Mickaël Duruisseau
email: mickael.duruisseau@cea.fr

Jean-Claude Tarby
email: jean-claude.tarby@univ-lille1.fr

Xavier Le Pallec
email: xavier.le-pallec@univ-lille1.fr

Sébastien Gérard
email: sebastien.gerard@cea.fr

VisUML: Live & Interactive Diagrams

Keywords: Human-centered computing → Human computer interaction (HCI), Graphical user interfaces, Interaction devices, Interaction

A classic Integrated Development Environment (IDE) allows displaying information only with a textual representation. This kind of representation is perfect for the linear aspect of the code, but not eective to represent links between code fragments. Current graphical code representation modules in IDE are suited to apprehend the system from a global point of view. However, the cognitive integration cost of those diagrams is disproportionate related to the elementary coding task.

Our approach considers graphical representation but only with code elements that are parts of the developer's mental model during his programming task. The corresponding cognitive integration of our graphical representation is then less costly and the information that text struggles to display will be clearly explicit. We use UML for this representation because it is a widespread and well-known formalism.

We want to show that dynamic diagrams, whose content is modied and adapted in real-time by monitoring each action of the programmer in the IDE can be of great benet as their contents are perfectly suited to the developer current task. With our live diagrams, we provide to developers an ecient way to navigate through textual and graphical representation.

KEYWORDS

HCI; MDE; Software Engineering; UML; Papyrus; Human-Centered Design

RÉSUMÉ

Les IDE actuels permettent d'acher des informations sous forme de texte. Ce genre de représentation est parfait pour l'aspect linéaire du code, mais est moins ecace pour représenter les liens entre les diérents morceaux du code. Les modules actuellement développés qui achent une représentation graphique du code sont conçus pour appréhender le système d'un point de vue global. Cependant, l'intégration cognitive de ces diagrammes est disproportionnée par rapport à la tâche de programmation.

Notre approche utilise des représentations graphiques contenant uniquement les éléments du code qui font partie du modèle mental du développeur pendant sa tâche de programmation. L'intégration cognitive résultante à nos représentations est donc moins coûteuse et les informations mal représentées par le texte sont plus clairement explicitées. Nous utilisons UML pour ces représentations car c'est un langage connu et répandu.

Nous voulons montrer que des diagrammes dynamiques, dont le contenu est modié et adapté en temps réel à chaque action sur l'IDE du développeur, peuvent être utiles. En eet, leurs contenus sont adaptés à la tâche active du développeur. Avec nos live diagrammes, nous fournissons une façon ecace de naviguer entre le code et les diérentes représentations graphiques.

MOTS-CLEFS

Interaction Homme-Machine; Ingénierie Dirigée par les Modèles; Génie Logiciel; Méta-Modèle; UML; Papyrus; Conception Centrée sur l'Humain

INTRODUCTION

Human-Computer Interaction (HCI) has signicantly evolved in recent years with the appearance of mobile and tactile devices, voice and gesture recognition, augmented and virtual reality, etc. Nowadays, most of the smartphone users know how to interact with a map, using simple interactions like touch, but also some more complex, like swipe or pinch. In the meantime, software practitioners still develop applications only with a keyboard and a mouse.

A-51

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s). IHM '17 , August 28-September 1, 2017, Poitiers, France Furthermore, 'development tools are showing mainly text with (so much) obstinacy' [START_REF] Gîrba | Pervasive software visualizations (keynote)[END_REF] despite some improvements concerning HCI in their IDE, like syntax coloration and auto-completion.

We may consider software visualization tools as an improvement of the HCI, but their place in IDE and their use remain anecdotal. Visualization tools generally help developers to understand the global architecture of the application they are working on or the impact of what they are changing. Development consists mainly in producing code but not dealing with considerations of macroscopic nature. We argue these visualization tools are not focused on the most important and elementary task: programming. We claim that a graphical representation of elements that are currently knitted by a programmer may be more easily accepted.

The rst reason is it can quickly provide information that is less visually explicit in textual code and still relevant for coding. In particular, it may highlight the dierent relations between elements (structural relations or specic execution ow). The second reason is that such representations (the graphical ones) are more suited to mobile and tactile devices (like tablets) than textual code and so, by taking advantage of them, they can provide HCI improvements of IDE.

We have chosen the UML language for the graphical representation because it is a language known and mastered by developers, even if according to dierent surveys [START_REF] Anaby-Tavor | Insights into enterprise conceptual modeling[END_REF][START_REF] Michel | How eective is UML modeling ?[END_REF][START_REF] Petre | UML in practice[END_REF] it is not enough used in rms. This choice was made according to the principle of cognitive integration [START_REF] Daniel | The "Physics" of Notations: Towards a Scientic Basis for Constructing Visual Notations in Software Engineering[END_REF]: adapt to the knowledge of developers. This kind of concern is the heart of the cognitive dimensions [START_REF] Green | Usability Analysis of Visual Programming Environments: a 'cognitive dimensions' framework[END_REF] and we aim to reduce the cognitive charge of the developers. In our case, when switching from a textual code editor to a graphical representation, it is clearly necessary that programmers keep their references, therefore the graphical representation has to be close to their mental model.

VISUML PRESENTATION

VisUML is a live diagramming approach that we designed and that implements this point of view of software visualization. It allow developers to have a live and interactive view of their code.

Once enabled, VisUML renders a live and interactive Class Diagram, shown in Figure 1, that displays classes opened in the IDE, as well as related unopened ones. Easy navigation interactions are implemented:

• Click on a class: switch the active tab to the related le • Click on an attribute: scroll to the associated line and highlight it • Click on a method: same, and update the sequence diagram to display the clicked method. In addition, VisUML also displays a Sequence Diagram, presented in Figure 2, that reect the currently browsed method (in the code), or the clicked one in the Class Diagram. This diagram shows information about the sequential ow of the body of the method. Every element is interactive and a click on it will scroll and highlight the associated line in the IDE. Moreover, a special interaction (currently implemented with an alt+click on a message that refers to a method that can be displayed) allows users to easily navigate between methods in this diagram. In addition to these interaction, a caret listener triggers the update of the sequence diagram when the user's caret is inside a method. Several utility functions are also In this demo we want to show the benets of using live and interactive diagrams. Our scenario will refer to an understanding phase, when the developer must learn how an existing project is structured. Using only VisUML, he will be able to see and navigate in a graphical representation of this project.

A presentation video is available at this address: https://www. youtube.com/watch?v=buyGojmbUpQ. This video shows how the tool works and all the possible interactions that are actually implemented. Since our tool is working both on the IDE and a web page, it is simpler to show the interactions with a movie than with pictures. Finally, an often updated document, is available online: http://these.mickaelduruisseau.fr/VisUML/doc/index.html. It present how to install the plugin, and sum-up the dierent interactions and utility functions.

Figure 1 :

 1 Figure 1: An example of class diagram in VisUML

Figure 2 :

 2 Figure 2: An example of sequence diagram