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Some explanations about the IWLS algorithm to fit
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Christophe Dutang
Laboratoire Manceau de Mathématiques, Le Mans Université, France
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This short note focuses on the estimation procedure generally used for generalized linear models (GLMs),
see e.g. McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3),
285-292.

1 Fitting GLMs

1.1 Definition of the log-likelihood and the score function

The parametrization of the exponential family generally used for GLMs is given by the following density or
mass probability function:

y0—b(6)
Fr(y:0,0) = e o W) ye g,
where S is the support of the distribution, typically N or R, and a, b, ¢ are known smooth functions.

Note that E(Y) = b (0) = p and Var(Y) = ¢b"”"(0) = ¢V (). Let us start with the iid case, where Y; are
independent and identically distributed. In that case, the score is defined as

56 e
It is well known that E(S) =0 and Var(S) = —E(S'(0)) = b"(0)/¢.

s0) = Qo (Yi0.0) Y -¥(0)

Now, we focus on the GLM context. That is Y; ~ Feyp(0;, ¢;) for all ¢ = 1,...,n where the explanatory
variables are linked to the expectation by

g(0'(0:)) = g(pi) = Prxir + - + Bpip,

with p < n for identifiability reasons. Note that an intercept is generally included so that z;; = 1 for all 4.
The log-density of Y; is

yiti(B:i) — b(0:(B:))
a(¢i)

The log-likelihood of the GLM for observations vy, ..., y, is simply obtained by adding /; contributions

1i(Bi) = log fv, (yi; 0:(B:), ¢s) = + c(yi, 9i)-

A common choice for the dispersion parameter is ¢; = ¢/w; with w; a known weigth.

The score function is defined as the expectation of the gradient of the log-likelihood.  Using
0; = (b)) (g7 (Brwin + -+ + Bpip))s i = Brxir -+ B, (f71) =1/f o f 71 ((f)7Y) =1/f"o(f)71,

we derive the partial derivative
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Therefore, using this partial derivative w.r.t. 3; leads to the following score

yi*b/(e') 1 . Yi — Lij
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where pu; = b'(6;) and V(u;) = b"(0;) for 7 = 1,...,p. The parameter 3 is found by solving the score equations
2 M J » y D p y g q

1.2 Objective of the optimization procedure

The question we may ask is whether it is equivalent to solve the score function or to minimize the opposite of
the log-likelihood by the (exact) Newton method?

Consider f : R™ — R a twice differentiable function with a gradient vector g(z) = V f(z), and a Hessian
matrix H(z) = V2f(z). Let F : R" — R" be a differentiable function. The Jacobian matrix is denoted by
JacF(x) € R™*™.

From classical optimization books, e.g. Nocedal, J. & Wright, S. J. (2006), Numerical Optimization, Springer
Science+Business Media, a (local) optimization method consists in computing the following sequence
Tp+1 = Tk + dj, where dj; is computed according to a scheme. In addition, a globalization technique may be
used in conjunction such as a line search. But, the globalization scheme is seldom done for fitting GLMs.

The exact Newton method (also called the Newton-Raphson method) to find the minimum of a function f
uses the direction dp = —H(x) 'g(xy). In comparison, the steepest descent method to find the minimum of
f considers di, = —g(xy). Furthermore, the exact Newton method to find the root of F' uses the direction
dy = —Jac(xy) L F(x). Hence, the direction is exactly the same between the minimization problem and the
root problem, when the root function F is the gradient V f of the objective. Hence, finding the roots of the
score equations is equivalent to maximizing the log-likelihood.

1.3 Derivation of the Newton method for the score equations
The Newton method to find the root of the score equations is
-1
g+ — gk _ Jac 8 (50«)) S(BW).

The exponent %) is used to denote the kth iteration since subscript are used for indexing observation and/or
component. Let us compute the Jacobian of the score or the Hessian of the log-likelihood.
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Recalling that the Hessian matrix is defined as
_ (9*L(B)
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and using b”(0) = V(u), we get
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In practice, we use the expectation of this matrix w.r.t. the random variable Y;. This procedure is known as
the Fisher scoring method. Hence, two terms will cancel because E(Y;) = p;. So

) ) (. n TiTs4
H(B) = E(H(B,Y1,...,Ys)) = ( ; a(gbi)(g/(ﬂi))QV(ui))j,l.

This matrix can be rewritten as the product of three matrices H(3) = —XTW(B)X where

1
a(¢1)(g’(11))2V (p1) T11 ... T1p
W(/B) = T . 7)( =

1
a(pn) (9’ (14n))2V (ftn) Tnl . Tnp
The (expected) Newton method is

B = 50 1 (XTW(B9)X) " S(3).

Let us write matricially the score vector

N e 1 _ xT >
_Z(yz wi)Tizg (i) X bi (9" (1))2V (1) XW(B)Y(B)

where we define a new vector Y (8) = ((yi — ui)g’(,ui))i € R™. The (expected) Newton method can be
reformulated as

G = 50 4 (XTI (E0)X) T XTIV (50)



1.4 Reformulation as an iterative weighted least square (IWLS) problem

Let us rewrite £ as a matrix product
—1 -1 N
B=(XTWEM)X)  XTW(EP)XE = (XTW(W)x)  XTW(EN)X,

where X (8) = X3 is the vector of linear predictor n;. In other words, the (expected) Newton method can be
factorized as

F0 = (XTW () X) T XTW(E0) (X(50) + (3H)) = (XTW(EO)X) T XTW(E0)2(5%)

with a new vector Z(3) = (0:(8) + (yi — i (8)) ¢’ (1 (B)));-

That is 3+ is the solution of a weighted least square problem with weights W) response vector Z*)
and explanatory variable X (%),

1.5 The IWLS Algorithm

The iterative weighted least square algorithm used to fit GLM is as follows

1. Initialization:
(0)

%

= y; + 0.1 to compute m(o) = g(,ugo)).

(b) Compute working responses Z(©) = (7750) + (ys — MEO))g’(MEO)))i.

(a) Use original data with a small shift p

(c) Compute working weights W) = diag(wy, ..., w,) and w; = a(m)(g/(uié)))zV(uEO))'

(d) Solve the system to get 3(%)
XTW(O)XB(O) = xXTw ) 7(0)
2. Iteration: for k=1,...,m do

(a) Compute working responses Z%) = (z3); and 2 = 1:(8%)) + (s — 11 (A®))g’ (1s(B®).

(b) Compute working weights W*) = diag(wr, ..., w,) and w; = o~ —mwyev i Em)-
(c) Solve the system to get f+1)

XTwk x gtktt) — xTyy k) z(F)

(d) Verify convergence on the deviance: ||Dev(3+1D) — Dev(BM)|| < .

In practice the linear system X7 W ") X gk+1) = XTWw (%) Z(k) i5 solved via a QR decomposition, see e.g. Green
(1984).

2 Numerical illustration

In this section, we carry out simple examples of GLMSs on simulated datasets in the R statistical software, R
Core Team (2017), R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.


https://www.R-project.org/

2.1 Poisson regression

A Poisson distribution has the following probabilty mass function P(X = z) = A\e */z! for x € N. We
rewrite as

log(f(z)) = zlog(\) — log(z!) — X = %ﬁ\)—/\

So 0 =log(A) & A =¢’ b(z) =e%, ¢ =1, a(xr) = z and c(x, ¢) = —log(z!). In particular (b')~1(z) = log(z).

— log(a!).

Below we make a simple Poisson regression with a single categorical variable where an explicit solution exists.
We plot the absolute relative error of the GLM estimator.
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2.2 Gamma regression

A gamma distribution has the following density function f(z) = % forr e X=Ri, \,a>0. We
rewrite as N N
=2z — (—log(—=2
g 7(0) = =B 4 og(a) + (- 1 og(a) ~ log(0(a)

Sof==2, 0 =R_, 6 = 1/a, alz) = 2, b(z) = — log(—z) and

c(x,¢) =log(1/¢)/¢ + (1/¢ — 1) log(x) — log(I'(1/¢)).

In particular (b')~!(x) = 1/x. Below we make a simple gamma regression with a single categorical variable
where an explicit solution exists. We plot the absolute relative error of the GLM estimator.



abs. relative error

0.10 0.20

0.00

I
1000

I I
2000 3000

sample size

I
4000

I
5000



	Fitting GLMs
	Definition of the log-likelihood and the score function
	Objective of the optimization procedure
	Derivation of the Newton method for the score equations
	Reformulation as an iterative weighted least square (IWLS) problem
	The IWLS Algorithm

	Numerical illustration
	Poisson regression
	Gamma regression


