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1 Fitting GLMs

Definition of the log-likelihood and the score function

The parametrization of the exponential family generally used for GLMs is given by the following density or mass probability function:

f Y (y; θ, φ) = e yθ-b(θ) a(φ) +c(y,φ) , y ∈ S,
where S is the support of the distribution, typically N or R, and a, b, c are known smooth functions.

Note that E(Y ) = b (θ) = µ and V ar(Y ) = φb (θ) = φV (µ). Let us start with the iid case, where Y i are independent and identically distributed. In that case, the score is defined as

S(θ) = ∂ log f Y (Y ; θ, φ) ∂θ = Y -b (θ) a(φ) .
It is well known that E(S) = 0 and V ar(S) = -E(S (θ)) = b (θ)/φ. Now, we focus on the GLM context. That is Y i ∼ F exp (θ i , φ i ) for all i = 1, . . . , n where the explanatory variables are linked to the expectation by

g(b (θ i )) = g(µ i ) = β 1 x i1 + • • • + β p x ip ,
with p < n for identifiability reasons. Note that an intercept is generally included so that x i1 = 1 for all i.

The log-density of Y i is

l i (β i ) = log f Yi (y i ; θ i (β i ), φ i ) = y i θ i (β i ) -b(θ i (β i )) a(φ i ) + c(y i , φ i ).
The log-likelihood of the GLM for observations y 1 , . . . , y n is simply obtained by adding l i contributions

L(β) = n i=1 l i (β i ) = n i=1 y i θ i (β i ) -b(θ i (β i )) a(φ i ) + c(y i , φ i ) .
A common choice for the dispersion parameter is φ i = φ/w i with w i a known weigth.

The score function is defined as the expectation of the gradient of the log-likelihood. Using

θ i = (b ) -1 g -1 (β 1 x i1 + • • • + β p x ip ) , η i = β 1 x i1 + • • • + β p x ip , (f -1 ) = 1/f • f -1 , ((f ) -1 ) = 1/f • (f ) -1 , we derive the partial derivative 1 ∂θ i ∂β j = ((b ) -1 ) (g -1 (η i )) × (g -1 ) (η i ) × x ij = 1 b ((b ) -1 (g -1 (η i )) × x ij g (g -1 (η i )) = 1 b (θ i ) × x ij g (µ i ) .
Therefore, using this partial derivative w.r.t. β j leads to the following score

S j (β) = ∂L(β) ∂β j = n i=1 U i (θ i ) ∂θ i ∂β j = n i=1 y i -b (θ i ) a(φ i ) 1 b (θ i ) x ij g (µ i ) = n i=1 y i -µ i a(φ i )V (µ i ) x ij g (µ i )
where µ i = b (θ i ) and V (µ i ) = b (θ i ) for j = 1, . . . , p. The parameter β is found by solving the score equations S j (β) = 0, j 1, . . . , p.

Objective of the optimization procedure

The question we may ask is whether it is equivalent to solve the score function or to minimize the opposite of the log-likelihood by the (exact) Newton method? Consider f : R n → R a twice differentiable function with a gradient vector g(x) = ∇f (x), and a Hessian matrix

H(x) = ∇ 2 f (x). Let F : R n → R n be a differentiable function. The Jacobian matrix is denoted by JacF (x) ∈ R n×n .
From classical optimization books, e.g. Nocedal, J. & Wright, S. J. ( 2006), Numerical Optimization, Springer Science+Business Media, a (local) optimization method consists in computing the following sequence x k+1 = x k + d k where d k is computed according to a scheme. In addition, a globalization technique may be used in conjunction such as a line search. But, the globalization scheme is seldom done for fitting GLMs.

The exact Newton method (also called the Newton-Raphson method) to find the minimum of a function f uses the direction d k = -H(x k ) -1 g(x k ). In comparison, the steepest descent method to find the minimum of f considers d k = -g(x k ). Furthermore, the exact Newton method to find the root of F uses the direction d k = -Jac(x k ) -1 F (x k ). Hence, the direction is exactly the same between the minimization problem and the root problem, when the root function F is the gradient ∇f of the objective. Hence, finding the roots of the score equations is equivalent to maximizing the log-likelihood.

Derivation of the Newton method for the score equations

The Newton method to find the root of the score equations is

β (k+1) = β (k) -Jac S β (k) -1 S(β (k) ).
The exponent (k) is used to denote the kth iteration since subscript are used for indexing observation and/or component. Let us compute the Jacobian of the score or the Hessian of the log-likelihood.

∂ 2 L(β) ∂β j ∂β l = n i=1 ∂ ∂β l y i -b (θ i ) a(φ i ) 1 b (θ i ) x ij g (µ i ) + n i=1 ∂ ∂β l 1 b (θ i ) y i -b (θ i ) a(φ i ) x ij g (µ i ) + n i=1 ∂ ∂β l x ij g (µ i ) y i -b (θ i ) a(φ i ) 1 b (θ i )
.

The first term is

∂ ∂β l y i -b (θ i ) a(φ i ) = -b (θ i ) a(φ i ) × ∂θ i ∂β l = -b (θ i ) a(φ i ) × 1 b (θ i ) × x il g (µ i ) = -x il a(φ i )g (µ i )
.

The second term is

∂ ∂β l 1 b (θ i ) = - ∂(b (θ i )) ∂β l 1 (b (θ i )) 2 = - b (θ i ) (b (θ i )) 2 ∂θ i ∂β l = - b (θ i ) (b (θ i )) 3 x il g (µ i ) = - b (θ i ) (V (µ i )) 3 x il g (µ i )
.

The third term is

∂ ∂β l x ij g (µ i ) = - x ij (g (µ i )) 2 ∂(g (µ i )) ∂β l = - x ij g (µ i ) (g (µ i )) 2 ∂µ i ∂β l = - x ij x il g (µ i ) (g (µ i )) 3 , since ∂µ i ∂β l = ∂(b (θ i )) ∂β l = b (θ i ) ∂θ i ∂β l = b (θ i ) × 1 b (θ i ) × x il g (µ i ) = x il g (µ i )
.

Recalling that the Hessian matrix is defined as

H(β, y 1 , . . . , y n ) = ∂ 2 L(β) ∂β j ∂β l j,l ,
and using b (θ) = V (µ), we get

∂ 2 L(β) ∂β j ∂β l = - n i=1 x il a(φ i )g (µ i ) 1 b (θ i ) x ij g (µ i ) - n i=1 b (θ i ) (V (µ i )) 3 x il g (µ i ) y i -b (θ i ) a(φ i ) x ij g (µ i ) - n i=1 x ij x il g (µ i ) (g (µ i )) 3 y i -b (θ i ) a(φ i ) 1 b (θ i ) = - n i=1 x il x ij a(φ i )(g (µ i )) 2 V (µ i ) - n i=1 b (θ i )x il x ij (y i -µ i ) (V (µ i )) 3 (g (µ i )) 2 a(φ i ) - n i=1 x ij x il g (µ i )(y i -µ i ) (g (µ i )) 3 µ i a(φ i ).
In practice, we use the expectation of this matrix w.r.t. the random variable Y i . This procedure is known as the Fisher scoring method. Hence, two terms will cancel because

E(Y i ) = µ i . So H(β) = E(H(β, Y 1 , . . . , Y n )) = - n i=1 x il x ij a(φ i )(g (µ i )) 2 V (µ i ) j,l .
This matrix can be rewritten as the product of three matrices H(β) = -X T W (β)X where

W (β) =     1 a(φ1)(g (µ1)) 2 V (µ1) . . . 1 a(φn)(g (µn)) 2 V (µn)     , X =    x 11 . . . x 1p . . . x n1 . . . x np    .
The (expected) Newton method is

β (k+1) = β (k) + X T W (β (k) )X -1 S(β (k) ).
Let us write matricially the score vector

S j (β) = n i=1 y i -µ i φ i V (µ i ) x ij g (µ i ) = n i=1 (y i -µ i )x ij g (µ i ) × 1 φ i (g (µ i )) 2 V (µ i ) = X T W (β) Ỹ (β)
where we define a new vector Ỹ (β) = (y i -µ i )g (µ i ) i ∈ R n . The (expected) Newton method can be reformulated as

β (k+1) = β (k) + X T W (β (k) )X -1 X T W (β (k) ) Ỹ (β (k) ).

Reformulation as an iterative weighted least square (IWLS) problem

Let us rewrite β as a matrix product

β = X T W (β (k) )X -1 X T W (β (k) )Xβ = X T W (β (k) )X -1 X T W (β (k) ) X,
where X(β) = Xβ is the vector of linear predictor η i . In other words, the (expected) Newton method can be factorized as

β (k+1) = X T W (β (k) )X -1 X T W (β (k) ) X(β (k) ) + Ỹ (β (k) ) = X T W (β (k) )X -1 X T W (β (k) )Z(β (k) )
with a new vector

Z(β) = (η i (β) + (y i -µ i (β)) g (µ i (β))) i .
That is β (k+1) is the solution of a weighted least square problem with weights W (k) , response vector Z (k) and explanatory variable X (k) .

The IWLS Algorithm

The iterative weighted least square algorithm used to fit GLM is as follows 1. Initialization:

(a) Use original data with a small shift µ

(0) i = y i + 0.1 to compute η (0) i = g(µ (0) i ). (b) Compute working responses Z (0) = (η (0) i + (y i -µ (0) i )g (µ (0) i )) i . (c) Compute working weights W (0) = diag(w 1 , . . . , w n ) and w i = 1 a(φi)(g (µ (0) i )) 2 V (µ (0) i )
.

(d) Solve the system to get β (0)

T W (0) Xβ (0) = X T W (0) Z (0) .

Iteration: for

k = 1, . . . , m do (a) Compute working responses Z (k) = (z i ) i and z i = η i (β (k) ) + (y i -µ i (β (k) ))g (µ i (β (k) )).
(b) Compute working weights W (k) = diag(w 1 , . . . , w n ) and w i = 1 a(φi) (g (µi(β (k) )) 2 V (µi(β (k) )) .

(c) Solve the system to get β (k+1)

X T W (k) Xβ (k+1) = X T W (k) Z (k) .

(d) Verify convergence on the deviance: ||Dev(β (k+1) ) -Dev(β (k) )|| ≤ .

In practice the linear system X T W (k) Xβ (k+1) = X T W (k) Z (k) is solved via a QR decomposition, see e.g. Green (1984).

Numerical illustration

In this section, we carry out simple examples of GLMs on simulated datasets in the R statistical software, R Core Team (2017), R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Poisson regression

A Poisson distribution has the following probabilty mass function P (X = x) = λ x e -λ /x! for x ∈ N. We rewrite as

Below we make a simple Poisson regression with a single categorical variable where an explicit solution exists. We plot the absolute relative error of the GLM estimator.
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Gamma regression

A gamma distribution has the following density function f

In particular (b ) -1 (x) = 1/x. Below we make a simple gamma regression with a single categorical variable where an explicit solution exists. We plot the absolute relative error of the GLM estimator.