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ChemGAN challenge for drug discovery: can AI reproduce natural chemical diversity?

Generating molecules with desired chemical properties is important for drug discovery. The use of generative neural networks is promising for this task. However, from visual inspection, it often appears that generated samples lack diversity. In this paper, we quantify this internal chemical diversity, and we raise the following challenge: can a nontrivial AI model reproduce natural chemical diversity for desired molecules? To illustrate this question, we consider two generative models: a Reinforcement Learning model and the recently introduced ORGAN. Both fail at this challenge. We hope this challenge will stimulate research in this direction.

Introduction

Drug discovery is like finding a needle in a haysack. The chemical space of potential drugs contains more than 10 60 molecules. Moreover, testing a drug in a medical setting is time-consuming and expensive. Getting a drug to market can take up to 10 years and cost $2.6 billion [START_REF] Dimasi | Innovation in the pharmaceutical industry: new estimates of r&d costs[END_REF]. In this context, computerbased methods are increasingly employed to accelerate drug discovery and reduce development costs.

In particular, there is a growing interest in AI-based generative models. Their goal is to generate new lead compounds in silico, such that their medical and chemical properties are predicted in advance. Examples of this approach include Variational Auto-Encoders [START_REF] Gómez-Bombarelli | Automatic chemical design using a data-driven continuous representation of molecules[END_REF], Adversarial Auto-Encoders (Kadurin et al. 2017a;2017b), Recurrent Neural Networks and Reinforcement Learning [START_REF] Jaques | Sequence tutor: Conservative fine-tuning of sequence generation models with klcontrol[END_REF][START_REF] Segler | Generating focussed molecule libraries for drug discovery with recurrent neural networks[END_REF][START_REF] Olivecrona | Molecular de novo design through deep reinforcement learning[END_REF], eventually in combination with Sequential Generative Adversarial Networks [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF][START_REF] Benjamin | Optimizing distributions over molecular space. an objective-reinforced generative adversarial network for inverse-design chemistry (organic[END_REF].

However, research in this field often remains at the exploratory stage: generated samples are sometimes evaluated only visually, or with respect to metrics that are not the most relevant for the actual drug discovery process.

Rigorous evaluation would be particularly welcome regarding the internal chemical diversity of the generated samples. Generating a chemically diverse stream of molecules is important, because drug candidates can fail in many unexpected ways, later in the drug discovery pipeline.

Based on visual inspection, (Jaques et al. 2017, p. 8) reports that their Reinforcement Learning (RL) generative model tends to produce simplistic molecules. On the other hand, (Guimaraes et al. 2017, p.6, p.8) argues that their Objective-Reinforced Generative Adversarial Network (OR-GAN) generates less repetitive and less simplistic samples than RL. However, their argument is also based on visual inspection and therefore, it remains subjective: our own visual inspection of the ORGAN-generated samples (available on the ORGAN Github:

https://github.com/gablg1/ORGAN/tree /master/results/mol_results) rather suggests that ORGAN produces molecules as repetitive and as simplistic as RL.

In this paper, we introduce a metric that quantifies the internal chemical diversity of the model output. We also submit a challenge:

Challenge: Is it possible to build a non-trivial generative model, with (part of) its output satisfying a non-trivial chemical property, such that the internal chemical diversity of this output is at least equal to the diversity found in nature for the same kind of molecules?

To illustrate this challenge, we compare RL and ORGAN generative models, with respect to the following chemical properties:

1. Being active against the dopamine receptor D2. The dopamine D2 receptor is the main receptor for all antipsychotic drugs (schizophrenia, bipolar disorder...).

2. Druglikeness as defined in [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF]. We are interested in this property because we can use experimental results in [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF]) to facilitate discussion. However, the notion of druglikeness in [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF] and conciseness (a measure of the difference of the length between the generated SMILES and its canonical representation). We mention that recently, [START_REF] Benjamin | Optimizing distributions over molecular space. an objective-reinforced generative adversarial network for inverse-design chemistry (organic[END_REF]) considers an ORGAN with the QED definition of druglikeness. However, we also performed our own experiments with the QED property, and they did not affect our conclusions.

The metric of internal chemical diversity The Tanimoto-similarity T s between a and b is defined by:

T s (a, b) = |m a ∩ m b | |m a ∪ m b |
Their Tanimoto-distance is:

T d (a, b) = 1 -T s (a, b)
We use rdkit implementation [START_REF] Landrum | Rdkit: Open-source cheminformatics[END_REF]) of this distance.

Internal diversity

We define the internal diversity I of a set of molecules A of size |A| to be the average of the Tanimoto-distance T d of molecules of A with respect to each other. Formally, we have:

I(A) = 1 |A| 2 (x,y)∈A×A T d (x, y) (1) 
For a sufficiently large set A, any sufficiently large subset A ′ ⊂ A, sampled with uniform probability, has the same internal diversity as A. This property follows from the law of large numbers. We can thus define the internal diversity of a generative model, by computing the internal diversity of a sufficiently large generated sample. This allows to formalize our challenge: Challenge (restatement): Let N be the molecules observed in nature. Is there a non-trivial generative model G and a non-trivial chemical property P such that:

I(G ∩ P ) ≥ I(N ∩ P ) ? (2) 
Internal chemical diversity is always smaller than 1 (because the Tanimoto-distance is smaller than 1), and it is usually much smaller. That's why we prefer this definition to the Tanimoto-variance of a set of molecules A, which is:

V (A) = 1 |A| 2 (x,y)∈A×A T d (x, y) 2
(3)

External diversity

A related notion is external diversity. Let A 1 and A 2 two sets of molecules. The relative diversity E of A 1 , A 2 is defined by:

E(A 1 , A 2 ) = 1 |A 1 | × |A 2 | (x,y)∈A1×A2 T d (x, y) (4) 
The external diversity of a generative model is defined as the relative diversity between the training set and a sufficiently large generated sample.

External diversity essentially corresponds to the notion of diversity defined in (Guimaraes et al. 2017, p.5). 1A measure of the Tanimoto similarity between generated and natural molecules is also considered in [START_REF] Segler | Generating focussed molecule libraries for drug discovery with recurrent neural networks[END_REF], figures 7 and 12) (and their figure 11 considers the Levenshtein distance between them).

The main insight of our paper is to compare internal diversities of generated and natural molecules respectively, instead of considering the relative diversity between generated and natural molecules (and also, we measure this internal diversity with respect to the subset of molecules satisfying the property of interest).

We think measuring internal diversity is a good way to quantitatively capture the visually observed fact that generated molecules can be repetitive and simplistic [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF][START_REF] Jaques | Sequence tutor: Conservative fine-tuning of sequence generation models with klcontrol[END_REF].

Generative Models Reinforcement Learning

As in the case of RL considered in [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF], the generator G θ is a LSTM Recurrent Neural Network [START_REF] Hochreiter | Long short-term memory[END_REF] parameterized by θ. G θ generates SMILES (Simplified Molecular-Input Line-Entry System) sequences of length T (eventually padded with " " characters), denoted by:

Y 1:T = (y 1 , ..., y T )
Let R(Y 1:T ) be the reward function.

• For the case of dopamine D2 activity, we take:

R(Y 1:T ) = P active (Y 1:T )
where P active (Y 1:T ) is the probability for Y 1:T to be D2active. This probability is given by the predictive model made in [START_REF] Olivecrona | Molecular de novo design through deep reinforcement learning[END_REF] 2 , and available online at https://github.com/MarcusOlivecrona/ REINVENT/releases

• For the case of druglikeness, we take:

R(Y 1:T ) = L(Y 1:T ) where L(Y 1:T ) is the druglikeness of Y 1:T .
The generator G θ is viewed as a Reinforcement Learning agent: its state s t is the currently produced sequence of characters Y 1:t , and its action a is the next character y t+1 , which is selected in the alphabet Y. The agent policy is: G θ (y t+1 |Y 1:t ). It corresponds to the probability to choose y t+1 given previous characters Y 1:t . Let Q(s, a) be the action-value function. It is the expected reward at state s for taking action a and for following the policy G θ , in order to complete the rest of the sequence. We maximize its expected long-term reward:

J(θ) = E[R(Y 1:T )|s 0 , θ] = y1∈Y G θ (y 1 |s 0 )Q(s 0 , y 1 )
For any full sequence Y 1:T , we have:

Q(s = Y 1:T -1 , a = y T ) = R(Y 1:T )
For t < T , in order to calculate the expected reward Q for Y 1:t , we perform a N -time Monte Carlo search with the rollout policy G θ , represented as:

MC(G θ (Y 1:t , N )) = {Y 1 1:T , ..., Y N 1:T } where Y n 1:t = Y 1:t and Y n t+1:T is randomly sampled via the policy G θ .
For t < T , Q is given by:

Q(s = Y 1:t-1 , a = y t ) = 1 N N n=1 R(Y n 1:T )
Objective-Reinforced Generative Adversarial Network (ORGAN)

To obtain an ORGAN, [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF] For the case of dopamine D2-activity, the reward function becomes:

R(Y 1:T ) = λD φ (Y 1:T ) + (1 -λ)P active (Y 1:T )
and for the case of druglikeness:

R(Y 1:T ) = λD φ (Y 1:T ) + (1 -λ)L(Y 1:T )
where λ ∈ [0, 1] is a hyper-parameter. For λ = 0, we get back the RL case, and for λ = 1, we obtain a Sequential Generative Adversarial Network (SeqGAN) [START_REF] Yu | Seqgan: sequence generative adversarial nets with policy gradient[END_REF].

The networks G θ and D φ are trained adversarially [START_REF] Schmidhuber | Learning factorial codes by predictability minimization[END_REF][START_REF] Goodfellow | Generative adversarial nets[END_REF], such that the loss function for D φ to minimize is given by:

min φ E Y ∼train [log D φ (Y )]+E Y ∼gen [log(1-D φ (Y ))] (5)

Experiments

As in [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF], we pre-train the models 240 epochs with Maximum Likelihood Estimation (MLE), on a random subset of 15k molecules from the ZINC database of 35 million commercially-available compounds for virtual screening, used in drug discovery [START_REF] Sterling | Zinc 15-ligand discovery for everyone[END_REF]. Then we further train the models with RL and ORGAN respectively, for 30 and 60 epochs more.

Dopamine D2 activity

In table 1, we show the proportion of valid SMILES output (Prop. Valid SMILES), the average probability of activity on dopamine D2 (Avg. P a ), the average internal diversity (Avg. int. div.), the proportion of molecules with probability of activity greater than 0.8 (Prop. P a > 0.8), and most importantly, the average internal diversity among samples with probability of activity greater than 0.8. That's the most important column, because it is related with our open problem.

The averages are computed over the set of valid SMILES, whereas the proportions are computed over all the generated SMILES (both valid and invalid).

We compute those quantities for a D2-active set of 8324 molecules from ExCAPE-DB [START_REF] Sun | Excape-db: an integrated large scale dataset facilitating big data analysis in chemogenomics[END_REF]) (which is essentially the training set of the SVM classifier in [START_REF] Olivecrona | Molecular de novo design through deep reinforcement learning[END_REF])) (DRD2), for the output of the Reinforcement Learning model after 30 epochs (RL 30) and 60 epochs (RL 60), and for the output of ORGAN with λ = 0.04 after 30 epochs and 60 epochs (ORGAN-0.04 30, ORGAN-0.04 60) and for λ = 0.5 after 60 epochs (ORGAN-0.5 60). All those outputs have 32k samples.

[TABLE 1 HERE]

The most interesting case is RL after 30 epochs. In this case, we can see that increasing the probability of D2 activity is contradictory with keeping diversity. After 30 epochs, internal diversity is still pretty good overall, even higher than the DRD2 diversity baseline.

However, when we only keep the molecules of interest, with P a > 0.8, internal diversity dramatically drops to vanishingly small levels.

For ORGAN-0.04, results are mostly analogous to RL. We note that at 30 epochs, diversity for P a > 0.8 is 2 orders of magnitude better than RL 30. However, it still remains one order of magnitude lower than the DRD2 baseline, and at 60 epochs, diversity has dropped to levels similar with RL.

For ORGAN-0.5, learning the D2 property still did not start after 60 epochs. The situation is analogous to the Se-qGAN case (λ = 1) described in [START_REF] Guimaraes | Objective-reinforced generative adversarial networks (organ) for sequence generation models[END_REF]): high diversity, but no learning of the objective. In particular, that's why the internal diversity for P a > 0.8 is indetectable: there are only 6 samples satisfying the desired property, among 32k. The intermediate cases between λ = 0.04 and λ = 0.5 are analogous to either of them. It is hard to situate the tipping point, between the cases where training is just slow, and where training will never take off.

Here are 10 samples for ORGAN with λ = 0.04 after 30 epochs, selected such that P a > 0.8 (most diverse case):

CCOCCNC[C@H]1CCCN1CCc1ccsc1 CCCOC[C@H]1Cc2ccccc21 CC[C@H]1CCNCOc2ccccc21 CC[C@H]1CCN(CCc2ccccc2)c1 CCCO[C@@H]1CCN(C)Cc2ccccc21 CCC[C@@H]1CCC[NH+]1CC[C@H]1CCCn1 CC[C@@H]1CCN(CCc2ccccc2)c1 CC[C@H]1CCN(Cc2ccccc2)c1 CCOC1CCN(CCCNCCCc2ccccc2)c1 CCCN1CCO[C@H]1C[C@@H]1CCOc2ccccc21

Druglikeness

In table 2, we show the proportion of valid SMILES output (prop. Valid SMILES), average druglikeness (Avg. L), the average internal diversity (Avg. int. div.), the proportion of molecules with druglikeness greater than 0.8 (Prop. L > 0.8), and most importantly, the average internal diversity among samples with druglikeness greater than 0.8. Again, that's the most important column, because it is related with our challenge.

Again, the total averages are computed over the set of valid SMILES, whereas the proportions are computed over all the generated SMILES (both valid and invalid).

We compute those quantities for the training set ZINC of 15k molecules (ZINC), which serves as a baseline, for the output of the Reinforcement Learning model after 200 epochs (RL 200) and for the output of ORGAN with λ = 0.8 after 200 epochs (ORGAN 200). Those outputs have 6400 samples.

[TABLE 2 HERE]

Results show that ORGAN indeed improves over RL, since it is able to raise internal diversity to detectable levels. However, ORGAN diversity still remains 2 orders of magnitudes lower than ZINC diversity when L > 0.8. ORGAN diversity also remains 3 orders of magnitude lower than the total diversity of ZINC, which corresponds to the level of internal diversity to which most eyes are used to. We conclude that both RL and ORGAN for λ = 0.8 fail to generate diverse molecules for this property.

Here are 10 SMILES samples from ORGAN for λ = 0.8 and 200 epochs:

Cc1ccccc1CCSc1ccccc1C COCCc1ccccc1CCCCCCSC CCCCCCn1cccc1CCCSC COCc1ccccc1CCCc1ccccc1CC CCCC(=O)CCCc1ccccc1CCCc1ccccc1C COCCNC(=O)CCc1ccccc1 CCOC(=O)CCCCc1ccccc1CCN(C)CCCCc1ccccc1C COCCCC(=O)CC(C)CCCCc1ccccc1C CCCC(=O)CSCCC(=O)CCCCC(=O)OC CCC(=O)COCCCCCCC(=O)CCCSC

Conclusion and future work

We conclude that both RL and ORGAN fail to match natural chemical diversity for desired molecules, although ORGAN is slightly better than RL. For future work, ORGAN training can be improved by considering 2 distinct problems:

• The perfect discriminator problem in adversarial training

• The imbalance between different objectives in Reinforcement Learning

The perfect discriminator problem

In ORGAN training, the discriminator D φ quickly becomes perfect: it perfectly distinguishes between training data and generated data. In general, this situation is not very good for adversarial learning [START_REF] Arjovsky | Towards principled methods for training generative adversarial networks[END_REF]. Here, the discriminator still teaches something to the generator. On average, according to the discriminator, the probability for a generated sample to belong to the training set still remains far from 0, although always smaller than 0.5. This probability is transmitted to the generator through the reward function.

However, not being able to 'fool' the discriminator, even in the SeqGAN case of λ = 1 (without any other objective), shows generator weakness: it shows inability to reproduce a plain druglike dataset like ZINC. Training a SeqGAN properly should be a first step towards improving ORGAN.

To achieve this, it might be possible to take a larger generator, to replace the discriminator loss in equation ( 5) with another function (like CramerGAN [START_REF] Bellemare | The cramer distance as a solution to biased wasserstein gradients[END_REF])), and to use one-sided label smoothing (Salimans et al. 2016, p.4) 

Imbalance in multi-objective RL

The main issue is the imbalance between the various objectives in the reward function, a problem occurring also in RL. Multi-objective reinforcement learning is a broad topic (for a survey, see [START_REF] Roijers | A survey of multi-objective sequential decisionmaking[END_REF].

A problem here is that with a weighted sum, the agent always focuses on the easiest objective, and ignores harder ones. Moreover, the relative difficulty between objectives evolves over time. For example, the average probability of D2 activity initially grows exponentially, and so this growth is small when this probability is near 0.

Using time-varying adaptive weights might help. Moreover, those weights might not necessarily be linear: For example, the reward function can be of the form (x λ + y λ ) 1/λ , which converges towards min(x, y) as λ → -∞. Using an objective function of the form min(x, y) focuses the generator on the hard objective (but in our experiments, due to the perfect discriminator problem, it did not work).

Morever, in the reward function, a penalty can be introduced for newly generated molecules that are too similar with the generated molecules already having the desired properties.

In any case, the (varying) relative weights between different objectives must be determined automatically, and not through guesswork. In a drug discovery setting, a molecule must simultaneously satisfy a large number of objectives. For example, for an antipsychotic drug, it is not enough to be active against D2. The molecule must also pass toxicity and druglikeness tests. Moreover, to avoid side-effects, the molecule must not be active with D3, D4, serotonin, or histamine. That's a lot of objectives to include in the reward function.

Finally, there is also further work to improve the definition of internal diversity, in order to exclude trivial solutions (for example, a generative model reproducing the training set can also have high internal diversity). This will facilitate the attribution of financial prizes.

  Let a and b be two molecules, and m a and m b be their Morgan fingerprints (Rogers and Hahn 2010). Their number of common fingerprints is |m a ∩ m b | and their total number of fingerprints is |m a ∪ m b |.

  brings a Character-Aware Neural Language Model (Kim et al. 2016) D φ parameterized by φ. Basically, D φ is a Convolutional Neural Network (CNN) whose output is given to a LSTM. D φ is fed with both training data and data generated by G θ . It plays the role of a discriminator, to distinguish between the two: for a SMILES Y 1:T , the output D φ (Y 1:T ) is the probability that Y 1:T belongs to the training data.

Table 1 :

 1 Experimental results for probability of D2 activity P a

		Prop. Valid SMILES	Avg. P a	Avg. int. div. Prop. P a > 0.8	Avg. int. div. for P a > 0.8
	DRD2	0.996636	0.911519	0.089478	0.876367	0.081972
	RL 30	0.379844	0.160777	0.112864	0.018906	8.65864e -05
	RL 60	0.536	0.389979	0.014994	0.078438	0.000775
	ORGAN-0.04 30	0.425375	0.097810	0.242544	0.013531	0.005826
	ORGAN-0.04 60	0.604406	0.342687	0.028563	0.100969	0.000170
	ORGAN-0.5 60	0.264687	0.006502	0.324884	0.000187	0.0

Table 2 :

 2 Experimental results for Druglikeness L

	.
	The discriminator might also overfit training data. Tak-
	ing a larger training set could help, we took 15k samples

The only difference is that in the definition of(Guimaraes et al. 

2017, p.5), only a random subset of molecules of the training set is considered. For faster computations, we also consider a random subset of the training set (of 3000 samples).2 This reward function is slightly different than the function in[START_REF] Olivecrona | Molecular de novo design through deep reinforcement learning[END_REF], which is: -1 + 2 × P active .
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