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Some explanations about the IWLS algorithm to fit
generalized linear models

Christophe Dutang
Laboratoire Manceau de Mathématiques, Le Mans Université, France

August 2017

This short note focuses on the estimation procedure generally used for generalized linear models (GLMs),
see e.g. McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3),
285-292.

1 Fitting GLMs

1.1 Definition of the log-likelihood and the score function

The parametrization of the exponential family generally used for GLMs is given by the following density or
mass probability function:

fY (y; θ, φ) = e
yθ−b(θ)
a(φ) +c(y,φ), y ∈ S,

where S is the support of the distribution, typically N or R, and a, b, c are known smooth functions.

Note that E(Y ) = b′(θ) = µ and V ar(Y ) = φb′′(θ) = φV (µ). Let us start with the iid case, where Yi are
independent and identically distributed. In that case, the score is defined as

S(θ) = ∂ log fY (Y ; θ, φ)
∂θ

= Y − b′(θ)
a(φ) .

It is well known that E(S) = 0 and V ar(S) = −E(S′(θ)) = b′′(θ)/φ.

Now, we focus on the GLM context. That is Yi ∼ Fexp(θi, φi) for all i = 1, . . . , n where the explanatory
variables are linked to the expectation by

g(b′(θi)) = g(µi) = β1xi1 + · · ·+ βpxip,

with p < n for identifiability reasons. Note that an intercept is generally included so that xi1 = 1 for all i.
The log-density of Yi is

li(βi) = log fYi(yi; θi(βi), φi) = yiθi(βi)− b(θi(βi))
a(φi)

+ c(yi, φi).

The log-likelihood of the GLM for observations y1, . . . , yn is simply obtained by adding li contributions

L(β) =
n∑
i=1

li(βi) =
n∑
i=1

(
yiθi(βi)− b(θi(βi))

a(φi)
+ c(yi, φi)

)
.

A common choice for the dispersion parameter is φi = φ/wi with wi a known weigth.

The score function is defined as the expectation of the gradient of the log-likelihood. Using
θi = (b′)−1 (g−1(β1xi1 + · · ·+ βpxip)

)
, ηi = β1xi1 + · · ·+βpxip, (f−1)′ = 1/f ′ ◦f−1, ((f ′)−1)′ = 1/f ′′ ◦(f ′)−1,

we derive the partial derivative
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∂θi
∂βj

= ((b′)−1)′(g−1(ηi))× (g−1)′(ηi)× xij = 1
b′′((b′)−1(g−1(ηi))

× xij
g′(g−1(ηi))

= 1
b′′(θi)

× xij
g′(µi)

.

Therefore, using this partial derivative w.r.t. βj leads to the following score

Sj(β) = ∂L(β)
∂βj

=
n∑
i=1

Ui(θi)
∂θi
∂βj

=
n∑
i=1

yi − b′(θi)
a(φi)

1
b′′(θi)

xij
g′(µi)

=
n∑
i=1

yi − µi
a(φi)V (µi)

xij
g′(µi)

where µi = b′(θi) and V (µi) = b′′(θi) for j = 1, . . . , p. The parameter β is found by solving the score equations

Sj(β) = 0, j = 1, . . . , p.

1.2 Objective of the optimization procedure

The question we may ask is whether it is equivalent to solve the score function or to minimize the opposite of
the log-likelihood by the (exact) Newton method?

Consider f : Rn 7→ R a twice differentiable function with a gradient vector g(x) = ∇f(x), and a Hessian
matrix H(x) = ∇2f(x). Let F : Rn 7→ Rn be a differentiable function. The Jacobian matrix is denoted by
JacF (x) ∈ Rn×n.

From classical optimization books, e.g. Nocedal, J. & Wright, S. J. (2006), Numerical Optimization, Springer
Science+Business Media, a (local) optimization method consists in computing the following sequence
xk+1 = xk + dk where dk is computed according to a scheme. In addition, a globalization technique may be
used in conjunction such as a line search. But, the globalization scheme is seldom done for fitting GLMs.

The exact Newton method (also called the Newton-Raphson method) to find the minimum of a function f
uses the direction dk = −H(xk)−1g(xk). In comparison, the steepest descent method to find the minimum of
f considers dk = −g(xk). Furthermore, the exact Newton method to find the root of F uses the direction
dk = −Jac(xk)−1F (xk). Hence, the direction is exactly the same between the minimization problem and the
root problem, when the root function F is the gradient ∇f of the objective. Hence, finding the roots of the
score equations is equivalent to maximizing the log-likelihood.

1.3 Derivation of the Newton method for the score equations

The Newton method to find the root of the score equations is

β(k+1) = β(k) − JacS
(
β(k)

)−1
S(β(k)).

The exponent (k) is used to denote the kth iteration since subscript are used for indexing observation and/or
component. Let us compute the Jacobian of the score or the Hessian of the log-likelihood.

∂2L(β)
∂βj∂βl

=
n∑
i=1

∂

∂βl

(
yi − b′(θi)
a(φi)

)
1

b′′(θi)
xij
g′(µi)

+
n∑
i=1

∂

∂βl

(
1

b′′(θi)

)
yi − b′(θi)
a(φi)

xij
g′(µi)

+
n∑
i=1

∂

∂βl

(
xij
g′(µi)

)
yi − b′(θi)
a(φi)

1
b′′(θi)

.

The first term is

∂

∂βl

(
yi − b′(θi)
a(φi)

)
= −b

′′(θi)
a(φi)

× ∂θi
∂βl

= −b
′′(θi)

a(φi)
× 1
b′′(θi)

× xil
g′(µi)

= −xil
a(φi)g′(µi)

.
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The second term is

∂

∂βl

(
1

b′′(θi)

)
= −∂(b′′(θi))

∂βl

1
(b′′(θi))2 = − b′′′(θi)

(b′′(θi))2
∂θi
∂βl

= − b′′′(θi)
(b′′(θi))3

xil
g′(µi)

= − b′′′(θi)
(V (µi))3

xil
g′(µi)

.

The third term is

∂

∂βl

(
xij
g′(µi)

)
= − xij

(g′(µi))2
∂(g′(µi))
∂βl

= −xijg
′′(µi)

(g′(µi))2
∂µi
∂βl

= −xijxilg
′′(µi)

(g′(µi))3 ,

since
∂µi
∂βl

= ∂(b′(θi))
∂βl

= b′′(θi)
∂θi
∂βl

= b′′(θi)×
1

b′′(θi)
× xil
g′(µi)

= xil
g′(µi)

.

Recalling that the Hessian matrix is defined as

H(β, y1, . . . , yn) =
(
∂2L(β)
∂βj∂βl

)
j,l

,

and using b′′(θ) = V (µ), we get

∂2L(β)
∂βj∂βl

= −
n∑
i=1

xil
a(φi)g′(µi)

1
b′′(θi)

xij
g′(µi)

−
n∑
i=1

b′′′(θi)
(V (µi))3

xil
g′(µi)

yi − b′(θi)
a(φi)

xij
g′(µi)

−
n∑
i=1

xijxilg
′′(µi)

(g′(µi))3
yi − b′(θi)
a(φi)

1
b′′(θi)

= −
n∑
i=1

xilxij
a(φi)(g′(µi))2V (µi)

−
n∑
i=1

b′′′(θi)xilxij(yi − µi)
(V (µi))3(g′(µi))2a(φi)

−
n∑
i=1

xijxilg
′′(µi)(yi − µi)

(g′(µi))3µia(φi
).

In practice, we use the expectation of this matrix w.r.t. the random variable Yi. This procedure is known as
the Fisher scoring method. Hence, two terms will cancel because E(Yi) = µi. So

H̄(β) = E(H(β, Y1, . . . , Yn)) =
(
−

n∑
i=1

xilxij
a(φi)(g′(µi))2V (µi)

)
j,l

.

This matrix can be rewritten as the product of three matrices H̄(β) = −XTW (β)X where

W (β) =


1

a(φ1)(g′(µ1))2V (µ1)
. . .

1
a(φn)(g′(µn))2V (µn)

 , X =

x11 . . . x1p
...

xn1 . . . xnp

 .

The (expected) Newton method is

β(k+1) = β(k) +
(
XTW (β(k))X

)−1
S(β(k)).

Let us write matricially the score vector

Sj(β) =
n∑
i=1

yi − µi
φiV (µi)

xij
g′(µi)

=
n∑
i=1

(yi − µi)xijg′(µi)×
1

φi(g′(µi))2V (µi)
= XTW (β)Ỹ (β)

where we define a new vector Ỹ (β) =
(
(yi − µi)g′(µi)

)
i
∈ Rn. The (expected) Newton method can be

reformulated as
β(k+1) = β(k) +

(
XTW (β(k))X

)−1
XTW (β(k))Ỹ (β(k)).
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1.4 Reformulation as an iterative weighted least square (IWLS) problem

Let us rewrite β as a matrix product

β =
(
XTW (β(k))X

)−1
XTW (β(k))Xβ =

(
XTW (β(k))X

)−1
XTW (β(k))X̃,

where X̃(β) = Xβ is the vector of linear predictor ηi. In other words, the (expected) Newton method can be
factorized as

β(k+1) =
(
XTW (β(k))X

)−1
XTW (β(k))

(
X̃(β(k)) + Ỹ (β(k))

)
=
(
XTW (β(k))X

)−1
XTW (β(k))Z(β(k))

with a new vector Z(β) = (ηi(β) + (yi − µi(β)) g′(µi(β)))i.

That is β(k+1) is the solution of a weighted least square problem with weights W (k), response vector Z(k)

and explanatory variable X(k).

1.5 The IWLS Algorithm

The iterative weighted least square algorithm used to fit GLM is as follows

1. Initialization:

(a) Use original data with a small shift µ(0)
i = yi + 0.1 to compute η(0)

i = g(µ(0)
i ).

(b) Compute working responses Z(0) = (η(0)
i + (yi − µ(0)

i )g′(µ(0)
i ))i.

(c) Compute working weights W (0) = diag(w1, . . . , wn) and wi = 1
a(φi)(g′(µ(0)

i
))2V (µ(0)

i
)
.

(d) Solve the system to get β(0)

XTW (0)Xβ(0) = XTW (0)Z(0).

2. Iteration: for k = 1, . . . ,m do

(a) Compute working responses Z(k) = (zi)i and zi = ηi(β(k)) + (yi − µi(β(k)))g′(µi(β(k))).

(b) Compute working weights W (k) = diag(w1, . . . , wn) and wi = 1
a(φi)(g′(µi(β(k)))2V (µi(β(k))) .

(c) Solve the system to get β(k+1)

XTW (k)Xβ(k+1) = XTW (k)Z(k).

(d) Verify convergence on the deviance: ||Dev(β(k+1))−Dev(β(k))|| ≤ ε.

In practice the linear systemXTW (k)Xβ(k+1) = XTW (k)Z(k) is solved via a QR decomposition, see e.g. Green
(1984).

2 Numerical illustration

In this section, we carry out simple examples of GLMs on simulated datasets in the R statistical software, R
Core Team (2017), R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.
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2.1 Poisson regression

A Poisson distribution has the following probabilty mass function P (X = x) = λxe−λ/x! for x ∈ N. We
rewrite as

log(f(x)) = x log(λ)− log(x!)− λ = x log(λ)− λ
1 − log(x!).

So θ = log(λ)⇔ λ = eθ, b(x) = ex, φ = 1, a(x) = x and c(x, φ) = − log(x!). In particular (b′)−1(x) = log(x).

Below we make a simple Poisson regression with a single categorical variable where an explicit solution exists.
We plot the absolute relative error of the GLM estimator.
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2.2 Gamma regression

A gamma distribution has the following density function f(x) = λαxα−1e−λx

Γ(α) for x ∈ X = R+, λ, α > 0. We
rewrite as

log(f(x)) =
−λ
α x− (− log(−−λα ))

1/α + α log(α) + (α− 1) log(x)− log(Γ(α))

So θ = −λ
α , Θ = R−, φ = 1/α, a(x) = x, b(x) = − log(−x) and

c(x, φ) = log(1/φ)/φ+ (1/φ− 1) log(x)− log(Γ(1/φ)).

In particular (b′)−1(x) = 1/x. Below we make a simple gamma regression with a single categorical variable
where an explicit solution exists. We plot the absolute relative error of the GLM estimator.
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