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THE EQUIVARIANT INDEX OF TWISTED DIRAC
OPERATORS AND SEMI-CLASSICAL LIMITS.
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PAUL-EMILE PARADAN AND MICHELE VERGNE

ABSTRACT. Let G be a compact connected Lie group with Lie
algebra g. Let M be a compact spin manifold with a G-action,
and £ be a G-equivariant line bundle on M. Consider an inte-
ger k, and let Q™ (M, L) be the equivariant index of the Dirac
operator on M twisted by £*. Let mg(\, k) be the multiplicity
in QP (M, L*) of the irreducible representation of G attached to
the admissible coadjoint orbit GA. We prove that the distribu-
tion (O, ) = kMG D23 ma (X k)(Bak, @) has an asymp-
totic expansion when k tends to infinity of the form (O, ) =
FAimM/257%0 k=10, ). Here ¢ is a test function on g* and
(Be, ¢) is the integral of ¢ on the coadjoint orbit G¢ with respect
to the canonical Liouville measure. We compute explicitly the dis-
tribution 6,, in terms of the graded A class of M and the equivariant
curvature of L.

If M is non compact, we use these asymptotic techniques to give
another proof of the fact that the formal geometric quantification
of a manifold with a spinc structure is functorial with respect to
restriction to subgroups.
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To the memory of Bertram Kostant.

This article is pursuing the fundamental idea of Kostant that a line
bundle £ on a G-manifold M, equipped with a G-invariant connection,
give rise to a moment map ¢g : M — g*, and thus hopefully to a
relation betWAeen the quantization of M and the representation theory
of G, since G may be considered as a subset of g*. We investigate
further the corresponding quantization, via Dirac operators, in the case
where the group G is compact, and the moment map proper. Our new
insight is that the asymptotic behavior when £ is replaced by L is easy
to compute classically, and determines completely the quantization at
k = 1. Certainly, Bertram Kostant would have found this idea obvious,
but maybe also beautiful. Anyway, here it is.

1. INTRODUCTION

Let M be a compact oriented spin manifold of even dimension 2d.
Let £ be a line bundle over M equipped with a connection of curvature
—iQ and let A(M) be the A class of M (normalized as in [2]). We do
not assume the curvature —i€2 of £ to be non-degenerate. Define the
integral

Q= (M, L) = ﬁ /M 2 A(M).

The Dirac operator D, twisted by L is an elliptic operator on M, and
let QP"(M, L) = dim Ker(D,) — dim Coker(D,) the index of D.. By
the Atiyah-Singer index theorem, Q'"(M, £) = Q&°(M, L).

Assume now that a compact connected Lie group GG, with Lie algebra
g, acts on (M, L). The choice of an invariant connection on the line
bundle £ determines a moment map ¢g : M — g*. This is the Kostant
moment map [12]. Let 7" be a maximal torus of G, tits Lie algebra. We
identify the space G of irreducible finite dimensional representations of
G to the discrete set of elements A € t*, which are dominant admissible
and regular, and we denote by x,(g) the trace of the action of g € G
on the irreducible representation of G parameterized by .
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If k is an integer, we denote by £* the k-th power of the line bundle L.
Define the function Q%™ (M, £¥) on G to be the trace of the action of
g € G in the virtual space Ker(Dsr)—Coker(D ). Define mg(\, k) € Z
such that

QR (M, L) =Y " ma(A k)x
AeG
Consider the geometric (re-scaled) analogue

@](CM,E) _ /{:M ng()\, k)ﬁ)\/kv
AeG

the weighted sum of the canonical Liouville measures (3, on the coad-
joint orbits GA/k.

The aim of this article is to study the asymptotic behavior of @,iM’ﬁ)
when k is large, and M possibly non compact, and to explore a func-
torial consequence of this formula for reduced spaces.

We work in the spin context. The same argument would adapt to
manifolds with spinc structures, provided we work with odd powers of
k. This context is more general than the Hamiltonian context (which
includes the Kéhler context), and it is more natural since Weyl charac-
ter formula for y, is the fixed point formula for a twisted Dirac operator
on the coadjoint orbit GA. We will return to the comparison between
both contexts in a forthcoming article. The article [25] determines the

@,iM’ﬁ) in the Hamiltonian context, when G is

asymptotic expansion of
a torus.

Let us return to the case of a spin manifold M with a G-invariant
line bundle with connection. We do not assume anymore M compact,
but we assume the moment map ¢g proper. In this introduction, to
simplify, assume that all stabilizers of the action of G on M are abelian
and connected. We also assume that p is in the weight lattice of T

For every \ € GcTc t*, consider the reduced space

Mg = ¢g'(N)/T
which may be non connected. If X is a regular value of ¢g, M) is
a smooth compact spin manifold. Denote by C_,; the vector space C
with the action of 7" given by the character t=* of 7. The restriction
of the line bundle C_y ® L* to ¢5' () is the pull back of a line bundle
Ly, on My . So deﬁne

mE° (A k) = Q%°(Mya, Lak).

If X is not a regular value of ¢4, this number can be defined by deforma-
tion. When M is compact, the [@, R] = 0 theorem in the spin context
21] asserts that mg(A, k) = m&° (A, k). This suggests to extend the
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definition of Q™ (M, L), when L is equipped with a connection (that
we leave implicit in the notation) such that the moment map ¢g is
proper, in the following way. Define

Q° (M, LF) - ng?" (A KV,

We call this object (in the spirit of [26]) the formal geometric quanti-
zation of (M, L).
Here are two simple examples.

Example 1.1. @ M = T*S', with coordinates (t,0), and the natural
action of the circle group G = S*. Consider the trivial line bundle
L with connection d — itdf. The moment map is ¢pg(t,0) = t. Thus
Q8°(M, L) is independent of k:

QgGO M ﬁk Zezne
neL

o M = C, with coordinate z. We consider an integer a and the
line bundle L = M x C with action €*(z,v) = (22, ¢%). Take the
connection V = d — $Im(zdz). The moment map is ¢c(z) = a + |z|?
and is proper. Then

QgCO(M £k zk‘aG Z ez(2j+1

7>0

As M is non compact, it is not possible to define the index of D,
without introducing additional data. We use transversally elliptic oper-
ators. The Kirwan vector field k¢ associated to ¢ allows us to deform
the symbol of the Dirac operator, and to obtain a G-invariant transver-
sally elliptic operator D 4, on M if the set of zeroes of k¢ is compact,
which we assume in this introduction. The index Q5 (M, L*) of this
operator provides a well defined generalized function on G. So define
mqg(\, k) € Z such that

Q> (M, L¥)(g) = ma(X k)xalg)-
ed

Then, we have again [10]
ma(A k) = mg" (A k).

An important consequence of this geometric relation is the fact that
the function mg(\, k) is a piecewise quasi-polynomial function. In
particular, the map k — mg(k\, k) is entirely determined by its large
behavior.
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We define as in the compact case the weighted sum of measures of
the orbits GA/k:

@lgM,c) _ pdim(G/T)/2 Z me (A, k) Bk
A

As it is well known, at least in the Hamiltonian case, the mea-

M,L) .
SUre i M/z@( ) tends to the Duistermaat-Heckman measure when

k tends to oo. Here we will prove that @,QM’“ has an asymptotic ex-
pansion, when k — 0o, as a Laurent series (in 1/k) of distributions,
and we will determine all coefficients as twisted Duistermaat-Heckman
distributions related to the A class of M.

Recall in this spin context the definition of the Duistermaat-Heckman
measure. Let Q(X) = Q— (¢¢, X), X € g. This is a closed equivariant
form of degree 2 on M and e~**%) is the equivariant Chern character
of £. The form Q4™ M/2 is a density on M (which might be not posi-
tive). The Duistermaat-Heckman measure is the signed measure on g*
obtained by push-forward of Q%™ /2 by the proper map ¢q. If M is
compact, its Fourier transform is the function X m [y €7
on g. Similarly, if ¥(X) is a closed G-equivariant form on M, with
polynomial coefficients, we can define the distribution DH (M, Q,v)
on g* by the formula:

(DH®(M,Q,v), ¢ 2m / / 0N L(X)P(X)dX.  (1.1)

Here ¢ is a test function on g*, with Fourier transform . It is easy to
see that this distribution is well defined if ¢ is proper.

Consider the equivariant A class of M which belongs to the com-
pletion of the equivariant cohomology ring of M, and its expansion
AM)(X) = o Ofl (M)(X) in equivariant classes homogeneous of
degree 2n. Finally, let 31/2( X) = det;/2 (eX/2 il

—e~

< , a G-invariant

function of X € g. It determines a formal series j;/ 2(i0/k) of G-
invariant constant coefficient differential operators on g*.
Our main contribution is the following result (see Theorem 4.3).

Theorem 1.2. When k tends to oo,

oM = j1(ia/ k) (kdi %DHG(M,Q,A,L(M))). (1.2)

The leading term in k¢ is the Duistermaat-Heckman measure.

Let us check this formula in our two basic examples.
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Example 1.3. e For M = T*S!, the A class is tdentically equal to 1,
so there exists only one term in the expansion (1.2). Here Theorem 1.2
1s the well known fact that

S =k [ el

AEZ

e For M = C, the equivariant A class for our action is the invariant
function %. Theorem 1.2 is the following variation of the Fuler-
MacLaurin formula (see [7])

e}

Sota+ it =5 [T oeie- >y L o)

Here B,(t) is the n-th Bernoulli polynomial and only even integers n
occur, since B, (1) =0 for all odd n > 0.

Let us see why this formula is natural, when M is compact. By

Kirillov formula, the Fourier transform of @(M’E) is the function

X Q" (M, L") (exp X/k)j3* (X/k)

on g. The delocalized formula [2] for the index says that, for X € g
small enough,

g AN

But, by simple inspection of the relation between the equivariant degree
and the polynomial degree, this is also equal for X small to

(—2127r) K / o (Z B A (X)),

The formula for the asymptotic expansion of (9,(€ ) follows easily. Re-
mark the dichotomy between the equivariant Chern character e=**(X)
that is unchanged in this asymptotic equivalence, and involves the ex-
ponential function e*?¢:X)  and the A class that we expand as a series of
homogeneous equivariant classes with polynomial coefficients. A more
delicate analysis, using the delocalized formula ([20]) for the general-
ized function Q5™ (M, L*)(exp X) leads us also naturally to Theorem
1.2. The Chern character e **%) has to be replaced by the Chern
character e**X) P(X) where P(X) is an equivariant form with gener-
alized coefficients, supported in a compact neighborhood of the zeroes
of kg, equivalent to 1 in the equivariant cohomology without compact
support conditions.

QX" (M, LF)(exp X /k) =
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In conclusion, Theorem 1.2 says that the formula

o | AN

has a meaning in the asymptotic sense for a non compact manifold M
when L is replaced by £¥ and X by X/k, and is a good ersatz for the
equivariant index formula of D,.

Q™ (M, L)(exp X) =

Let us now explain a consequence of this asymptotic formula for
reduced spaces.

Return for a moment to the case where M is compact. Plugging
g =1 in the identity QF" (M, L¥)(g) = > ce ma(X, k)xa(g), leads to
the remarkable identity

Q= (M, LF) =~ vol(GA) Q°(My ¢, L) (1.3)
AeG
relating an integral on M to a sum of integrals on the finite number
of reduced spaces M) . We will see that this equality generalizes to
reduction in stages, even when M is non compact.

Let H be a connected compact subgroup of G with torus Ty. The H
action on (M, L) leads to the moment map ¢y : M — h*. Assume ¢y
is still proper. In this case we can define Q;* (M, L), and Q> (M, L).
When M is compact, from the description of Q%™ (M, £) as the index of
the elliptic operator D, on M, we see that Q?in(]\/[ , L) is the restriction
of the representation Q™ (M, L) to H. When M is non compact, this
relation is not obvious since our G-transversally elliptic operator D 4,
is not (usually) H-transversally elliptic. The following theorem

QET‘OO<M7 E)‘H = QI_{OO(Mv E) (14)

was proved by the first author using cutting [19]. Here we will show
that this also follows from comparing the large behavior of Q5> (M, LF)
and Q5 (M, £F) and the fact that multiplicities ma (kX k), mg (kA k)
are entirely determined by their large values.

Let A € G, and p € H. Denote by c(A, ) the multiplicity of V, in
Vilg. Theorem (1.4) is equivalent to the following equality of indices
of Dirac operators on reduced spaces for H, and G.

For any p € H, we have

Q= (M1, Ly) = D c(A 1) Q°(M g, Lax).
AedG

When M is compact, we can take H = {1}, and this is the mys-
terious equality (1.3). In general, this equality of indices of Dirac
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operators on reduced spaces for different groups is not clear, since
M, g = ¢y (1)/Ty do not carry any visible group action.

Let us briefly sketch a proof of this equality for the case where G, H
are torus. This simple case could be treated by considering the action of
G//H on the compact spin manifold M), i, but we treat it by a different
method which will generalize to any pair of groups H C G.

In this case, @, H are lattices in g%, b*, and we have to prove

mu(u k)= > ma(\k).

)‘eévA‘h:“

In a companion article [23], we proved the following easy result. Con-
sider a distribution Dy = >° 5 q(u, k)0, associated to a piecewise
quasi-polynomial function q(u, k). Assume that, for any ( € H, an
element of finite order, the distribution > 7 q(u, k)¢*0,, = O(k™>)
when & tends to oco. Then ¢(u, k) = 0.

We have computed the asymptotic expansion of both distributions
OF = Ysec Ma(N k) dxj and ©Ff =37 5 mu(p, k) /- One has:

o0 1 R
of = k) :ﬁDHG(M,Q,An(M)),
n=0

o = kdzkinDHH(M,Q,An(M)).

n=0

Define m/y (i, k) = Z)\EathZM mea(A, k). The distribution

SE = mly (k) Sy

ueH

is the push-forward r,0¢ of the distribution ©¢ under the map r :
g* % b*.

The Duistermaat-Heckman distributions DH (M, Q, v) behave very
well under the push-forward map:

r.DHS(M,Q,v) = DH"(M,Q,v).

Indeed, at least in the compact case, the Fourier transform of
DHH(M,Q,v) is the restriction to b of the function ﬁ [o e (X))
on g. So we see that S} and ©f have the same asymptotic expansion.
This is not entirely sufficient to prove that ©f = S¥. But we use the
fact that both functions m/y; (i, k) and mpy(u, k) are piecewise quasi-
polynomials and that a similar asymptotic descent formula holds for
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the distribution
Z mH(:uv k)cuéu/k

peH

when ¢ € Ty is of finite order.

The proof, sketched here for H and G abelian, works equally well
for two subgroups H C G. We just have to use the formula for the
push-forward of the Liouville measure r,(f,) of admissible coadjoint
orbits. As expected, the full series for the A(M ) class, as well as the

Duflo operator jé/ *(8) plays a role in the functoriality.

Asymptotic behavior of quantization when k tends to oo has been
considered by many authors. Let us give a very limited and personal
selection of influential works.

Asymptotic behavior of kernels of Laplacians twisted by £* were used
by Boutet de Monvel-Guillemin [6] to produce a formal star-product of
functions on symplectic manifolds. In general only the few first terms
of the star product formal deformation are computable (see for example
[5], [13]).

Our asymptotic trace formula for the transversally elliptic operator
Dy 4., has the same flavor than Fedosov trace formula for deformation
quantization [8].

The article of E. Meinrenken [15] where multiplicities mg(A, k) are
identified at the large limit to index of reduced spaces is in close rela-
tion with our setting. Asymptotic Riemann sums of values of smooth
functions at equally spaced sample points of a Delzant polytope A C g*
were studied by Guillemin-Sternberg [9], where the full asymptotic for-
mula is given in terms of the Todd class of the corresponding toric
manifold. The natural geometric re-scaling p — u/k in the computa-
tion of > pezarwa P(1/K) leads to consider re-scaling X — X/k in
the variable X € g. This was one of the inspiring examples.

Our application to restrictions to subgroups is a striking example
where an obvious property at the semi-classical level (functoriality of
push-forward of distributions) can lead to a proof of a subtle relation
at the quantum level.

2. ASYMPTOTICS AND REPRESENTATIONS

2.1. Fourier transforms. When V' is a finite dimensional real vector
space, we denote by D'(V*) the vector space of complex valued distri-
butions on the dual vector space V*. If A € D'(V*) and ¢ € Cg,(V™),

we denote by (A, ) € C (or (A(£), (£))) the value of A on .
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When A € D'(V*) has a compact support, its Fourier transform
Fv+«(A) € C°(V) is defined by the relation

Fy-(A)(v) = (A(€), &), veV.

When f is a smooth function on g and has at most polynomial
growth, its Fourier transform Fy(f) € D'(V*) is defined by the re-
lation

(Folf) o) = /V £ (0)(v)dv

where p(v) = W Jo- @()e™ 60 de. Here dv and d€ are dual vol-
ume forms on V' and V*.
For any k > 1, we define the operation

rescalingy. (k) : D'(V*) — D' (V) (2.1)

by (rescalingy.(k)(A), ) = (A(£),¢(&/k)). We have also the opera-
tion rescaling;, (k) : C*(V) — C>(V) defined by rescaling,, (k)(f)(v) =
f(u/k).

2.2. The isomorphism R,;. Let G be a connected compact Lie group
with Lie algebra g. Let T' C G be a maximal torus with Lie algebra t.
Let Wg be the Weyl group. We consider 7" as a lattice A in t*. If A € A,
we denote by t* the corresponding character of T'. If t = exp(X) with
X € t, then t* = M%) We choose a system A* of positive roots. In
our convention, AT is contained in t*. We choose an invariant scalar
product on g.

Let D'(g*)¢ be the space of G-invariant distributions on g* and
D'(t*)We~at he the subspace of Wg anti-invariant distributions on t*.
Let Iy (X) = [[,en+ (o, X)), a W anti-invariant function on t.

We will use the following classical fact.

Lemma 2.1. There exists a unique linear isomorphism
Rg . D/(g*>G - rD/(t*)WG—alt
with the following two properties.

o Ry(fA) = fleRy(A) for all A € D'(g*)¢ and f € C>®(g*)°.
e For compactly supported distributions A, the Fourier transform
of Ry(A) is given by

(Ry(A), ™) = (i) Tgp(X)(A, e TY), X ety
with r = dim(G/T') /2.
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2.3. Asymptotics. Let D'(g*)¢ be the space of G-invariant distribu-
tions on g*. We will study asymptotic expansions of sequences of dis-
tributions.

Definition 2.2. Let (O})r>1 and (0, )nen be two sequences in D'(g*)°.
We write

=1
O, = k™ —0, 2.2
for some n, € Z if for any test function ¢ and any N € N, we have
S|
Ok, 0) = K" D (B 0) + oK™ ~Y).
n=0

In this text, we will allow each distribution 6,, to depend periodically
of the integers k. This means that, for each n, there exists D > 1 and
distributions () parameterized by the roots of unity {¢” = 1} such
that 6, (k) = > .p_, ¢*0¢ for all k > 1.

Example 2.3. Consider the distributions T, =Y .ok (K> 1) on
R. The FEuler Maclaurin formula gives the expansion

ban e
Tk = kl[OOO[_I_ 50 Zkzn 1( 2)'602 1)a

where by, are the Bernoulli numbers and 52" Y s the (2n — 1)-th
derivation of the Dirac distribution dg.

Let d be a C"* function defined near the origin 0 € g. Consider
the Taylor series Y > ,d,(X) of d at the origin. Thus, d, is an ho-
mogeneous polynomial function of degree n on g. We associate to the
function d the formal series

d(id/k) = Zk "d,, (i0)

of constant coefficient differential operators d,(i0) on g*. Thus, if
Q(k) = k™ > k"0, is a formal series of distributions on g*, the
series d(i0/k)Q(k) is the formal series of distributions k" » "> Jk™"s
on g*, where s, = >, di(i0)0,.

We have the following basic fact.

Lemma 2.4. The ezpansion Oy = k™ > > 20, holds in D'(g*)¢ if

and only if we have the ezpansion Ryg(O)) = k" Yo"  =Re(6,) in
D/(t*)WG_alt-
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Our asymptotic expansions will arise from Taylor series.

Let 7 be a smooth function on g. Assume that 7 and all its deriva-
tives have at most polynomial growth. Consider the Taylor series
Yoo o Ta(X) of 7 at the origin. If b(X) is a smooth function on g
with at most polynomial growth, then f(X) = b(X)7(X/k) (k > 1)
defines a tempered distribution on g. Similarly, as 7,,(X) is a polyno-
mial function, g,(X) = b(X)7,(X) defines a tempered distribution on
g. We note the following result.

Proposition 2.5. When k tends to oo, we have the asymptotic expan-
s10m

Falh) = 32 i ion) = 7G0/MF0),

Later, we will need a uniform version with parameters of this propo-
sition. So we give the proof.

Pmof Let © be a smooth function on g* with compact support. Thus
(Fq f b(X)T(X/k)p(X)dX.
Let N be a posnzlve integer, and 7<y be the sum of the Taylor co-

efﬁcients Tn, up to degree N, so 7 = 7<y + 7=ny. We write [, =
fb 7(X/k)p(X)dX as I + Ry with
Al
1= [Hren(X R0 = 3 1 [H0m()p0X
g k=0 g

and Ry = [ 0(X)7n(X/k)P(X)dX.

In multi-index notation, we may write (via an integral formula de-
pending of 7 and its derivatives) 7o n(X) = >°, =y X Da(X) with
D,(X) bounded by a polynomial function of X. If 7(X) depends

smoothly of a parameter x, we can construct D, (X) depending smoothly
of . Thus

Ry = kNH > / X)XDo(X/k)P(X)dX.
a,|a|l=N+1
Since || X/k|| < || X]|, we can bound b(X)X*D,(X/k) by a polynomial
function of X. Since p(X) is rapidly decreasing, we see that |Ry| <
It is clear that if b(X, k) = > k™by(X) is a sum over a finite set
F C Z of smooth functions b,, (X)) with at most polynomial growth, and

7(X) a function with polynomial growth as well as all its derivatives, we
can obtain the asymptotic expansion of fg b(X, k)T(X/k)p(X)dX by
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summing over m € F the asymptotic expansions of fg by (X)T(X/k)P(X)dX
multiplied by &™. So this is given by the Laurent series (in 1/k)

> k;m% /g b (X) 70 (X)P(X)dX.

meF n=0

We write this somewhat informally as

/ b(X, k) (X /R)B(X)dX = / bX ) S (X RB(X)AX.  (23)

g

In short, we replace 7 by its formal Taylor series >~/ 7,,(X) and keep
b(X, k) as it is.

2.4. Kirillov formula. Recall that any coadjoint orbit O C g* is pro-
vided with the Kirillov-Kostant-Souriau symplectic form 2y that is
normalized as follows. We have Qple(X - €Y - &) = (£, [X,Y]), for
e Oand X,Y €g. Let np = %dimO.

Definition 2.6. We denote by o the distribution on g* defined by the
relation

271')"@72,(9!

B (Qo)re
(Bo.¢) = /56030(5)(

for any smooth function @ on g*.

We have chosen a system AT C t* of positive roots, and let p € t*
be the corresponding element. We consider the positive Weyl chamber
t5, with interior t£,. Identify G to the discrete set Ag = (p+A) N5,
of positive admissible regular elements of t*.

If A € Ag, we denote by x,(g) the trace of the action of g € G
on the irreducible representation V) parameterized by A\. We have the
fundamental identity

(€M) P (X) = (Bx, ) (2.4)
where j,(X) = det, (GX/LX*@*X/Q» and By := Bax.

Let Ry : D'(g*)¢ — D'(t*)"e= be the isomorphism introduced in
Section 2.2. If A € Ag, we have

Re(Br) = D e(w)dun (2.5)

weWeag

where 9, is the ¢ function at w.
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2.5. Quasi-polynomials and asymptotics. We recall the notion of
piecewise quasi-polynomial functions (for more details see [23]).

Let A be the lattice generated by A and p. We consider the vector
space E = t* x R, which is equipped with the lattice A x Z.

A function m : A x Z — C is periodic if there exists a positive integer
D such that m(zy + Dx) = m(x,) for 29 € A x Z. By definition,
the algebra of quasi-polynomial functions on A x Z is generated by
polynomials and periodic functions on A x Z.

To each closed rational polyhedron P C t*, we associate
the sub-space Ep C E generated by (§,1),£ € P,
the lattice Ap := (/~\ X Z)N Ep in Ep,
the cone Cp := {(t&,t),t > 0,€ € P} C Ep,

[Cp], the characteristic function of Cp.

If mp is a quasi-polynomial function on the lattice Ap, we can form
the product mp[Cp] that defines a function on A x Z as follows

0 if \/k ¢ P,

mp[Cp](A k) = {mp()\, k) if \/k e P.

Definition 2.7. A function m : A x Z-y — C is called a piecewise
quasi-polynomial function if there is a collection A of closed ratio-
nal polyhedrons in t* and a collection of quasi-polynomial functions*
(mp)pea such that
m =Y mp[Cpl. (2.6)
PecA
Here A is not necessarily finite but, in order that (2.6) makes sense,
we assume that for any compact K C t* the set {P € A, PNK # 0} is
finite. )
We denote by S(A) the group of piecewise quasi-polynomial functions
on [\ X Z>0.

To a piecewise quasi-polynomial function m € S(A), we associate
the family of invariant distributions on g*

Or(m) =k Y m(\k)Bye, k> 1.
AEAG
In a companion article [23], we proved the following result.
Proposition 2.1. The family ©,(m) admits an asymptotic expansion

O(m) = ASy(m) == Y %en(/f).

nel

IEach quasi-polynomial mp is defined on the sub-lattice Ap CAXZ.
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Here (0,,(k))nez 1s a collection of invariant distributions on g*, depend-
ing periodically of k, and such that 0,,(k) =0 if n < nf.

For our computation, we need also a variation of Proposition 2.1.
Let j : ¢ — C be an invariant analytic function such that its Fourier
transform B; := F,4(j) is a compactly supported measure. We denote
by Bl = rescaling. (k)B;.

We consider now the family of distributions Bf x Oy (m) where x
denotes the convolution.

Proposition 2.2. The family Bl « ©(m) admits the asymptotic ex-
pansion

Proof. Let ¢ be a test function on g*. Let R > 0 such that the ball
{€ € g%, |&]| < R/2} contains the compact supports of ¢ and B;.
We start with the relation

<Bjk * Ox(m), o) = (Ok(m), pr)
where
o) = [ B&ele+em. b1
e
are smooth functions supported on the ball {£ € g*,||¢]| < R}. Let us

write the Taylor series of ¢ at £ @(€+1) = @(&) + S0, dup(€) (1) +
rn(&,m). Here n — d,p(£)(n) is an homogeneous polynomial of degree

n depending smoothly of the variable £, and ry is a smooth function
of (&,m) such that

Irn (& m)| < enlnll¥, V(€ n) € g" x g7, (2.7)

for some ¢y > 0.
If we write the Taylor series of j at 0, j(X) = Y7 jn(X), we see
that

/ B n)dug()n) = 1n(~i0)(E).

So the functions ¢, admit the following description

N
1. :
n=0
where Ry (€) = [ Bi(¢)rn(&,€'/k). Thanks to (2.7), we see that

there exists Cy such that |RY(£)] < Cy/ENT VE € g*. We check
also that, for any k > 1, the support of R%; is contained in the ball

{¢ g ll¢ll < R}
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Finally we obtain

N
1
(BF x ©)(m nzzo X (—id)p) + Restl (2.8)
where
Resty = (Ox(m), RY) =k > m(\k)(Byi, RY).
IMI/E<R

The term |RestY | is bounded by ;54 > iak<r [m(A, k)[vol(GA). Since
m(A, k) is a piecewise quasi-polynomial function, we see that, for any
p > 1, there exists N > 1 such that

Resty = O(k™P). (2.9)
Identities (2.8) and (2.9) show that the family Bl x ©4(m) admits the
asymptotic expansion j(i0/k)ASg(m). O

3. SPIN QUANTIZATION

Let M be an even dimensional oriented spin manifold of dimension
2d and provided with an action of G. If (£,V) is a G equivariant
line bundle equipped with a G invariant Hermitian connection V, we
obtain a moment map ¢ : M — g* and a closed two form €2 on M
using Kostant formula:

V2=—iQ and L(X)-Vx =i{¢g, X). (3.1)

Here X € g and L(X) is the infinitesimal action of X € g on smooth
sections of L. .

Assume M compact. The spin quantization QF™ (M, L) is a virtual
finite dimensional representation of GG, constructed as the index of the
Dirac operator on M twisted by £. If k is an integer, we denote by £F
the k-th power of the line bundle £: we can consider the equivariant
index

QR (M, L¥) = Y ma(\, k)W
AeAq
Taking traces, we also write, for g € G,

Qgin(Ma ‘Ck)(g) = Z mG()‘> k)XA(g)'
AeAg

We will need the following basic fact.

Lemma 3.1. There exists a polynomial P(k) such that |Q%™ (M, £F)(g)| <
P(k) for allg € G and k > 1.
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We associate to (M, £) the distributions on g* given by
\I]]E:M’E) := JFg o rescaling, (k) (ngin(Ma £k)(ex)> (3:2)
and
eoME) .= F o rescaling (k) (Q%Dm(Ma ﬁk)(ex)jé/z(X)>

= rescalingg*(k)( Z ma(A, k‘)ﬂA)

AEAG

= k" Z ma(A, k) Bk (3.3)

AEAG

where r = dim(G/T)/2. Thus @,QM’“ is the re-scaled geometric ana-
logue of QX" (M, LF) =3\ ca, ma(X E)xa

3.1. Quasi-polynomial behavior of the multiplicities. We con-
sider the multiplicity function mg : Ag X Zso — Z defined by the
relation Q™ (M, L*) = 37, 4. ma (A k)xa. We extend mg to A X Zg
by defining mg(A, k) = 0if A ¢ Ag.

The main objective of this section is the following result.

Theorem 3.1. Suppose that the G-action on M admits abelian infin-

itesimal stabilizers. Then mg € S(A).

In particular, Theorem 3.1 implies that the function k — mg(kA, k)
is a quasi-polynomial function of k > 1.

Theorem 3.1 is a consequence of the geometric formulas for the mul-
tiplicities mg(A, k) obtained in [21]. Let us first recall these geometric
formulas. ~

Let " — T be the covering such that A is the weight lattice of the
torus T. Every element A € A determines a character of T, and we
denote by C, the corresponding 1-dimensional representation.

Recall that we have chosen a G-invariant Hermitian connection on
L, and ¢g : M — g* is the associated moment map. We consider the
positive Weyl chamber t%, with interior t{; and the following subset

Y = ¢g' (t)-

Then Y is a T-invariant sub-manifold of M, not necessarily con-
nected, but every connected component of Y is even dimensional. We
denote by ¢r : Y — t* the restriction of the map ¢g to Y. Thus ¢r(Y)
is contained in t%.

Lemma 3.2. The K -equivariant spin structure on M induces a T-
equivariant spin structure on Y. We denote by Sy the corresponding
spinor bundle.
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Now we explain how we can attach a multiplicity function
m; : A X Z>0 — 7

to a connected component Y; of Y. Let t; C t be the generic infinites-
imal stabilizer of the T-action on Y;. We denote by I; C t* the affine
rational subspace with direction t;- that contains ¢p(Y;).

We consider a finite collection B; of affine co-dimension 1 subspaces
of I; defined as follows: A € B; if A = ¢r(y)+t; for some y € Y; such
that dim(t,/t;) = 1.

Definition 3.3. A chamber of I; is a connected component of the open
subset (1)req := (I; \ Upep, E) N t5,.

Thus, the closure of a chamber is a rational polyhedron contained in

*
>0-

Let ¢ be a chamber of I; and let £ € ¢ be a regular value of the map
¢r : Y; = I;. We consider the orbifold

Ve = (67 () NY;)/T.

Lemma 3.4. Let (\, k) € A xZ such that 2 € I;. The T-equivariant
spinc bundle Sy, ® LF|y, @ C_ on Y} induces a spinc bundle S;‘Ek on
Yie. We denote by Q(yj,g,S;:’Ek) the index of the corresponding Dirac

operator.

Let E; C t* x R be the subspace generated by (v,1),v € I;. We
denote by A; := (A x Z) N Ej; the corresponding lattice of E;. The
Kawasaki index theorem [11] tells us that the map

(A k) — QVie, S3)

is a quasi-polynomial function m;¢ on /~\j.
The following result is proved in [21].

Theorem 3.5. e The quantity Q(yj,g,S;:’gk) does not depend on the

choice of £ € ¢. We denote by m;. : Aj — C the corresponding quasi-
polynomial. .
o Let (\ k) € A X Zso and let ¢y, ¢o be two chambers such that
% € Ncy. Then
m]'7c1()‘a k) = mj}cz()‘a k)

The first point of the previous theorem tell us that m; is the zero
map if the chamber ¢ is not contained in the image of the map &7 :
Y; — I;. It is due to the fact that we can choose a regular value £ € ¢
with empty reduced space Y .
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Thus we can define multiplicity functions (m;),c; parameterized by
the set J of connected components of the manifold Y as follows.

Definition 3.6. The map m; : A X Zeooy — 7 is defined as follows
0 if ¢ I,
s k) = rEEl

mj7c()\, kf) if % ccC I]

We can now state the main result of [21].

Theorem 3.7. The following relation

mG()‘v k) = Z mj(>‘7 k)

jeJ

holds for any (A, k) € A x Z.

Let us fix j. Let A; be the collection of closed rational polyhedrons
formed by the faces of the closures ¢ of the chambers in I; (they are
contained in t%,). To each P € A;, we associate

e the sub-space Ep C t* X R generated by (v,1),v € P and the
lattice Ap := (A x Z) N Ep,
e the cone Cp := {(t{,t),t > 0,£ € P} C Ep,
e the quasi-polynomial mp : Ap — C such that mp(\ k) =
m; (X, k), for (A, k) € Ap, if P is a face of ¢.
By inclusion-exclusion, we see that the multiplicity function m; ad-
mits the decomposition

m; = Z Oépmp[Cp], (34)

PcA;

for some appropriate choice of constants ap € 7Z. In other words,

the multiplicity function m; is in the space S(A). The relation mg =

>_;m; given by Theorem 3.7 shows that mg € S(A). The proof of
Theorem 3.1 is completed. []

Example 3.8. Let us give a simple ezample for the group G = SU(2).
Consider £ with basis p. In this basis Ag = {\ X € Z, A > 0}. We
consider the line bundle L associated to (p,p) on the spin manifold
M = G/T x G/T. We see that QX™(M, L) is the tensor product
V(kp)®V (kp), and V (kp) is the irreducible representation of dimension
kof G. So QF™(M, L) is the sum of the representations V (jp), with j
odd and less than 2k. If we write Q™ (M, LF) = Y oasoMma (A k)V (Ap),

me(\ k) = %(1 _(=1)Y), for 1< A< 2k,
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3.2. Equivariant cohomology. Let N be a G-manifold and let A(N)
be the space of differential forms on N, graded by its exterior degree.
Following [3] and [27], an equivariant form is a G-invariant smooth
function a : g — A(N), thus a(X) is a differential form on N depend-
ing smoothly of X € g. Consider the operator

dga(X) = da(X) — t(vx)a(X) (3.5)

where (vx) is the contraction by the vector field vy generated by
the action of —X on N. Then dy is an odd operator with square
0, and the equivariant cohomology is defined to be the cohomology
space of dy. It is important to note that the dependence of o on X
may be C'*°. If the dependence of v in X is polynomial, we denote by
HE(N) the corresponding Z-graded algebra. By definition, the grading
of P(X) ® u, P a homogeneous polynomial and p a differential form
on N, is the exterior degree of u plus twice the polynomial degree in
X.

The line bundle £ — M determines the closed equivariant form
Q(X) =Q — (¢dg, X) on M. Here we will not assume any non degen-
eracy condition on 2.

Choose a G-invariant Riemannian metric on M. Let

AJ2 _ —AJ2
J(A) = det gas (T) ,

an invariant function of A. Then J(0) = 1. Consider and its

1
J172(A)
Taylor expansion at 0:

1 1/2 A -
J12(A) = det de(m) = ZOBn(A).

Each function B, (A) is an invariant polynomial of degree n (in fact
B,, is non zero only for n even) and by the Chern Weil construction,
and choice of connections on T'M, the function B, determines a closed
equivariant form A, (M)(X) on M of homogeneous equivariant degree
2n. Remark that Ag(M) = 1. We define the formal series of equivariant
forms:

AM)(X) =) Ay (M)(X).

As M is compact, we can find a positive constant r,; such that, for
| X || < 7as, these series of equivariant forms is convergent. In particular
A(M)(0) is a closed differential form on M which represents the usual
A class of M.



DIRAC OPERATORS AND SEMI-CLASSICAL LIMITS. 21

3.3. The equivariant index. Recall the “delocalized index formula”
(see [2]). For X € g such that || X|| < 7, so that A(M)(X) is well
defined, we have

QI (M, L) (exp X) = / —E) A (M) (X). (3.6)
(=2im)¢ [y
Here d = dim M/2. Note that Kostant relations (3.1) implies that
the equivariant form Q(X) = Q — (¢, X) is closed. In other words
U(X)Q+ d{pg, X) =0 for any X € g.
For each integer n, consider the analytic function on g given by

1 —i(X) }
—_— E A, (M)(X).
i [ ¢ OA0 ()
There is a remarkable relation between the character associated to
LF and the dilation X — X/k on g.

In(X) =

Lemma 3.9. When X € g is such that || X|| < 7, then, for any
k> 1, one has

- 1
Q™ (M, L%) (exp(X/k)) § k—
n=0

Proof. Write A(M)(X) = 32°°,7,(X) as a sum of forms with coeffi-
cients homogeneous polynomials in X of degree n. Thus

An(M)(X) = (14(X))in-2q

q<n

where wy, is the component of exterior degree s of a differential form
w.
For || X| < ra, Doy Ta(X) is a convergent series with sum the

equivariant A class. We obtain

Q" (M, (e (X/H) = (g [ I (/8

n=0

Let b(X, k) = e X/ = =hei(éa.X)  Remark that b(X, k) de-
pends polynomially of k. We rewrite

0" (M. £4) exp(X/K) = 5= [ X Zk: 67

Ounly the top exterior degree term contributes to the integral. We
compute it in terms of the equivariant forms A,,(M).
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Lemma 3.10.
b ) ; %TH(X))} e [0 ( ; AL On)] »

Proof. The coefficient of k%-L- in the left hand side is

kn
~ (i)
> al (Tota-a(X))pa—2a€" %),
a=0 ’
This is the term of exterior degree 2d of e~ ) A, (M)(X). O
This identity implies the lemma. 0

3.4. Twisted Duistermaat-Heckman distributions. Let v be a
closed equivariant form on M with polynomial coefficients. Let —i€2(X)
= —iQ+i(¢q, X) be our equivariant curvature. As v(X) depends poly-
nomially on X, [ I e~ ¥ X)y(X) is a function on g of at most polynomial
growth.

Definition 3.11. We denote by DH%(M,Q,v) € D'(g*)¢ the Fourier
transform of m Jo eV (X).

We thus have, for ¢ smooth with compact support,

(DHY(M,Q,v),p) = ﬁ /M /g e X (X)P(X)dX
1

- /M e~ u(~i0)p) (¢ (m)).

If v(X) =", pa(X)v, with polynomial functions p, on g and differ-
ential forms v, on M, the expression

(=i0)¢)(pa(m)) =D _[pa(—id)(9))(da(m))va

is a differential form on M supported on the pull-back by ¢ of the
support of . This shows, and this will be used in our application
to a line bundle with proper moment map, that DH%(M,Q,v) is a
well defined distribution supported on ¢ (M), provided ¢¢ is proper.
Notice that the distribution DH(M,Q,v) depends only of the class
[v] € HL(M).

Recall that we have associated to (M, £) the distributions on g* given
by

‘I’,iM’ﬁ) = Fyo rescalingg(k)(gsgin(M7 Lk)(eX)>’

@éM,»C) = Fg ] rescalingg(k) (QSGPiH(M’ ﬁk)(eX)j;h(X)) )
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The distribution @,(CM’Q is the weighted sum k" > 0y, ma(A, k) B
of the canonical measures on the orbits GA/k.

Theorem 3.12. Let M be a compact spin even dimensional oriented
manifold with a G equivariant line bundle L. When k tends to oo, we
have the asymptotic expansions

=1
PME) — Zk_ DHC(M,Q, A, (M)) (3.8)
n=0
and
. . S 1 A
n=0

Proof. We present a detailed proof since we will have to adapt this
proof to the case of a non compact manifold M.

We fix a G-invariant function h : g — R equal to 1 on a small ball
| X|| < r and with compact support contained in || X|| < 7, so that
hX)A(M)(X) is a smooth compactly supported function on g with
value differential forms on M.

Let ¢ be a smooth compactly supported function on g*. We have
(\I/,iM’ﬁ), @) = I + Ji where

o= [ QMM L)X DB,

and
= /Qgin(M L) () (1~ h(X/k))P(X)dX.
g
We will see that J, = O(k~>°). For estimating I, we will use the
delocalized index formula (3.6).

Using the fact that |Q%™ (M, £)(g)| is uniformly bounded by a poly-
nomial in k, that the support of (1 — A(X/k)) is contained in the set
| X|| > rk, r > 0, and that the function ¢ is rapidly decreasing, we see
that J, = O(k~).

We now analyze I,. We can use Formula (3.6) since || X/k|| < 7.
Thus

b= zm / / RN/ A(M) (X R)R(X/R)P(X)dX.

Pl"OpOSlthIl 2.5 extends to the case of vector valued functions on
g. Let E be a finite dimensional space, and let 7 : g — AFE be a
smooth function with at most polynomial growth, as well as all its
derivatives. The coefficients 7,,(X) of its Taylor series Y, 7,(X) are



24 PAUL-EMILE PARADAN AND MICHELE VERGNE

AFE valued polynomial functions on g homogeneous of degree n. Let
b(X, k) = Zﬁz:o k™b,,(X) where b,,(X) are smooth functions of X
with value in AE with at most polynomial growth. Thus

b(X, k) Zrn X/k) = (kab ))(i %mm)

is a Laurent series in + of functions on g with values in AF.
We have

/b(X,k) (X/E)3(X)dX = /Xk Zrn X/k:) X)dX

(3.10)
In short, we replace 7 by its Taylor series.

Consider the differential form h(X)A(M)(X). For each z € M,
TMX) = h(X)A(M)|,(X) is a smooth compactly supported function

T

on g with values in AT M. Let

It depends polynomially of k£ and each coefficient of this polynomial is
a bounded function of X (as it is proportional to ¢*¢¢@-X)) " So we
can certainly apply the asymptotic formula (3.10).

Let I} = =i 27T f b (X, k)Th(X/K)P(X)dX, with values in AT*M

Soxz—1Ifis a dlfferentlal form and I, = [ _,, I

The manifold M is compact. Proposition 2.5 gives us an asymptotic
expansion for If, and the proof shows that the rest is bounded uni-
formly. So the asymptotic expansion of I is obtained by replacing (at
each x € M) 7/(X/k) by its Taylor series. As h is identically 1 near

ZEero, we obtaln in the notations of the proof of Lemma 3.9,

I, = ﬁ /M /g b(X, k)(i éfn(X))aﬁ(X)dX.

By Lemma 3.10, this is

k;dﬁ / / —i0(x (iki )(X)) BX)dX.

By definition of the twisted Duistermaat-Heckman measure, we ob-
tain the expansion of Formula (3.8).
The proof of Expansion formula (3.9) is identical. O
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3.5. Asymptotics localized at g € G. For applications to formal
geometric quantization, we state an analogous asymptotic descent for-
mula. Now let g € G. Let G(g) be the centralizer of ¢ in G, and g(g)
its Lie algebra.

Consider the manifold MY of fixed points of the action of g on M:
it may have several connected components M?, all of even dimension.
Since M is spin, MY admits an orientation (that is all connected com-
ponents are oriented). Let N9 be the normal bundle of MY in M and
let

RNQ(X) = R/\/’g + ,u/\/’g(X)

be its equivariant curvature [2].
We denote by €2,(X) the restriction of (X) on M. We consider
the following equivariant form

Dy(M)(X) = det 5 (1 = (g7 e ),

Here the square root is chosen such that detl/2(I (gHNV) > 0.
For X € g(g) small enough, we have

where

e g* is the locally constant function on MY with value a complex
number of modulus 1 given by the action of g on the fiber of £|y;s. We
write u, for the restriction of g* to a connected component M¢. This
is a complex number of modulus 1. If ¢ is of finite order, u, is a root
of unity.

o ¢, = €,(—2im) is a locally constant function in-
dependent of £. Here the sign ¢, = + depends only of the action of g
on the spinor bundle §|pys.

Consider the equivariant form V, (£, k)(X) = ¢,(g*)" D( (Mg( ; on M?9.
Then we have V, (L, k)(X) = >"77 Vy(n, k)(X) where V(n, k)(X) are
G(g)-equivariant forms on MY homogeneous of even degree 2n.

Thus, for X € g(g) small, we have

—dimM/2(27T)rk./\/'9/2

oo

Q" (M. L(gexp(X)) = 3 [ O, (b)),

Here Lemma 3.9 becomes
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Lemma 3.13. When X € g(g) is sufficiently small, then, for any
k> 1, one has®

> 1 1m
Q™ (M, LY (g exp(X/k)) = Y k5L, (n, ) (X)
n=0

where Ty(n, k)(X) = [,,, e %V, (n, k)(X).

Now consider the character y, of the irreducible representation at-
tached to the admissible orbit O,. If g € G, the fixed point set Of is
a union of coadjoint orbits of the connected component G(g)° of G(g).
They are all of the same even dimension r, = dimG(g) — dim 7.

Then we have the formula, for X € g(g),

(g€ g (X) det 2 (1= g7le ™) = (B(g, A)(€), ¢'€N)). (3.12)

Here the square root is determined such that det;g(g)(l g~ 1) >0and

B(g, \) is a measure on OF entirely determined by this equation.
Let T be the torus with weight lattice A (the lattice generated by A

and p). Then any A\ € Ag defines a character ¢ € T — . Suppose
that g € T" and denote by W gy C W the Weyl group of G(g)°. Then

o= |J Glgrw
EEWG(Q)\WG

Let Ry : D'(g(9))¢9° — D'(t)"e@ = be the canonical isomor-
phism.

Lemma 3.14. Choose g € T above g € T
e The measure 5(g, \) satisfies the relation

5(97 )‘) =75 Z gwAﬁG(g)"w)\
EEWG(Q)\WG

where 75 s a complex number of modulus 1.
o We have Ry (5(g,2)) =3 ZweWG e(w) g du-

Proof. The first point follows from the character formula and the second
is a direct consequence of the first. O

Definition 3.15. We denote by DHE9 (M9,Q,,V,(n,k)) € D'(g(g)*)%9
the Fourier transform of the function Z,(n, k) (see Lemma 3.13).

dir Alg

’The term k Zy(n,k)(X) must be understood as the sum
dea o—i
S K [ e OV, (0, k) ().
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Then for a test function o, (DHEW(M9,Q,,V,(n,k)),¢) is of the
form 37, wl(san, 0) With (san, ) = [10 Jaw) e Ma,  (Y)P(Y)dY :
here o, ,(Y) is an equivariant form on MY of degree 2n, and u, is the
restriction of g* to MY.

Asymptotic expansion of distributions of the form >~ S>> ufk~"h,, ,
are thus well defined and the coefficients H(n,k) = ., u*h, ., are
uniquely determined.

With the same proof than Theorem 3.12, we obtain the following
theorem.

Theorem 3.16. Let M be a compact spin even dimensional oriented
manifold with a G equivariant line bundle L. Let g € G of finite order.
When k tends to oo, we have the asymptotic equivalence®

rescaling, - (k) ( Z m(X, k)5 (g, )\)> =

A€A

A . 1 1 —q > 1 dim M9
Iato) (10/R) et g (1—g™'e™ %) 3 k™5 DHEWD (MY, g, Vi (n, K)).
n=0

9/9

4. SPIN QUANTIZATION IN THE NON-COMPACT SETTING

In this section we work with an even dimensional oriented spin man-
ifold M of dimension 2d provided with an action of G. We do not
assume that M is compact. Let (£, V) be a G equivariant line bundle
equipped with a G-invariant Hermitian connection V.

We assume that the moment map ¢ : M — g defined by the
Kostant relation (3.1) is a proper map. In the next section we explain
how is defined the formal geometric quantization of the data (M, ¢¢, L).

Notice that the twisted Duistermaat-Heckman distributions
DHY(M,Q,v) € D'(g*)¢ are still defined by the relation

<DHG(M>Q>V)>S0>=;/Me_m[V(—i@)@](%(m)) (4.1)

(—2im)d
Here v is a closed equivariant form on M with polynomial coefficients
and ¢ is a test function on g*. The integral in (4.1) is well-defined
since the differential form e~® [ (—id)p|(¢c(m)) has a compact sup-
port. The distribution DHY(M, €, v) depends only of the class defined
by v in HE(M).

dim M9

3The term k™% DHS9)(M9,Q,,V,(n,k)) must be understood as the sum
dim Mg

SRR S DHEW (MY, Q,, V,(n, k).
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4.1. Formal geometric quantization: definition. The invariant
scalar product on € provides an identification £ ~ £*.

Definition 4.1. e The Kirwan vector field associated to ¢ is defined
by
ka(m) = —pa(m)-m, m e M. (4.2)

e We denote by Z¢ the set of zeroes of kg. Thus Zg is a G-invariant
closed subset of M.

The set Zg, which is not necessarily smooth, admits the following
description. Consider the closed Weyl chamber t5,. We see that

Zo =11 % (4.3)

vE€BG

where Z,, corresponds to the compact set G(M? N ¢5'(7)), and Bg =
¢c(Za) Nthy. The properness of ¢¢ insures that, for any compact
subset C' C t*, the intersection Bg N C' is finite. Here M7 is the set of
zeroes of the vector field on M defined by the infinitesimal action of .

Let S — M be the spinor bundle on M. The principal symbol of the
Dirac operator Dg is the bundle map o(M) € I'(T*M, hom(S*,587))
defined by the Clifford action

a(M)(m,v) =cn(v): S|t — S|,

where v € T*M ~ v € TM is an identification associated to an invari-
ant Riemannian metric on M.

Definition 4.2. The symbol o(M, ¢g) shifted by the vector field kg is
the symbol on M defined by

o(M, dc)(m,v) = o(M)(m,v — rg(m))
for any (m,v) € T*M.

For any G-invariant open subset & C M such that Y N Zg is compact
in M, we see that the restriction o (M, ¢¢)|y is a transversally elliptic
symbol on U. If F — M is a complex vector bundle, we denote by
D%, s & pseudo-differential operator whose principal symbol defines the
same class than o(M, ¢g) ® E|y in the group of equivariant K-theory
of TEU (see [1]).

Thus we can define the following localized equivariant indices (see
[1,22]).

Definition 4.3. e A closed invariant subset Z C Zg s called a com-
ponent of Zq if it is a union of connected components of Zg.
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e If 7Z is a compact component of Zg, and E — M is an equivariant
vector bundle, we denote by

OP™(M,E,Z) € R(K)

the equivariant index of the transversally elliptic operator D%,d)c. Here
U is an tnvariant neighborhood of Z so that U N Zg = Z.

By definition, Z = ) is a component of Zs and Q™ (M, S, ) = 0.
For any v € Bs, Z, is a compact component of Zs.

When the manifold M is compact, the set Bg is finite and we have
the decomposition QF™ (M, L¥) =37 o QF™(M, LF, Z,).

Definition 4.1. When the moment map ¢ is proper, we define the
formal geometric quantization of the data (M, ¢q, LF) as

0z (M, L) := 3 QB (M, £, Z,). (4.4)
v€Ba
The sum of the right hand side is not necessarily finite but it converges
in R(G) (see [10,14,18,19]).

In the following example, for any A € Z, we denote by Cp the vector
space C with the action of S* : ¢z =t z, for (t,2) € S x Cpy.

Example 4.2. Consider the S*-manifold M = Cpy. The S*-equivariant
spinor bundle on M is S = M X ((C[_l] @ C[l])-

Fiza € N. Consider the equivariant line bundle L(a) = M xCyq with
connection V = d — £Im(zdz). The two-form is Q* = 3Im(dzdz), the
moment map ¢% (z) = a+|z|* is proper, and the corresponding critical
set Z& is reduced to {0} C M.

A small computation shows that Qgi°(M, L(a)*) = QR"(M, L(a)*, {0})
is equal to Cpa) ® D55 Cpjpn) (see [22]).

Let mg(\, k) be the multiplicity of Vy in Qz>(M, £F). In other

words,
Qe (M, LF) = Y ma(\ k) Va.
XeAG

In this context, the multiplicities mg(A, k) have still an interpretation
in terms of reduced spaces (see [10]). Hence, when the generic infini-
tesimal stabilizer is abelian, Theorem 3.7 still holds, so mg(\, k) # 0
only if A\/k € ¢pg(M).

As in the previous section, we are interested in the asymptotic be-
havior of the following family of distributions

@](CM’E) =k" Z mG()\> k‘i)ﬁ)\/lw

AEAG
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where r = dim(G/T') /2. For any test function ¢ with compact support,
the identity

O ) =K ma(A B By, @)
AEAG

is well defined since there exists only a finite number of terms such that

<B)\/k7 <P> # 0.

Let us recall that we can associate the twisted Duistermaat-Heckman
distribution DH%(M,Q, A,(M)) € D'(g*)¢ to the equivariant form
A, (M) for any n > 0 (see (4.1)).

The aim of this section is to prove the following extension of Theorem
3.12.

Theorem 4.3. Let M be a spin even dimensional oriented manifold
with a G-equivariant line bundle (L, V). Suppose that the moment map
oq is proper. When k tends to oo, we have the asymptotic expansion

/2. — 1 i
o= (3 fomoraaun). s
n=0

Example 4.4. We continue Example 4.2 with M = Cjg and L(a) =
M x Cj. Then @,(CM’E(G)) = ijo dat2j+1)/k- The equivariant A-class
is A(M)(X) = ﬁ for X € Lie(S') ~ R. Identity (4.5) says that
oML@) _ K ok
k 2 sin(i0/k) @™

This is the formula given in Example 1.35.

With the same proof than Theorem 4.3, we obtain the following
theorem.

Theorem 4.5. Let M be a spin even dimensional oriented manifold
with a G-equivariant line bundle L. Suppose that the moment map ¢
is proper. Let g € G of finite order. When k tends to oo, we have the
asymptotic equivalence

rescalingy, - (k) ( Z m(X, k)5 (g, >\)> =

A€A

9/9

l . 1 _ —i > 1 dim M9
Iato) (10/R) det 3 (1=g™'e™ %) 3 k™5 DHEWD(M?, 0y, Vi (n, K)).
n=0

We prove Theorem 4.3 in the next two subsections.
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4.2. Formal geometric quantization: delocalized formulas. We
consider the generalized character

QP (M, LF, Z,) = > my(\ k) Vi
AEAG

Here Q™ (M, L*, Z.)(g) = Y aeas My(A k) xa(g) defines a distribu-
tion on G because the multiplicity function A — m. (), k) has at most
a polynomial growth.

The function m. (A, k) is in fact with at most polynomial growth in
both variables (A, k). This follows for example from the general multi-
plicity formula for transversally elliptic operators given in [24]. In this
article, the multiplicity formula is given for a single general transver-
sally elliptic symbol ¢ and multiplicities are obtained as values on Ag
of a certain piecewise quasi-polynomial function on Ag. If we consider
a family o, = o ® LF, the formula is locally piecewise polynomial on a
certain finite number of affine cones in t£; @R intersected with Ag ®Z.

We consider the corresponding distribution on g

QE"M(M, L, Z,)(e¥) = Y my (A k) xal€¥).

AEAG

The distribution on g* defined by

O =k Z Mo (A, k) Bk

AEAG

is the Fourier transform of Q™ (M, £, ZV)(eX/'“)j;/z(X/k). It is tem-
pered also because the multiplicity function A — m. (A, k) has at most
a polynomial growth.

In order to give a formula for the asymptotic of ©}, we introduce
an equivariant form P, (X) with generalized coefficients on M that is
supported in a small neighborhood of Z,.

Take x : M — R a G-invariant function equal to 1 in a neighborhood
of Z,, compactly supported, and such that Support(x) N Zg = Z,.

Consider the invariant 1-form 6 := (kg, —) where kg is the Kirwan
vector field associated to ¢¢, and (—,—) is an invariant Riemannian
metric.

We consider the equivariant form DO(X) = df — (®y, X), and the
equivariant form with generalized coefficients

P (X) :=x+i(dy)o / e~ tPYX) gt
0
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Thus, if f(X) is in the Schwartz space of g, the integral
[ P.COFOOE = xFO) + a0 [ e fu)ar
g 0

is convergent. Indeed (g, dg)(m) = ||kg(m)||* and so @y # 0 on the
support of dy. It defines a differential form with compact support since
it is equal to 0 outside the support of x. So if f(X) is a function from g
to differential forms on M such that X — f(X) is rapidly decreasing,
then we can define [, [ P,(X)f(X)dX. Let ¢ be a test function on

g*, and v(X) an equivariant form. Then e~**X)y(X)5(X) is rapidly
decreasing if v(X) is an equivariant form with polynomial coefficients.

So we define DHY(M,Q,vP,) € D'(g*)¢ by

(DHE(M,Q,vP,), @) = (—Tlm)d /M / e MO (X)P(X)P(X)dX.

An improved version of Witten non abelian localization theorem is
the following formula

DH®(M,Q,v) = Y DHY(M,Q,vP) (4.6)
Y€BaG

which is somehow a consequence of the fact that »
1 in cohomology (see [16]).

eBe P, is equal to

We will prove the following theorem in the next section.

Theorem 4.4. We have the following relation

e’} 1 )
O] = k' ji2(i0/k)> @DHG(M, Q, A, (M)P,).

n=0

We end this section by some observations.
We see that P,(X) = x + Z?:l w; [0 X)dt where wj is a
differential form, compactly supported, of degree 2j. Then

d o
E(X k)= P/(X/k)=x+>_ K w / et X0 gt k> 1,
=1 0

is a polynomial in k& with value equivariant forms with generalized
coeflicients.

Let U, C M be a relatively compact invariant subset containing the
support of y. So we can choose 7., > 0 so that A(M)(X) is well defined
on U, when || X|| < r,.

We will deduce Theorem 4.4 from the following result proved in [20].
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Proposition 4.5. If || X || < r,, we have the relation

1 A .
—— [ AM)(X) P,(X) e ",
g [ ABD) P (x)

So, for k > 1, the generalized function Q%™ (M, L*, Zﬁ,)(eX/k)j;/z(X/k)
coincides with

<—zlm>d/ Ga (X R)A(M) (X k) Py (X[ k) e RO

on the ball {||.X||/k < r,}.
Let us compute the Laurent series of

[y (X/k) A(M)(X/k) P, (X/k) e Moy

where [—][2q) means the component of maximal degree 2d in A®*(M). We
write jl/z(X)fl(M) (X) = >0 dn(X) as a sum of closed equivariant
forms of equivariant degree n. Recall that E(X, k) = P,(X/k) and
b(X, k) = e RUX/K) depend polynomially of k.

We write also j/2(X/k)ACM)(X) = Y25 7a(X) where 7,(X) is an
equivariant form with coefficients homogeneous polynomial functions
of X of degree n. We proceed as in the proof of Lemma 3.9 comparing
the terms of top exterior degree 2d. Arguing as in the proof of Lemma
3.10, we have the following formula.

QSGpin(M> 'Cka Z’Y)(eX) =

Lemma 4.6.

[ Xk (Z Jn ) (X, k)}[d] - [6_iQ(X)<§:I<,‘1_"d"(X)) P”(X)]pd]'

Thus we can write formally
Q™ (M, L£F, Z,)(eX")ja?(X) = & Z kngn
where g, (X) is the distribution

1 .
W(X) = [ du(X) Py(X) e,
g( ) (_Qiﬂ)d/]\/[ ( ) “/( )6
4.3. Proof of Theorem 4.4. We fix a G-invariant function h : g —
R equal to 1 in a neighborhood of 0 and with support contained in
| X|| < ry. If ¢ is a smooth function with compact support on g*, we
have (O], ¢) = 1), + J where

I — / Q™ (M, £*, Z,) (XY j12(X /R)R(X /) B(X )dX
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and
o= [ Q"ML Z,)( MR = BX/R)FX)X

For estimating Ji, we will use estimation of the Fourier coefficients
my (A, k) and we will prove that J, = O(k~>°). For estimating I, we
will use Proposition (4.5).

To analyze these expressions, we need the following technical lemma.

Lemma 4.7. Let u(X) be a C* function of X. Assume that u(X)
and all its derivatives are of at most polynomial growth and that u(X)
vanishes at order N at X = 0.

Let R be an integer. Then there exists a constant cg such that

i€, X) 1 CR
‘/ (X/k)e"™>Mo(X)dX| < ENHL (1 + [[€]2)R
for all (¢, k) € g* x N\ {0}.

Proof. We may write in multi-index notation

u(X)= ) X(X)

a,|a|l=N+1

with v,(X) (and derivatives) bounded by polynomial functions of X.
We compute Ir = kN (1+ [I€]]*)" [0 uw(X/k)e'$X3(X)dX. Thus

In=(1+ €] / S X0, (X/R)EEDF(X)dX.

9 |a|=N+1

Let A=—3%", 8%}, be the Laplacian on g. Then I is equal to

Yo XuX/R)E(X) ((1+A2)R-(ei<5’X>)dX:/LR(X7 k) eHEX

la|=N+1"9 9

where Lp(X, k) = (1+ A% (v ) Xova(X/R)P(X) )

Using the fact that @(X) is rapidly decreasing (as well as all its
derivatives), that the derivatives of the functions v, are bounded by
polynomials, and that 1/k <1 for k > 1, we see that Lr(X, k) can be

bounded by a rapidly decreasing function of X independent of k. So
|fLRX]€) ngX|<CR L]

We return to our proof. We start by checking that J, = O(k=).
For this computation, we can assume that ¢ is G-invariant. Let

(A k) = /Xx(eX/k)j;/z(X/k)(l — h(X/k)P(X)dX.

ldX
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This is equal to vol(G)) [ €' VRN — h(X/E)P(X)dX.

By definition Q%™ (M, L*, Z.)(eX) = D oreas My(A k) xa(e), so we
get

Je= > my(\ k)vol(GA) / WEX)(1 — WX /k)P(X)dX.

AEAG g

Now consider u(X) = 1 — h(X). It vanishes identically in a neigh-
borhood of 0. As h(X) is compactly supported, u(X) and all deriva-
tives are bounded. So we can apply Lemma 4.7 and obtain |¢(\, k)| <
vol(G ) kN1+1 (1+”Cf\7‘/’lf”2),2 for any integers (R, N). Since the multiplicities
m~ (A, k) have at most a polynomial growth in the variable (X, k), we
can conclude that J, = O(k=).

We now estimate

b= [ QML LE 2 )X RO KB X

As h(X/k) = 0 when || X||/k > r,, we may use Proposition 4.5. Let
(X)) = h(X)A(M) (X)jé/z(X), a smooth compactly supported func-
tion from g to differential forms on U,. We fix z € U, and consider
7h(X), a function from g to AT M. Define

L = / MX/R)Ey(X, k)b (X, k)P(X)dX
g
with
d o
Eo(X, k) = x(2) + 3 W (wj)\x/ 1M gt
j=1 0
ifC:Q)e( )andb Xk‘)—e_lkﬂwe (€,X) if &€ = CbG( ) S0

1;5_// (X k) Ba (X, k)b (X, K) (X)X

In view of Lemma 4.6, we only need to prove that the asymptotic
expansion of I# is obtained by replacing 7/(X) by its Taylor series (we
need to care of uniform estimates in z in the compact support of ).

Thus we fix = and write E, (X, k) = x(z)+ R (X, k). So If = Si+T%
with

St = y() / (X)X, )B(X)dX

and

T? = / Ro(X, k)7 (X /k)ba(X, K)P(X)dX.
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The expression for S{ has been already analyzed when proving Propo-
sition 3.12, and indeed it admits an asymptotic expansion obtained by
replacing 7(X) by its Taylor series.

Consider a(X, t) = eX&X)eCX) P(t) where P(t) is a polynomial func-
tion on ¢ with values in ATyM. We only need to prove that

W{ = /:) /g a(X, )TN X/E)P(X)dX

admits an asymptotic expansion, also obtained by replacing 7(X) by
its Taylor series. We fix x € M, write 7(X) = 7<n(X) + 7o n(X).
Then 7 y(X) vanishes at order N at X = 0. As 7"(X) was compactly
supported, <y (X) and 7o n(X) are of at most polynomial growth, as
well as derivatives. So we use Lemma 4.7 and obtain, for any positive
integer R,

R 1 CN,R
|/ga(X, £ (X/R)P(X)dX] < P(t) 15 (L+[E+t¢P)R

If R is sufficiently large, [~ P(t) areriamm < 00 So we obtain
our estimate for the rest. All our estimates can be done uniformly in

x when z runs in the compact support of x. This ends the proof of
Theorem 4.4.

4.4. Proof of Theorem 4.3. The decomposition @,i =>_,0]is
well-defined since the distribution O] is supported in {||§ H > ||7||} (see
[18]). If ¢ is a test function, then

(O, 0) =3 (6], ¢)

y

where the sum in the right hand side has only a finite number of non-
zero terms.
Thanks to Theorem 4.4, we have the asymptotic expansion

0] = k312 (i0/k) Y kiDHG(M, Q, A,(M)P,)

n=0

for any v. Hence @,(CM’E) = k4 5i%(i0/k) Yo k"0, with 6, equal
to >° DHY(M,Q, A,(M)P,). The proof of Theorem 4.3 is complete
since Y, DHY(M,Q, A,(M)P,) = DH®(M,Q, A,(M)) by Equation
(4.6).
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5. FUNCTORIALITY

5.1. H and G. Let H be a connected compact subgroup of G. Let
r : g° — b* be the projection. For 6 a distribution with compact
support on g*, the push-forward (r.0,¢) = (6, o r) is well defined.
The Fourier transform Fy«(r.0) is the restriction to b of the Fourier
transform Fy«(#). We can define 7.6 more generally whenever 6§ is
compactly supported along the fibers of r.

The twisted Duistermaat-Heckman distributions behave very well
under the push-forward map 7,.

From (4.1) we get immediately the following

Proposition 5.1. Suppose that the moment map ¢y = r o ¢ s
proper. Then, for any v € H: (M), we have
r.,DH®(M,Q,v) = DH?(M,Q,v).
Re-scaling behave also very well under the push-forward map r,:

rescaling. (k) o r. = r, o rescaling. (k).

In the rest of the article, objects associated to A are associated to G,
while objects associated to u are associated to H.

For p € Ay and X\ € Ag, let ¢(p, \) be the multiplicity of the rep-
resentation V), of H in the restriction of V) to H. In other words, for
he H, xah) =2, (i Axu(h).

Consider the H-invariant function j;/2 Y) = detl/z(w) on b.

/h a/b Y
Its Fourier transform is a compactly supported measure By, on b*.

We have an exact relation between the push-forward of the measure
By on h* and measures of H-admissible coadjoint orbits. We denote by
Bg/h = rescaling;. (k) By/y-

Lemma 5.2. For \ € Ag, we have the relations

r(B) = Bynx (Y el B).

HEAH
rescalingy. (k) (r.(By)) = Bg/h * (rescalingh*(k;)( Z c(p, N) @)).
HEAH
Here the x sign denotes the convolution.

Proof. The first identity follows immediately by Fourier transform of
the formula: xa(€")7a*(Y) = Jg/y (V) Xcn, (it N) xule¥ )y *(V),
for Y € b.

We get the second identity by applying the operator rescalingy. (k)
to the first one. O
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We now prove a similar descent formula. We write g = § & q where
q is H-invariant. Let g € H and consider the function

d(Y) = xalge" )iyl (V) det 2 (1—g7'e™), Y € g(g).

In one hand d(Y) = (B(g,\), =) when Y € g(g), and on the
other hand we have

AY) = 202 ) (V) et 2 (1= g7e) 3 el ) (B9, ), )
m
when Y € h(g).
If A is a compactly supported distribution on g(g)*, we still de-
note by 7.(A) the push-forward distribution on h(g)*. We denote
by By(g)/n(q) the compactly supported measure on h(g)* which is the

*

Fourier transform of the H(g)-invariant function j g(/ )/h(g): Ve denote
by Bg(g)/h(g) = rescalingy )« (k) By(g)/ng)-  Let Cqra(g) be the Fourier

transform of the H(g )—invariant function Y + det ;ﬁ(g)(l — g teY).

We denote by C* Wa(g) = rescalingy gy (k)Cyyq(9)-
The previous identities give the following result.

Lemma 5.3. Let g € H. Then rescalingy . (k) (r*ﬁ(g, A)) is equal to

Bg( /b *C’/q(g (rescalingh(g)*(k;)< Z c(p, )x)ﬁ(g,,u))) :

HEAH

5.2. Functoriality relatively to restrictions. Here we consider an
oriented spin manifold M of even dimension with an action of a com-
pact connected Lie group G. Let £ — M be a G-equivariant line bundle
equipped with an invariant Hermitian connection V. We assume here
that ¢q is proper. In this case we can define Q% (M, £*) € R(G) for
any k > 1.

The main result of this section is the following theorem.

Theorem 5.1. Suppose that H C G is a closed connected subgroup
such that ¢y is proper. Then

(1) Qz°(M, L*) is H-admissible,

(2) Q5™ (M, L")|u = Q™ (M, L).

We will prove Theorem 5.1 under the assumption that the generic
infinitesimal stabilizer of the G-action on M is abelian. It can be shown
easily that it implies the general case (see Lemma 4.2 in [19]).
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Let us denote by c(A, 1) the multiplicity of V, in Vy|g. If we con-
sider the generalized characters Q> (M, £*) = 3", s ma(\, k) V) and
Q7 (M, LF) = > pen Mu(p, k) V,, we see that Theorem 5.1 is equiv-
alent to the following theorem.

Theorem 5.2. For any p € Ay, we have
mH(:U’u k) = Z mG(Au k) C(>\7 :u)v

AEAG

where the right hand side is a finite sum.

We consider the sequences of distributions OF = k" >", ma(X, k) Bk
and ©F = k" >, ma (i, k) Bk associated to the formal geometric
quantizations Q;°(M, L*) and Q> (M, LF).

We start with the following proposition.

Proposition 5.3. e We have By, O} = j;//s(zﬁ/k)@,f.

e The push-forward r.(0%) is a well defined sequence of distributions
on b*. We have

r(0F) = jy/ei0/k)Of

Proof. Since my(u, k) is a piecewise quasi-polynomial function (see
Section 3.1), the first point is a consequence of Proposition 2.2.

We now prove the second point. Let ¢ € C®(h*) be a function
with compact support. Let R, > 0 such that the compact set K, :=
dc (o3 (Support(y)) is contained in {€ € g%, ||€]| < R,}. The expres-
sion

(r(09), o) = kT’ZmG A k) @ (r(Nk))

is well-defined since the term mg()\, k)¢ (r(\/k)) is non-zero only for
a finite number of A. More precisely, since mg(A, k) # 0 only if A\/k €
dc(M), we see that mg(A\, k) ¢ (r(A/k)) # 0 only if A\/k € K.

If € € C*(g*) is a function with compact support such that €(§) =1
if ||£]] < Ry, we define ¢ := @ or x e. We see that

(. (6F). ) = (6. ) = kdz 0. ) + ol )
where (6%) is the family of distributions on g* such that

ja/(i0/k) Z DHG(M Q, A, Z-@G.

kno "
nO
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We check easily that, for any polynomial P on g, we have
(DHE(M,Q, A, (M), P(9)¢) = (DH"(M,Q, A,(M)), Ply(9)).

Hence the formal series (j;p(i&/k) Yoo ZZDHG(M Q, A, (M), §) is
equal to

L2 (i k) Z DHM(M,Q, A,(M)), ) = (j,): (i0/k)OF ).

O

Consider the function miy(u, k) :== >\ 4. ma(A, k) c(A, 1) and the

difference d(u, k) := mpu(p, k) — mly(p, k). Our aim is to show that
d=0.

Proposition 5.4. We have rescalingh*(k;)<zu€AH d(u, )Bu> =0

Proof. The previous proposition tells us that

r.(0F) = Béz/h * rescalingh*(/ﬁ)< Z my(p, k) Bu)-

HEAR

If we use Lemma 5.2, we can compute 7,(0%) in another manner:

r.(05) = rescalingh*(k:)< Z mg()\,k)r*(@\)>

AEAG

- Bg/h*rescalingh*(k)< Z m'y (g, k) 5u>-
HEAH
At this stage we obtain that B}, *rescalingy. (k) (3 ,c 4, (1, k)8,) =
0, or equivalently Bg/h * (ZueAH d(u, l{:)ﬁu/k) = 0. Since the function
d(u, k) is a piecewise quasi-polynomial function, we know that ©j :=
ZueAH d(, k) B,k admits an asymptotic expansion

Op = k"> k"0, (k)
n=0

where the distributions 6,,(k) depends periodically on k (see Proposi-
tion 2.1). Thanks to Proposition 2.2, we know that Bg/h * O admits
the asymptotic expansion

0= Bl » O, = 1210/ k) (k" 3 k:‘"@n(kr)).

n=0
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If we write the Taylor series j;//f? (X) =>"",dn(X), we obtain for any
n > 0 the relation ) ., dn,(i0)0i(k) = 0. As dy = 1, we see that

0,.(k) =0 for all n > 0. O

If we use Lemma 5.3 and Theorem 4.5, we can prove similarly the
following extension of Proposition 5.4.

Proposition 5.5. For any g € H of finite order, we have
rescalingh(g)*(k:)< Z d(p, k:)ﬁ(g,,u)) = 0.

HEAR

The function d(pu, k) is defined for p € Ay = (pu + Ag) Nty oo Let

Ay be the lattice generated by Ay and pr- Let Wy be the Weyl group
of H. We can then extend the function d(u, k) to a Wy-anti-invariant
function d on Ay: d(wp, k) = e(w)d(u, k) for w € Wy, p € Ag and
d(p, k) =01if pp ¢ p + Ap. i

Let Ty be a Cartan subgroup of H. We have a covering Ty — Ty
such that Ay is the weight lattice of the torus Ty. Take g € Ty and
its image g € T.

We now identify H(g)-invariant distributions on h(g)* to Wi, -anti-
invariant distributions on tj through the isomorphism Ry,). Using
Lemma 3.14, we have Ry, (8(g, 1)) =75 . (W) G

We thus obtain the following proposition.

weWea

Proposition 5.6. For any §j € Ty of finite order, we have
> d(v, k) §" o, =0.

I/EAH

Since d(v, k) is a piecewise ‘quasi-polynomial function on Ay X Zy,
Proposition 5.6 implies that d = 0 (see Proposition 3.1 in [23]). Hence
d =0 : the proof of Theorem 5.1 is complete.

REFERENCES

[1] M.F. Atiyah, Elliptic operators and compact groups, Lecture Notes in Mathe-
matics, vol. 401, Springer-Verlag, 1974.

[2] Nicole Berline, Ezra Getzler, and Michele Vergne, Heat Kernels and Dirac
Operators, Grundlehren Text Editions, Springer-Verlag, 2004.

[3] Nicole Berline and Michele Vergne, Classes caractéristiques équivariantes. For-
mules de localisation en cohomologie équivariante, C.R.A.S. 295 (1982), 539
541.

[4]

, L’indice équivariant des opérateurs transversalement elliptiques, In-
vent. Math. 124 (1996), 51-101.



42 PAUL-EMILE PARADAN AND MICHELE VERGNE

[5] Martin Bordemann, Eckhard Meinrenken, and Martin Schlichenmaier, Toeplitz
quantization of Kdhler manifolds and gl(N), N — oo limits, Comm. Math.
Phys. 165 (1994), 281-296.

[6] L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz op-
erators, Annals of Mathematics Studies, vol. 99, Princeton University Press,
Princeton, NJ; University of Tokyo Press, Tokyo, 1981.

[7] Henri Cohen, Number theory. Vol. II. Analytic and modern tools, Graduate
Texts in Mathematics, vol. 240, Springer, New York, 2007.

[8] Boris Fedosov, On G-trace and G-index in deformation quantization, Lett.
Math. Phys. 52 (2000), 29-49. Conference Moshé Flato 1999 (Dijon).

[9] Victor Guillemin and Shlomo Sternberg, Riemann sums over polytopes, Ann.
Inst. Fourier (Grenoble) 57 (2007), no. 7, 2183-2195 (English, with English
and French summaries). Festival Yves Colin de Verdiere.

[10] Peter Hochs and Yanli Song, Equivariant indices of Spinc-Dirac operators for
proper moment maps, Duke Math J. 166 (2017), 1125-1178.

[11] Tetsuro Kawasaki, The index of elliptic operators over V-manifolds, Nagoya
Math. Journal 84 (1981), 135-157.

[12] Bertram Kostant, Quantization and unitary representations. I. Prequantiza-
tion, Lectures in modern analysis and applications, III, Springer, Berlin, 1970,
pp- 87—208. Lecture Notes in Math., Vol. 170.

[13] Xiaonan Ma and George Marinescu, Berezin-Toeplitz quantization and its ker-
nel expansion, Geometry and quantization, Trav. Math., vol. 19, Univ. Lux-
emb., Luxembourg, 2011, pp. 125-166.

[14] Xiaonan Ma and Weiping Zhang, Geometric quantization for proper moment
maps: the Vergne conjecture, Acta Mathematica 212 (2014), 11-57.

[15] Eckhard Meinrenken, On Riemann-Roch formulas for multiplicities, J. Amer.
Math. Soc. 9 (1996), 373-389.

[16] Paul-Emile Paradan, The moment map and equivariant cohomology with gen-
eralized coefficients, Topology 39 (2000), 401-444.

, Formal geometric quantization, Ann. Inst. Fourier (Grenoble) 59

(2009), no. 1, 199-238.

, Formal geometric quantization II, Pacific J. Math. 253 (2011), 169-

[17]

[18]
211.

[19] , Formal Geometric Quantization 111, Functoriality in the spin-c setting,
arxiv 1704.06034 (2017).

[20] Paul-Emile Paradan and Michele Vergne, Index of transversally elliptic opera-
tors, Astéristique 328 (2009), 297-338.

, BEquivariant Dirac operators and differentiable invariant theory, Acta

Math., to appear (2017).

, Witten non abelian localization for equivariant K-theory, and the

[Q, R] = 0 theorem, Arxiv 1504.07502 (2015).

, Asymptotic distributions associated to piecewise quasi-polynomials, to
appear (2017).

[24] Michele Vergne, Formal equivariant A class, splines and multiplicities of the in-
dex of transversally elliptic operators, Izvestiya: Mathematics 80 (2016), no. 5.

, The equivariant Riemann-Roch theorem and the graded Todd class,

Comptes Rendus Mathematique 355 (2017), no. 5, 563-570.

[21]

22]

[23]

[25]




DIRAC OPERATORS AND SEMI-CLASSICAL LIMITS. 43

[26] Jonathan Weitsman, Nonabelian symplectic cuts and the geometric quantiza-
tion of non-compact manifolds, Lett. Math. Phys. 56 (2001), 31-40.

[27] Edward Witten, Supersymmetry and Morse theory, J. Differential Geom. 17
(1982), 661-692.



