitz
regular differential inclusion (16), most of the classical time integration schemes will be convergent
(for a fixed mesh) due to, for instance, the result obtained in (24). Moreover, the fully discrete prob-
lem is also ensured to be well-posed for a sufficiently small time step (because of its monotonicity).

5. Energy decreasing result

First, note that the result of Proposition 1 in (13) is still valid, which means that the so-called
persistency condition holds

λν,i (t)(νννT
i u̇(t)) = 0 a.e. in (0, T ), i = 1, . . . , nc.

This allows to prove the following result.

PROPOSITION 5.1 Still assuming the load vector f to be constant in time and denoting u = uNNN +
uNNN⊥ the solution to (7), the energy

E(t) = 1
2

u̇T (t)Mru̇(t) + 1
2

uT (t)Au(t) − uT (t)f (19)

is decreasing in time.

Proof. The first equation in (8) implies

u̇T (t)Mrü(t) + u̇T (t)Au(t) = u̇T (t)f +
nc∑

i=1

λν,i (t)u̇T (t)νννi +
nc∑

i=1

λτ,i (t)u̇T (t)τττ i .

Integrating from t0 to t1, it follows:

E(t1) = E(t0) +
nc∑

i=1

∫ t1

t0
λν,i (t)u̇T (t)νννi dt +

nc∑
i=1

∫ t1

t0
λτ,i (t)u̇T (t)τττ i dt.

11



Due to the fact that λτ,i (t) ∈ Fλν,i (t)Sgn(u̇T (t)τττ i ) a.e. in (0, T ), one has∫ t1

t0
λτ,i (t)u̇T (t)τττ i dt 6 0, i = 1, . . . , nc.

Together with the persistency condition, this gives the result.

6. An elementary example

This section presents the mass redistribution method for an elementary contact problem involving a
single linear triangular finite-element depicted in Fig. 2. The aim is to show that an undifferentiated
treatment of the contact and friction condition may lead to an ill-posedness of the fully discrete prob-
lem whatever is the length of the time step. Using the time discretization by the midpoint scheme, we
shall compare different possibilities of the redistribution of the mass. The studied contact problem
is in fact a dynamic case of the elementary example studied, for example, in (25) and (26).

Denoting the lengths of the sides of the triangle by ℓ, ℓ,
√

2ℓ and employing Hooke’s constitutive
law for homogeneous, isotropic material, the formulation of the problem in inclusions reads as
follows: 

Find u: [0, T ] → R2, λν, λτ : [0, T ] → R such that

Mü(t) + Au(t) = f(t) + λν(t)ννν + λτ (t)τττ a.e. in (0, T ),

−λν(t) ∈ NR−(νννT u(t)) a.e. in (0, T ),

λτ (t) ∈ Fλν(t)Sgn(τττ T u̇(t)) a.e. in (0, T ),

u(0) = u0, u̇(0) = v0,

where

M =
ρℓ2

12 0

0 ρℓ2

12

 , A =
(

λ+3µ
2 −λ+µ

2

−λ+µ
2

λ+3µ
2

)
, ννν =

(
1

0

)
, τττ =

(
0

1

)
.

Here, ρ > 0 is constant, λ > 0, µ > 0 are the Lamé coefficients and f is assumed to be dependent
on t .

Obviously, the mass redistribution method consists in replacing the matrix M by Mr = ( m1 0
0 m2

)
with m1, m2 > 0. Further, to do the time discretization by the midpoint method, we divide the

Fig. 2 Geometry of the elementary example

12



interval [0, T ] uniformly into nt subintervals and set 1t = T/nt and tk = k1t for k = 0, . . . , nt .
We seek the approximations uk+1 and vk+1 of u(tk+1) and u̇(tk+1), respectively, for k = 0, . . . ,

nt − 1 so that {
uk+1 = uk + 1tvk+1/2, vk+1 = vk + 1tak+1/2,

uk+1/2 = uk+1+uk

2 , vk+1/2 = vk+1+vk

2

(20)

and 
Mrak+1/2 + Auk+1/2 = f

(
tk+tk+1

2

)
+ λ

k+1/2
ν ννν + λ

k+1/2
τ τττ ,

−λ
k+1/2
ν ∈ NR−(νννT uk+1/2),

λ
k+1/2
τ ∈ Fλ

k+1/2
ν Sgn(τττ T vk+1/2).

(21)

From (20) one can express vk+1/2 and ak+1/2 as

vk+1/2 = 2
1t

uk+1/2 − 2
1t

uk, ak+1/2 = 4
1t2 uk+1/2 − 4

1t2 uk − 2
1t

vk, (22)

which inserted into (21) leads to

(
4

1t2 Mr + A
)

uk+1/2 = f̂
k+1/2 + λ

k+1/2
ν ννν + λ

k+1/2
τ τττ ,

−λ
k+1/2
ν ∈ NR−

(
νννT uk+1/2) ,

λ
k+1/2
τ ∈ Fλ

k+1/2
ν Sgn

(
2

1t τττ
T (uk+1/2 − uk))

with

f̂
k+1/2 = f

(
tk + tk+1

2

)
+ 4

1t2 Mruk + 2
1t

Mrvk .

Finally, we consider the decomposition

ui = (ui
ν, ui

τ ), vi = (vi
ν, v

i
τ ), ai = (ai

ν, ai
τ ), f̂

i = ( f̂ i
ν , f̂ i

τ )

and denote

a :=
(

4
1t2 m1 + λ + 3µ

2

)
, b := λ + µ

2
, c :=

(
4

1t2 m2 + λ + 3µ

2

)
.

In each time step, we then obtain the following problem:

Find
(

uk+1/2
ν , uk+1/2

τ , λ
k+1/2
ν , λ

k+1/2
τ

)
∈ R4 such that

auk+1/2
ν − buk+1/2

τ = f̂ k+1/2
ν + λ

k+1/2
ν ,

−buk+1/2
ν + cuk+1/2

τ = f̂ k+1/2
τ + λ

k+1/2
τ ,

−λ
k+1/2
ν ∈ NR−

(
uk+1/2

ν

)
,

λ
k+1/2
τ ∈ Fλ

k+1/2
ν Sgn

(
uk+1/2

τ − uk
τ

)
,

(23)
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after resolution of which the values of (uk+1
ν , uk+1

τ ) and (vk+1
ν , vk+1

τ ) are determined by
(20) and (22).

We shall derive exact solutions of problem (23) for an arbitrary k ∈ {0, . . . , nt −1} by considering
all possible situations occurring in the inclusions (23)4 and (23)5.

(i) Let λ
k+1/2
ν = 0. From (23)5, it follows that λ

k+1/2
τ = 0 and solving the equations (23)2 and

(23)3 we get

uk+1/2
ν = c f̂ k+1/2

ν + b f̂ k+1/2
τ

ac − b2 , uk+1/2
τ = a f̂ k+1/2

τ + b f̂ k+1/2
ν

ac − b2 .

Since uk+1/2
ν 6 0 by (23)4, this solution is valid under the following constraint:

c f̂ k+1/2
ν + b f̂ k+1/2

τ 6 0.

(ii) If λ
k+1/2
ν < 0 and uk+1/2

τ = uk
τ , then uk+1/2

ν = 0 according to (23)4 and (23)2,3 yield

λk+1/2
ν = −buk

τ − f̂ k+1/2
ν , λk+1/2

τ = cuk
τ − f̂ k+1/2

τ .

Our assumption λ
k+1/2
ν < 0 and the condition Fλ

k+1/2
ν 6 λ

k+1/2
τ 6 −Fλ

k+1/2
ν implied by

(23)5 give the restrictions:

f̂ k+1/2
ν > −buk

τ , (c − bF )uk
τ − F f̂ k+1/2

ν 6 f̂ k+1/2
τ 6 (c + bF )uk

τ + F f̂ k+1/2
ν .

(iii) Let us pose λ
k+1/2
ν < 0, uk+1/2

τ > uk
τ . Making use of (23)4,5, we have uk+1/2

ν = 0, λ
k+1/2
τ =

Fλ
k+1/2
ν and (23)2,3 lead to

uk+1/2
τ = f̂ k+1/2

τ − F f̂ k+1/2
ν

c + bF
, λk+1/2

ν = −c f̂ k+1/2
ν + b f̂ k+1/2

τ

c + bF
.

From λ
k+1/2
ν < 0 and uk+1/2

τ > uk
τ , one can see that

c f̂ k+1/2
ν + b f̂ k+1/2

τ > 0, f̂ k+1/2
τ > (c + bF )uk

τ + F f̂ k+1/2
ν .

(iv) Suppose that λk+1/2
ν < 0 and uk+1/2

τ < uk
τ . Consequently, uk+1/2

ν = 0 and λ
k+1/2
τ = −Fλ

k+1/2
ν .

If F ̸= c/b, then we obtain

uk+1/2
τ = f̂ k+1/2

τ + F f̂ k+1/2
ν

c − bF
, λk+1/2

ν = −c f̂ k+1/2
ν + b f̂ k+1/2

τ

c − bF

under the condition

F <
c
b
, c f̂ k+1/2

ν + b f̂ k+1/2
τ > 0, f̂ k+1/2

τ < (c − bF )uk
τ − F f̂ k+1/2

ν

or

F >
c
b
, c f̂ k+1/2

ν + b f̂ k+1/2
τ < 0, f̂ k+1/2

τ > (c − bF )uk
τ − F f̂ k+1/2

ν .

In the case of F = c/b, there exists the whole solution set{(
uk+1/2

τ , λk+1/2
ν

)
∈ R2 | λk+1/2

ν = −buk+1/2
τ − f̂ k+1/2

ν

}
with the following restrictions:

f̂ k+1/2
τ + F f̂ k+1/2

ν = 0, − f̂ k+1/2
ν

b
< uk+1/2

τ < uk
τ , −buk

τ < f̂ k+1/2
ν .
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To summarize the results, introduce the linear functions Sk+1/2
i : R2×(0, +∞) → R4, 1 6 i 6 4,

and the multi-valued function Sk+1/2
5 : R2 × (0, +∞) ⇒ R4 by

Sk+1/2
1 (f̂, F ) =

(
c f̂ν + b f̂τ

ac − b2 ,
a f̂τ + b f̂ν

ac − b2 , 0, 0

)T

, f̂ ∈ R2, F > 0,

Sk+1/2
2 (f̂, F ) = (0, uk

τ , −( f̂ν + buk
τ ), cuk

τ − f̂τ )T , f̂ ∈ R2, F > 0,

Sk+1/2
3 (f̂, F ) =

(
0,

f̂τ − F f̂ν
c + bF

, −c f̂ν + b f̂τ
c + bF

, −F
c f̂ν + b f̂τ
c + bF

)T

, f̂ ∈ R2, F > 0,

Sk+1/2
4 (f̂, F ) =

(
0,

f̂τ + F f̂ν
c − bF

, −c f̂ν + b f̂τ
c − bF

, F
c f̂ν + b f̂τ
c − bF

)T

, f̂ ∈ R2, F ∈ (0,+∞) \
{ c

b

}
,

Sk+1/2
5 (f̂, F ) =

{
(uν, uτ , λν, λτ )

T ∈ R4 | uν = 0, − f̂ν
b

6 uτ 6 uk
τ ,

λν = −( f̂ν + buτ ), λτ = F ( f̂ν + buτ )

}
, f̂ ∈ R2, F = c

b
,

and for F > 0 define the sets:

σσσ
k+1/2
1 (F ) = {f̂ ∈ R2 | c f̂ν + b f̂τ 6 0},

σσσ
k+1/2
2 (F ) = {f̂ ∈ R2 | f̂ν > −buk

τ , (c − bF )uk
τ − F f̂ν 6 f̂τ 6 (c + bF )uk

τ + F f̂ν},

σσσ
k+1/2
3 (F ) = {f̂ ∈ R2 | c f̂ν + b f̂τ > 0, f̂τ > (c + bF )uk

τ + F f̂ν},

σσσ
k+1/2
4 (F ) =



{f̂ ∈ R2 | f̂ν > −buk
τ , c f̂ν + b f̂τ > 0, f̂τ 6 (c − bF )uk

τ − F f̂ν}
if F ∈

(
0, c

b

)
,

{f̂ ∈ R2 | f̂ν > −buk
τ , c f̂ν + b f̂τ 6 0, f̂τ > (c − bF )uk

τ − F f̂ν}
if F ∈

(
c
b , +∞

)
,

σσσ
k+1/2
5 (F ) = {f̂ ∈ R2 | f̂ν > −buk

τ , c f̂ν + b f̂τ = 0}, F = c
b
.

One can easily verify that Sk+1/2
i

(
f̂
k+1/2

, F
)

solves (23) for f̂
k+1/2 ∈ σσσ

k+1/2
i (F ), F > 0,

1 6 i 6 4, and Sk+1/2
5 (f̂

k+1/2
, F ) is the set of solutions to (23) for f̂

k+1/2 ∈ σσσ
k+1/2
5 (F ), F = c/b.

Hence, the structure of the solution set to (23) depends on the mutual position of σσσ
k+1/2
i (F ), which

depends on the magnitude of F .
If F ∈ (0, c/b), then the interiors of σσσ

k+1/2
i (F ) are mutually disjoint for 1 6 i 6 4 and

Sk+1/2
i (f̂, F ) = Sk+1/2

j (f̂, F ), ∀ f̂ ∈ ∂σσσ
k+1/2
i (F ) ∩ ∂σσσ

k+1/2
j (F ), ∀ i, j ∈ {1, . . . , 4}.
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Consequently, (23) has a unique solution for any f̂
k+1/2 ∈ R2 (see Fig. 3; note that uk+1/2

ν , uk+1/2
τ

and λ
k+1/2
τ are uniquely determined by the values of λ

k+1/2
ν ). If F > c/b, then σσσ

k+1/2
4 (F ) =

σσσ
k+1/2
1 (F ) ∩ σσσ

k+1/2
2 (F ) and its interior is non-empty. In this case, there exists a unique solution

to (23) if f̂
k+1/2 ∈ (R2 \ σσσ

k+1/2
4 (F )) ∪ {(−buk

τ , cuk
τ )}, there are two solutions on ∂σσσ

k+1/2
4 (F ) \

{(−buk
τ , cuk

τ )} and three solutions in Int σσσ
k+1/2
4 (F ) (see Fig. 4). Finally, if F = c/b, σσσ k+1/2

1 (F )∩
σσσ

k+1/2
2 (F ) = σσσ

k+1/2
5 (F ) is a half-line and there exists a unique solution to (23) for f̂

k+1/2 ∈
(R2 \σσσ

k+1/2
5 (F )) ∪ {(−buk

τ , cuk
τ )}, whereas the continuous branch Sk+1/2

5 (f̂
k+1/2

, F ) of solutions

connects Sk+1/2
1 (f̂

k+1/2
, F ) and Sk+1/2

2 (f̂
k+1/2

,F ) for f̂
k+1/2 ∈ σσσ

k+1/2
5 (F ) \ {(−buk

τ , cuk
τ )} (as

depicted in Fig. 5).

Fig. 3 Structure of the solution for F ∈ (0, c/b)

Fig. 4 Structure of the solution for F ∈ (c/b,+∞)
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Fig. 5 Structure of the solution for F = c/b

Now take the redistributed mass matrix Mr such that m1 = 0 and m2 > 0, that is, (6) is fulfilled.
Then, for any F > 0 given, one can find 1t0 > 0 satisfying

c
b

=
4

1t2 m2 + λ+3µ
2

λ+µ
2

> F , ∀ 1t ∈ (0,1t0)

and the analysis above ensures the unique solvability of (23) for any f̂
k+1/2 ∈ R2 and any 1t ∈

(0,1t0). Observe that this is in good accordance with the well-posedness result established in
Section 4.

On the contrary, consider Mr with m1 > 0, m2 = 0 or m1 = m2 = 0, which corresponds to
the elimination of the mass in the tangential direction and the total elimination of the mass on the
contact zone, respectively. If the coefficient F is larger than (λ + 3µ)/(λ + µ) = c/b, one can

always find f̂
k+1/2

such that (23) possesses multiple solutions whatever small 1t is. This suggests
that the well-posedness is not reached in such cases.

7. Numerical tests

The numerical simulations presented in (13) show the effectiveness of the mass redistribution
method to remove the spurious oscillations caused by the contact condition in discretized dy-
namical problems. Here, we chose a test case where the sliding is much more present with still
a partial loss of contact (see Fig. 6). An elastic body whose reference configuration is the square
{(x1, x2) ∈ ]0, 10 cm[ × ]0, 10 cm[} is in contact with a rigid foundation at x2 = 0. This rigid foun-
dation is moving horizontally at a constant speed of 20 m/s. At the top of the structure (x2 = 10 cm)
the Dirichlet condition u1 = 0, u2 = −2.5 × 10−3 cm ensures an initial compression of the body.
The friction coefficient is larger than 1 (F = 1.2). The other characteristics of the simulation are
summarized in Table 1. Additionally, Problem (7) is approximated in time with the midpoint scheme
(see Section 6 or (13) for more details). The C++ program that performs the tests is available along
with Getfem++ (27).
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Fig. 6 Structured mesh of the square {(x1, x2) ∈ ]0, 10 cm[ × ]0, 10 cm[} and an example of deformation (at
t = 0.01 s). The rigid foundation lies at x2 = 0 and has a constant horizontal velocity of 20 m/s. The structure
is clambed on its top (x2 = 10 cm)

Table 1 Main characteristics of the simulation

Density ρ 103 kg/m3

Domain ]0, 10 cm[×]0, 10 cm[
Lamé coefficients λ = 300 MPa, µ = 150 MPa
Simulation time 0.02 s
Friction coefficient F 1.2
Horizontal velocity of the rigid foundation 20 m/s

Due to friction and the fact that the rigid foundation has a constant horizontal velocity, there is a
source of energy in the system. The evolution of the total energy (given by (19)) for an element size
h = 0.5 cm and various time steps is shown in Fig. 7 for four situations.

The first graph of Fig. 7 corresponds to the standard semi-discretization. It clearly shows the in-
stability of the midpoint scheme applied to the standard semi-discretization. A rather unique feature,
reserved to the discretization of dynamic contact problems, is that the smaller the time step is, the
most the scheme is unstable. One can also remark that the scheme is reasonably stable in the first
half of the simulation period. It is probably due to the fact that, at the beginning of the simulation,
the body is pressed down to the foundation and is submitted to a relatively monotone loading due to
the friction force. Consequently, the number of transitions between contact and noncontact is low.

The second and third graphs correspond to the mass redistribution applied only on the normal
component of the displacement and on both components, respectively. The stability of the midpoint
scheme is recovered.

An interesting situation is described on the fourth graph of this figure, which corresponds to the
standard semi-discretization with an adaptation of the midpoint scheme where the contact forces
have been implicited (see (5, 6)). Even though this scheme is proven to be stable (energy dissipative
in fact) and this is also the case here, one can see that the result is rather different than the two
previous graphs.
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Fig. 7 Evolution of the energy for the following four situations: standard discretization, partial mass redistri-
bution, whole-mass redistribution and standard discretization with implicited contact forces

This is more clear in Fig. 8, where the graphs correspond to the difference between the total
energy and the energy transferred (provided and dissipated) by friction. The latter is given at the
time step l1t by

ξl =
l∑

k=1

nc∑
i=1

λk
τ,i (u̇

k)Tτττ i1t,

where λk
τ,i and u̇k are the corresponding quantities to λτ,i (k1t) and u̇(k1t) at the kth time step of

the midpoint scheme. These graphs reflect better the stability of each scheme. Of course, this does
not change the conclusion for the midpoint scheme with the standard semi-discretization, which
still appears to be unstable. However, from the two graphs corresponding to the mass redistribution
method, we can see that for both cases, the energy conservation is obtained asymptotically for a
time step going to zero. This is not the case for the fourth graph, corresponding to the standard
semi-discretization with implicited contact forces. The scheme is stable, but it does not converge
towards an energy conserving solution. This is due to the fact that a certain amount of energy is
lost at each impact of each node, independently of the length of the time step. Since the number of
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Fig. 8 Evolution of the difference between the total energy and the energy transferred by friction

impacts grows in this simulation for decreasing time steps, the smallest the time step is, the most
dissipative the scheme is. In conclusion, we can say that this leads to a non-physical solution.

A convergence test on the time interval [0, 0.005 s] has been performed. The results are shown
in Figs 9 and 10. A reference solution has been computed on a refined mesh (h = 0.0625 cm) for
a small time step (1t = 5 × 10−7 s) using the partial mass redistribution. Then the differences
between this reference solution and four experiments whose characteristics are presented in Table 2
are computed. The curves in Fig. 9 present the maxima of the L2(�)-norm and H1(�)-semi-norm
in [0, 0.005 s] for the four experiments. Numerical convergence with an order <1 is found. Due
to the weak regularity of the solution, a faster rate of convergence cannot reasonably be expected.
Note that a mathematical result of convergence of numerical solutions towards a solution of the
continuous problem is an open problem. Untill now, neither existence nor uniqueness results have
been established on this model (unless a certain number of regularizations).

The convergence is also illustrated in Fig. 10, where the evolution of the density of friction force
for different experiments is shown. Both the cases with a redistribution of mass only on the vertical
component and on both components of the displacement are shown. In the two cases, the numerical
solution seems to converge towards the same solution. This means that at least for the presented test
case, the differentiated treatment of the two conditions is not strictly mandatory to obtain reliable
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Fig. 10 Comparison of the density of friction force at the point (0, 0) for the convergence test

Table 2 Element sizes and time steps for the convergence test

Reference
Experiment 1 Experiment 2 Experiment 3 Experiment 4 solution

Element size h (cm) 2 1 0.5 0.25 0.0625
Time step 1t (s) 1.6 × 10−5 8 × 10−6 4 × 10−6 2 × 10−6 5 × 10−7
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numerical results. Of course, with the redistribution of mass on both components, the well-posedness
of the semi-discretization is not guaranteed (see the discussion in Section 6). A real difference may
occur if there is a dynamical bifurcation. But the exhibition of such a dynamical bifurcation is also
still an open problem.

8. Concluding remarks

We adapted the mass redistribution method for the elastodynamic contact problem with friction.
The proposed strategy, which is to apply the mass redistribution only on the normal component
corresponding to the contact condition, allows to transform the semi-discrete problem into a regular
one-sided Lipschitz differential inclusion. The advantage is that any reasonable time integration
scheme is then convergent (see (24)) at least for a fixed mesh. Moreover, the fully discrete problem
is also well-posed for a sufficiently small time step. The simple example described in Section 6
shows that this is not the case when the mass redistribution is applied on both the contact and
friction conditions.

The test case presented in Section 7 confirms that the stability is gained by the mass redistribution
method. However, for this simple test case, there is no significant difference between the two strate-
gies how to apply the mass redistribution. One may think that it makes no difference numerically.

For the moment, we do not have any dynamical bifurcation example for the Coulomb friction
law with a constant friction coefficient that would test the difference. A perspective of this work
would be to consider a coefficient of friction depending on the sliding velocity. In (17, 28), such
a friction coefficient has been considered and multi-solutions are given in a one-dimensional case.
It is proven that an additional mass on the contact boundary allows to recover the uniqueness of
the solution. Moreover, it selects a particular solution which is related to the perfect delay criterion
introduced in (29) for contact problems with friction. In this context, obtaining a well-posed semi-
discrete problem would be more crucial and it would be interesting to see if the same solution is
selected.
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