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EXCEEDINGLY LARGE DEVIATIONS

OF THE TOTALLY ASYMMETRIC EXCLUSION PROCESS

STEFANO OLLA AND LI-CHENG TSAI

Abstract. Consider the Totally Asymmetric Simple Exclusion Process (TASEP) on the integer lattice Z.
We study the functional Large Deviations of the integrated current h(t, x) under the hyperbolic scaling of

space and time by N , i.e., hN (t, ξ) := 1

N
h(Nt,Nξ). As hinted by the asymmetry in the upper- and lower-tail

large deviations of the exponential Last Passage Percolation, the TASEP exhibits two types of deviations.
One type of deviations occur with probability exp(−O(N)), referred to as speed-N ; while the other with
probability exp(−O(N2)), referred to as speed-N2. In this work we study the speed-N2 functional Large
Deviation Principle (LDP) of the TASEP, and establishes (non-matching) large deviation upper and lower
bounds.

1. Introduction

In this article we study the large deviations of two equivalent models, the Corner Growth Model (CGM)
and the Totally Asymmetric Simple Exclusion Process (TASEP). The CGM is a stochastic model of surface
growth in one dimension. The state space

EZ :=
{
f : Z → Z : f(x+ 1)− f(x) ∈ {0, 1}, ∀x ∈ Z

}
(1.1)

consists of Z-valued height profiles defined on the integer lattice Z, with discrete gradient being either 0 or
1. Starting from a given initial condition h(0, ·) = hic(·) ∈ EZ, the process h(t, ·) evolves in t as a Markov
process according to the following mechanism. At each site x ∈ Z sits an independent Poisson clock of
unit rate, and, upon ringing of the clock, the height at x increases by 1 if h(t, x + 1) − h(t, x) = 1 and
h(t, x) − h(t, x − 1) = 0. Otherwise h stays unchanged. On the other hand, the TASEP is an interacting
particle system [Lig05], consisting of indistinguishable particles occupying the half-integer lattice 1

2+Z. Each
particle waits an independent Poisson clock of unit rate, and, upon ringing of the clock, attempts to jump
one step to the left, under the constraint that each site holds at most one particle. With

η(y) =

{
1, if the site y is occupied,
0, if the site y is empty

denoting the occupation variables, the TASEP is a Markov process with state space {(η(y))y∈ 1
2+Z

} =

{0, 1}
1
2+Z. Given a CGM with height process h(t, x), we identify each slope 1 segment of h(t, ·) with a

particle and each slope 0 segment of h(t, ·) with an empty site, i.e.,

h(t, y + 1
2 )− h(t, y − 1

2 ) =: η(t, y); (1.2)

see Figure 1. One readily check that, under such an identification, the resulting particles evolves as the
TASEP. Conversely, given the TASEP, the integrated current

h(t, x) := #
{
particles crossing (x − 1

2 , x+
1
2 ) within [0, t]

}
+ sign(x)

∑

y∈(0,|x|)

η(0, y) (1.3)

defines an EZ-valued process that evolves as the CGM. Associated to a given height profile f ∈ E and x ∈ Z

is the mobility function, defined as

φ(f, x) := (f(x + 1)− f(x))(1 − f(x) + f(x− 1)) = 1{f(x+1)−f(x)=1,f(x)−f(x−1)=0} (1.4)

= η(x+ 1
2 )(1 − η(x− 1

2 )), where η(y) := f(y + 1
2 )− f(y − 1

2 ).
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In the language of the TASEP, φ(f, x) is called the instantaneous current, i.e., the indicator function of
the jump across the bond (x − 1

2 , x + 1
2 ) being allowed under the configuration f. Formally speaking, with

fx := f + 1x denoting the profile obtained by increasing the value of f by 1 at site x, the CGM a Markov
process with state space EZ, characterized by the generator

LF (f) :=
∑

x∈Z

φ(f, x)(F (fx)− F (f)). (1.5)

Given this map between the CGM and TASEP, throughout this article we will operate in both the languages
of surface growths and of particle systems. To avoid redundancy, hereafter we will refer solely to the TASEP
as our working model, and associate the height process h to the TASEP.

Figure 1. The CGM and TASEP

The TASEP is a special case of exclusion processes that is connected to a host of physical phenomena.
In addition to surface growth mentioned previously, the TASEP serves as a simple model of traffic, fluid
and queuing, and is linked to last passage percolation, non-intersecting line ensembles and random matrix
theory. Furthermore, the TASEP owns rich mathematical structures, which has been the ground of intensive
research: to name a few, the exact solvability via Bethe ansatz [Sch97]; the relation to the Robinson–
Schensted–Knuth correspondence [Joh00]; a reaction-diffusion type identity [BS10]; and being an attractive
particle system [Rez91].

Among known results on the TASEP is its hydrodynamic limit. Let N denote a scaling parameter that
tends to ∞, and, for any t ≥ 0 and ξ ∈ R, consider the hyperbolic scaling hN (t, ξ) := 1

N h(Nt,Nξ) of the

height process. Through this article we linearly interpolate hN in the variable ξ ∈ 1
NZ to obtain a process

hN (t, ξ) defined for all ξ ∈ R. It is well-known [Ros81, Rez91, Sep98a] that, as N → ∞, hN converges to a
deterministic function h, given by the unique entropy solution of the integrated, inviscid Burgers equation:

ht = hξ(1− hξ). (1.6)

The limiting equation (1.6), being nonlinear and hyperbolic, exhibits non-differentiability due to the presence
of shock waves. This is in sharp contrast with the diffusive behavior of the symmetric exclusion processes,
which, under the diffusive space time rescaling hN (t, ξ) := 1

N h(N2t, Nξ), converge to the linear heat equation.
A natural question following hydrodynamic limit concerns the corresponding large deviations. At this

level, the TASEP continues to exhibit drastic difference with its reversible counterpart, symmetric exclu-
sion processes. The LDP for symmetric exclusion processes is obtained in [KOV89], and the typical large
deviations have speed N , i.e, of probability exp(−O(N)), and are characterized by solutions of parabolic
conservative PDEs. On the other hand, under the wedge initial condition, one-point large deviations of the
TASEP exhibits asymmetric tails: the lower tail of h(N, 0) has probability exp(−O(N)) while the upper tail
has probability exp(−O(N2)), i.e.,

1

N
logP

(
1
N h(N, 0) < h(1, 0)− α

)
→ I lw(α), α ∈ (0, h(1, 0)), (1.7)

1

N2
logP

(
1
N h(N, 0) > h(1, 0) + α

)
→ Iup(α), α > 0. (1.8)
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The lower tail large deviations with an exact rate function as in (1.7) was obtained in [Sep98a] using coupling
techniques; for a different but closely related model, the complete one-point large deviations as in (1.7)–(1.8)
was obtained [DZ99] using combinatorics tools. These results show that the TASEP in general exhibits
two-levels of deviations, one of speed N and the other of speed N2. We note in the passing that a similar
two-scales behavior is also shown in stochastic scalar conservation laws [Mar10].

The speed-N functional large deviations has been studied by Jensen and Varadhan [Jen00, Var04]. It
is shown therein that, up to probability exp(−O(N)), configurations concentrate around weak, generally
non-entropy, solutions of the Burgers equation (1.6). The rate function in this case essentially measures
how ‘non-entropic’ the given solution is. In more broad terms, the speed-N large deviations of asymmetric
exclusion processes have captured much attentions, partly due to their connection with the Kardar–Parisi–
Zhang universality and their accessibility via Bethe ansatz. In particular, much interest has been surrounding
the problems of open systems with boundaries in contact with stochastic reservoirs, where rich physical
phenomena emerge. We mention [DL98, DLS03, BD06] and the references therein for a non-exhaustive list
of works in these directions.

In this article, we study the speed-N2 functional large deviations that corresponds to the upper tail
in (1.8). These deviations are larger than those considered in [Jen00, Var04], and stretch beyond weak
solutions of the Burgers equation. Furthermore, the speed-N2 deviations studied here have interpretation
in terms of tiling models. As noted in [BCG16], asymmetric simple exclusion processes (and hence the
TASEP) can be obtained as a continuous-time limit of the stochastic Six Vertex Model (6VM). The 6VM is
a model of random tiling on Z

2, with six ice-type tiles, and the stochastic 6VM is specialization where tiles
are updated in a Markov fashion [GS92, BCG16]. Associated to these tiling models are height functions.
Due to the strong geometric constraints among tiles, the height functions exhibit intriguing shapes reflecting
the influence of a prescribed boundary condition. A preliminary step toward understanding these shapes
is to establish the corresponding variational problem via the speed-N2 large deviations. For the 6VM at
the free fermion point, or equivalently the dimer model, much progress has been obtained thanks to the
determinantal structure. In particular, the speed-N2 LDP of the dimer model is established in [CKP01].

1.1. Statement of the Result. We begin by setting up the configuration space and topology. Consider
the space

E :=
{
f ∈ C(R) : 0 ≤ f(ξ)− f(ζ) ≤ ξ − ζ, ∀ζ ≤ ξ ∈ R

}

=
{
f ∈ C(R) : Lipschitz, f ′ ∈ [0, 1] a.e.

} (1.9)

of Lipschitz functions with [0, 1]-valued derivatives. Hereafter, ‘a.e.’ abbreviates ‘almost everywhere/every
with respect to Lebesgue measure’. Indeed, for any height profile f ∈ EZ, the corresponding scaled profile
fN (ξ) = 1

N f(Nξ) is E -valued (after the prescribed linear interpolation). Endow the E with the uniform
topology over compact subsets of R. More explicitly, writing ‖f‖C[−r,r] := sup[−r,r] |f | for the uniform norm

restricted to [−r, r], on C(R) ⊃ E we define the following metric

dC(R)(f
1, f2) :=

∞∑

k=1

2−k
(
‖f1 − f2‖C[−k,k] ∧ 1

)
. (1.10)

Having defined the configuration space E and its topology, we turn to the path space. To avoid technical
sophistication regarding topology, we fix a finite time horizon [0, T ], T ∈ (0,∞) hereafter. Adopt the standard
notation D([0, T ], E ) for the space of right-continuous-with-left-limits paths t 7→ h(t, ·) ∈ E . We define the
following path space:

D :=
{
h ∈ D([0, T ], E ) : h(s, ξ) ≤ h(t, ξ), ∀s ≤ t ∈ T, ξ ∈ R}. (1.11)

Throughout this article, we endow the space D with Skorokhod’s J1 topology.
We say a function h ∈ D has (first order) derivatives if, for some Borel measurable functions h1, h2 :

[0, T ]× R ∈ [0,∞),

h(t′, ξ)− h(t, ξ) =

ˆ t′

t

h1(s, ξ)ds, for all t < t′ ∈ [0, T ], for a.e. ξ ∈ R, (1.12)

h(t, ξ′)− h(t, ξ) =

ˆ ξ′

ξ

h2(t, ζ)dζ, for all ξ < ξ′ ∈ R, for a.e. t ∈ [0, T ]. (1.13)
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For a given h ∈ D , if such functions h1, h2 exist, they must be unique up to sets of Lebesgue measure zero.
We hence let h1 and h2 be denoted by ht and hξ, respectively, and refer to them as the t- and ξ-derivatives
of h. Set

Dd := {h ∈ D : h has derivatives in the sense of (1.12)–(1.13)}. (1.14)

Referring back to (1.9), we see that each h ∈ D automatically has ξ-derivative in the sense of (1.13), so

Dd = {h ∈ D : h has t-derivatives in the sense of (1.12)}. (1.15)

Recall from (1.3) that h has the interpretation of integrated current of particles. Under such an interpretation,
ht ∈ [0,∞) corresponds to the (instantaneous) flux, and hξ ∈ [0, 1] represents the (local) density of particles.

Next, consider the large deviation rate function of Poisson variables:

ψ(λ|u) := λ log(λu )− (λ− u). (1.16)

More precisely, recall from [Sep98b, (4.5)] that, for XN ∼ Pois(Nu), we have

lim
ε→0

lim
N→∞

1

N
logP

(
XN ∈ (−Nε+Nλ,Nλ+Nε)

)
= −ψ(λ|u).

When u = 1, we write ψ(λ) := ψ(λ|1) to simplify notations. Consider the truncated function ψ(λ) :=
ψ(λ ∨ 1) = ψ(λ)1{λ≥1}. We define

J1 : [0,∞)× [0, 1] → [0,∞], J1(κ, ρ) :=
(
ρ ∧ (1 − ρ)

)
ψ
(

κ
ρ∧(1−ρ)

)
, (1.17)

J2 : [0,∞)× [0, 1] → [0,∞], J2(κ, ρ) := ρ(1− ρ)ψ
(

κ
ρ(1−ρ)

)
, (1.18)

under the convention that J i(κ, 0) := limρ↓0 J
i(κ, ρ) and J i(κ, 1) := limρ↑1 J

i(κ, ρ). More explicitly,
J i(κ, 0)|κ>0 := ∞, J i(κ, 1)|κ>0 := ∞ and J i(0, 0) := 0, J i(0, 1) := 0. To simplify notations, for pro-
cesses such as h(t, x), h(t, ξ), in the sequel we often write h(t) := h(t, ·), h(t) := h(t, ·) for the corresponding
fixed-time profiles. Hereafter throughout this particle, we fix a macroscopic initial condition hic ∈ E . Under
these notations, we define

I1(h) :=





ˆ T

0

ˆ

R

J1(ht, hξ) dtdξ, if h ∈ Dd and h(0) = hic,

∞, if h /∈ Dd or h(0) 6= hic,

(1.19)

I2(h) :=





ˆ T

0

ˆ

R

J2(ht, hξ) dtdξ, if h ∈ Dd and h(0) = hic,

∞, if h /∈ Dd or h(0) 6= hic.

(1.20)

With the macroscopic initial condition hic fixed as in the preceding, we fix further a deterministic micro-
scopic initial condition hic ∈ EZ of the TASEP such that, with hicN ( xN ) := 1

N hic(x) (and linearly interpolated
onto R),

lim
N→∞

dC(R)(h
ic
N , h

ic) = 0. (1.21)

Remark 1.1. We allow hic to depend on N as long as (1.21) holds, but omit such a dependence in the
notation. This is to avoid confusion with subscripts in N , such as hicN , which denote scaled processes.

With the initial condition hic ∈ EZ being fixed, throughout this article we let h(t, x) and hN (t, ξ) =
1
N h(Nt,Nξ) denote the micro- and macroscopic height processes starting from hic, and write PN for the law
of the TASEP. The following is our main result:

Theorem 1.2. Let hic ∈ D and hN be given as in the preceding.

(a) For any given closed C ⊂ D ,

lim sup
N→∞

1

N2
logPN (hN ∈ C) ≤ − inf

h∈C
I1(h). (1.22)
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(b) For any given open O ⊂ D , we have

lim inf
N→∞

1

N2
logPN (hN ∈ O) ≥ − inf

h∈O
I2(h). (1.23)

1.2. A heuristic of Theorem 1.2(b). Here we give a heuristic of Theorem 1.2(b). As mentioned previously,
the TASEP is a degeneration of the stochastic 6VM. The latter, as a tiling model, enjoys the Gibbs
conditioning property. That is, given a subset A ⊂ Z

2, conditioned on the tiles along the boundary of A, the
tiling within A is independent of the tiling outside of A. Such a property strongly suggests a rate function of
the form I(h) =

´

Jdtdξ. The TASEP, being a degeneration of the stochastic 6VM, should also possess this
form of rate function. Since the TASEP is invariant under height shift h 7→ h+ α, it is reasonable to expect
that the rate density J depends on h only through its derivatives at a given location (t, ξ). Furthermore,
as the rate density is a local quantity, we anticipate that, among all the derivatives, only the leading orders
ht, hξ contribute to J . To summarize, we expect the rate function to be of the form

I(h) =

ˆ T

0

ˆ

R

J(ht, hξ)dtdξ.

Next, consider a liner deviation h∗(t, ξ) = α + κt + ρξ, and consider all possible probability laws QN on
D such that, under QN , the resulting process hN approximates h∗. The rate I(h∗) should then be the
infimum of the relative entropy 1

N2H(QN |PN ) among all such QN . Put it differently, we seek the most
entropy-cost-effective fashion of perturbing the law of the TASEP, under the constraint that the resulting
process hN approximates h∗.

Let λ := κ
ρ(1−ρ) . The linear function h

∗ is an entropy solution of the equation h∗t = λh∗ξ(1−h
∗
ξ). This is the

Burgers equation (1.6) with a time-rescaling h(t, ξ) 7→ h(λt, ξ). In view of the aforementioned hydrodynamic
limit result of the TASEP, One possible candidate of Qλ

N , is to change the underlying Poisson clocks to have
rate λ instead of unity. Equivalently, Qλ

N is obtained by rescaling entire process h(t) 7→ h(λt) by a factor λ.
This being the case, hN necessarily converges to h∗ under Qλ

N . We next calculate the cost of Qλ
N . Recall

the definition of the mobility function φ(f, x) from (1.4). Roughly speaking, the cost per site x ∈ Z per unit
amount of time is ψ(λ)φ(h(Nt), x)dt. This is accounted by the rate ψ(λ) of perturbing each Poisson clock,
modulated by the mobility function φ(h(Nt), x), since disallowed jumps are irrelevant. Since, under Qλ

N ,
we expect hN to approximate the targeted function h∗, referring back to the expression (1.4), we informally
approximate φ(h(Nt), x) by (1 − h∗ξ)h

∗
ξ . Such an informal calculation gives

1

N2
H(Qλ

N |PN ) ≈

ˆ ˆ

Ĵ2(κ, ρ)dtdξ, Ĵ2(κ, ρ) := h∗ξ(1 − h∗ξ)ψ(λ) = ρ(1− ρ)ψ( κ
ρ(1−ρ) ).

Of course, the last integral is infinite, but our discussion here focuses on the density Ĵ2(κ, ρ).

The aforementioned Qλ
N being a candidate for the law QN , we must have J(κ, ρ) ≤ Ĵ2(κ, ρ). As it turns

out, for λ < 1, we can device another choice of law such that the cost is zero. To see this, consider an axillary
parameter δ ↓ 0. Our goal is to maintain a constant flux κ, lower than the hydrodynamic value ρ(1 − ρ),
together with the constant density ρ, in the most cost-effective fashion. Instead of slowing down the Poisson
clocks uniformly by λ, let us slow down only in windows Wi of macroscopic width δ2, every distance δ(1− δ)
apart; see Figure 2. We refer to this as the ‘intermittent construction’. Even though slow-down is only

Wi rate= λ rate= 1

δ2 δ(1 − δ)

Figure 2. The Intermittent construction. The ticks represent the scaled lattice 1
N (12 + Z)

where particles reside.

enforced on the Wi’s, since particles cannot jump ahead of each other, this construction achieves an overall
constant flux κ through blocking. More explicitly, it is conceivable that, under the intermittent construction,
particles exhibit the macroscopic stationary density profile as depicted in Figure 3. In between the windows
Wi, the density takes two values ρ1, ρ2, with ρ1 > ρ > ρ2, as a result of blocking. Even though the density
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varies among the values ρ, ρ1, ρ2, referring to Figure 3, we see that as δ ↓ 0 the density profile converges to
ρ in an average sense. As for the cost, since the region {Wi}i has fraction δ, as δ ↓ 0 the cost in entropy per
unit length (in ξ ∈ R) goes to zero. This suggests that the intermittent construction gives approximately
zero cost for λ < 1.

ρ ρ

ρ1

ρ2

λ λrate= 1

δ2 δ2

r1 r2

δ(1 − δ)

Figure 3. Expected macroscopic density under the intermittent construction. Here ρ1 >
ρ2 ∈ [0, 1] are the unique solutions of the equation ρi(1 − ρi) = κ, and r1, r2 are such that
r1 + r2 = δ(1 − δ), r1ρ1 + r2ρ2 = (r1 + r2)ρ.

Combining the preceding discussions for the cases λ ≥ 1 and λ < 1, we have then

J(κ, ρ) ≤

{
(1− ρ)ρψ( κ

ρ(1−ρ) ), if λ ≥ 1

0 , if λ < 1

}
= (1− ρ)ρψ( κ

ρ(1−ρ) ) = J2(κ, ρ).

This heuristic gives an upper bound J2 on J . On the other hand, for the lower bound, we are only able to
prove J1 ≤ J , obtained by bounding the mobility by ρ ∧ (1 − ρ). The bounds J1, J2 do not match, and
finding the actual rate function remains an open question.
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discussions. LCT thanks Ivan Corwin, Amir Dembo, Fraydoun Rezakhanlou, Timo Seppäläinen and S. R.
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by a Junior Fellow award from the Simons Foundation, and by the NSF through DMS-1712575.

Outline. In Section 2 we establish some useful properties of the functions Ii and J i. The lower semi-
continuity is not used in the rest of the article, but we include it as a useful property for future reference.
In Section 3, we prove Theorem 1.2(a) and (b) assuming Propositions 3.4 and 3.5, respectively. These
propositions concern bounds on relative entropies. We settle Proposition 3.4 in Section 4, and then devote
the rest of the article, Sections 5–7, to showing Proposition 3.5.

Convention. Throughout this article, x, i, j, k, ℓ,m, n ∈ Z (and similarly for x1, i
′, etc.) denote integers,

and ξ, ζ ∈ R denote real numbers. The letters s, t always denote time variables, with either s, t ∈ [0, T ] or
[0, NT ]; We use h, g, etc, to denote un-scaled, TASEP height processes, with hN , gN being the corresponding
scaled processes. The same convention applies also for the initial conditions hic, gic, hicN , gicN of these processes.

2. Properties of Functions Ii and J i

Recall that ψ(λ) := ψ(1∧λ) denote the truncated rate function for Poisson variables. Under this conven-

tion, we still have that λ 7→ ψ(λ) is convex, and that ψ
′
(λ) = log(λ ∨ 1).

The functions J1, J2, defined in (1.17)–(1.18), take infinite value at ρ = 0, 1. This property posts undesir-
able technical issues for our analysis, and hence we consider the following truncations. Let Φ1(ρ) := ρ∧(1−ρ)
and Φ2(ρ) := ρ(1− ρ). For small a ∈ (0, 12 ), define the following truncations

Φ1
a(ρ) := (1 − a2)Φ1(ρ) + a2, (2.1)

Φ2
a(ρ) :=





ρ(1− ρ) , when ρ ∈ [a, 1− a],
a(1− a) + (1− 2a)(ρ− a) , when ρ ∈ [0, a),
a(1− a) + (2a− 1)(ρ− (1− a)), when ρ ∈ (1− a, 1].

(2.2)
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From this construction, it is clear that Φia ≥ Φi, Φia ≥ a2 > 0 and that ρ 7→ Φia(ρ) is concave. We then define

J1
a (κ, ρ) := Φ1

a(ρ)ψ
(

κ
Φ1

a(ρ)

)
, (2.3)

J2
a (κ, ρ) := Φ2

a(ρ)ψ
(

κ
Φ2

a(ρ)

)
. (2.4)

A straightforward differentiation d
dξ (ξψ(

κ
ξ )) = −(κξ − 1)+ ≤ 0shows that

ξ 7→ ξψ(κξ ) is nonincreasing, ∀ fixed κ ∈ [0,∞). (2.5)

so in particular J1
a(κ, ρ) ≤ a2ψ(κa−2) <∞.

Lemma 2.1. The functions J i : [0,∞) × [0, 1] → [0,∞] and J ia : [0,∞) × [0, 1] → [0,∞) are convex, for
i = 1, 2.

Proof. It is straightforward to verify that

J i(κ, ρ) = sup
α≥0

{
κα− Φi(ρ)(eα − 1)

}
, J ia(κ, ρ) = sup

α≥0

{
κα− Φia(ρ)(e

α − 1)
}
.

Using these expressions and the concavity of ρ 7→ Φi(ρ) and ρ 7→ Φia(ρ) gives the desired result. �

We next establish a few technical results. To setup notations, let {σni := iT
2n }

2n

i=0 be an equally spaced
partition of [0, T ], dyadic in n. Define, for h ∈ D , the following quantities

Ĩn(h, ξ) :=

2n∑

i=1

T

2n
ψ
(h(σni , ξ)− h(σni−1, ξ)

σni − σni−1

)
, (2.6)

Ĩ(h) := sup
n

ˆ

R

Ĩn(h, ξ)dξ. (2.7)

Lemma 2.2. For any h ∈ D , if Ĩ(h) <∞ then h ∈ Dd.

Proof. Recall that, we say a function f : [0, T ] → R is absolutely continuous if, for any given ε > 0, there
exists δ > 0 such that for any finite sequence of pairwise disjoint subintervals {[s0, t0], [s1t1], . . . , [sn, tn]} of
[0, T ] with

∑
i(ti−si) ≤ δ, we always have

∑n
i=1 |f(ti)−f(si)| ≤ ε. Recall from (1.15) that, to show h ∈ Dd,

it suffices to show the existence of t-derivate of h, in the sense of (1.12). This, by standard theory of real
analysis, is equivalent to showing

t 7→ h(t, ξ) is absolutely continuous , for a.e. ξ ∈ R. (2.8)

With Ĩn(h, ξ) defined in (2.7), by the convexity of λ 7→ ψ(λ), we have that

Ĩn(h, ξ) ≤ Ĩm(h, ξ), ∀n < m. (2.9)

Fix an arbitrary radius r < ∞. Alongside with the partition {σni }
2n

i=0 of time, we consider also the equally

spaced, dyadic partition {ξnj := jr
2n }

2n

j=−2n of [−r, r]. Let Unj := [ξnj−1, ξ
n
j ), j = −2n, . . . , 2n − 1, denote

the intervals associated with the partition. Fixing arbitrary 0 < ε < 1, we inductively construct sets
U(n) ⊂ [−r, r] as follows. Set U(0) = ∅, and, for n ≥ 1, let

U(n) :=
⋃{

Unj : sup
ξ∈Un

j \U(n−1)

Ĩn(h, ξ) ≥ ε−1
}

(2.10)

denote the union of intervals Unj on which the function Ĩn(h, ξ) exceeds the threshold ε−1, excluding those

points from the previous iteration U(n−1). Since h(t) ∈ E , we have that |h(t, ξ1)−h(t, ξ2)| ≤ |ξ1−ξ2| ≤ r2−n,
for all ξ1, ξ2 ∈ Unj . This gives

∣∣∣
h(σni , ξ1)− h(σni−1, ξ1)

σni − σni−1

−
h(σni , ξ2)− h(σni−1, ξ2)

σni − σni−1

∣∣∣ ≤ r2−n+1

σni − σni−1

=
2r

T
, ∀ξ1, ξ2 ∈ Unj . (2.11)

That is, the argument of ψ(·) in (2.6) differs by at most 2r
T as ξ varies among Unj . With ψ

′
(λ) = log(λ ∨ 1),

it is straightforward to verify that, for all λ1 < λ2 ∈ [0,∞) with |λ2 − λ1| ≤
2r
T , we have

∣∣ψ(λ2)− ψ(λ1)| ≤
2r
T log((λ1 ∧ λ2 +

2r
T ) ∨ 1) ≤ c

(
ψ(λ1) ∧ ψ(λ2) + 1),
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for some constant c <∞ depending only on 2r
T . In particular, for such λ1, λ2, the maximal and minimal of

ψ(λ1) and ψ(λ2) are comparable in the following sense:

ψ(λ1) ∨ ψ(λ2) ≤ (c+ 1)
(
ψ(λ1) ∧ ψ(λ2)

)
+ c. (2.12)

In view of (2.11), we apply (2.12) with λi =
h(σn

i ,ξ1)−h(σ
n
i−1,ξi)

σn
i −σn

i−1
, for all ξ1, ξ2 ∈ Uni , to obtain

inf
ξ∈Un

j

Ĩn(h, ξ) ≥
1

c+ 1

(
sup
ξ∈Un

j

Ĩn(h, ξ)
)
− 1 ≥

ε−1

c+ 1
− 1, ∀Unj ⊂ U(n). (2.13)

Sum the inequality (2.13) over all Unj ⊂ U(n), and multiply both sides by |U(n)|. We then obtain
´

U(n) Ĩn(h, ξ)dξ ≥ ( ε
−1

c+1 − 1)|U(n)|. From this and (2.9), we further deduce

( ε−1

c+ 1
− 1

)
|U(n)| ≤

ˆ

U(n)

Ĩn(h, ξ)dξ ≤

ˆ

U(n)

Ĩm(ξ)dξ, ∀n ≤ m. (2.14)

Referring back to (2.10), the sets U(1),U(2), . . . are disjoint. Under this property, we let F(m) := ∪mn=1U(m)
denote the union of the first m sets, and sum (2.14) over n = 1, . . . ,m to obtain

( ε−1

c+ 1
− 1

)
|F(m)| ≤

ˆ

F(m)

Ĩm(ξ)dξ ≤ Ĩ(h). (2.15)

Set F∗ := ∪∞
n=1U(n). Letting m→ ∞ in (2.15) gives |F∗| ≤ Ĩ(h)( ε

−1

c+1 − 1). Now, with

F∗ ⊃ {ξ ∈ [r,−r) : supn Ĩn(h, ξ) ≥ ε−1}, further letting ε ↓ 0, we arrive at
∣∣∣
{
ξ ∈ [r,−r) : sup

n
Ĩn(h, ξ) = ∞

}∣∣∣ = 0. (2.16)

With the properties ψ ≥ 0 and limλ→∞
ψ(λ)
λ = ∞, it is standard to show that supn Ĩn(h, ξ) <∞ implies

the absolute continuity of t 7→ h(t, ξ). This together with (2.16) shows that t 7→ h(t, ξ) is absolutely
continuous for a.e. ξ ∈ [−r, r). As r < ∞ is arbitrary, taking a sequence rn ↑ ∞ concludes the desired
result (2.8). �

Lemma 2.3. For all h ∈ D , we have Ĩ(h) ≤ Ij(h), j = 1, 2.

Proof. Assume without lost of generality h ∈ Dd and h(0) = hic, otherwise Ĩ(h) = ∞. Since Φj(ρ) ≤ 1 for
all ρ ∈ [0, 1], by (2.5),

Jj(ht, hξ) = Φi(hξ)ψ(
ht

Φj(hξ)
) ≥ ξψ(ht

ξ )|ξ=1 = ψ(ht). (2.17)

Integrating this inequality over [0, T ]× R gives
ˆ

R

( ˆ T

0

ψ(ht)dt
)
dξ ≤ Ij(h). (2.18)

By the convexity of λ 7→ ψ(λ), we have that

T

2n
ψ
(h(σni , ξ)− h(σni−1, ξ)

σni − σni−1

)
≤

ˆ σn
i

σn
i−1

ψ(ht(t, ξ))dt. (2.19)

Summing the inequality (2.19) over i = 1, . . . , 2n, gives Ĩn(h, ξ) ≤
´ T

0
ψ(ht)dt. Integrate this inequality over

ξ ∈ R, combine the result with (2.18), and take the supremum over n. We thus conclude the desired result

Ĩ(h) := supn
´

R
Ĩn(h, ξ)dξ ≤ Ij(h). �

The next result concerns local approximation of the derivatives ht, hξ of a given deviation h ∈ Dd. To
setup the notations, for given r <∞ and ℓ <∞, we consider a partition

Rℓ(r) :=
{
� = [ (i−1)T

ℓ , iTℓ ]× [ (j−1)r
ℓ , jrℓ ] : i = 1, . . . , ℓ, j = −ℓ+ 1, . . . , ℓ

}
(2.20)

of [0, T ]× [−r, r] into equal rectangles. Write
ffl

A
fdtdξ := 1

|A|

´

A
fdtdξ for the average over a set A.
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Lemma 2.4. For any fixed h ∈ Dd, we have that

lim sup
(r,a)→(∞,0)

lim sup
ℓ→∞

{ ∑

�∈Rℓ(r)

|�| J1
a

(
ffl

�
htdtdξ ,

ffl

�
hξdtdξ

)}
≥

ˆ T

0

ˆ

R

J1(ht, hξ)dtdξ. (2.21)

Proof. Fix arbitrary κ∗, r < ∞, a > 0 and ε > 0. Recall the definition of the truncated rate density J1
a

from (2.3). We begin by proving the following statement: there exists ℓ∗ <∞ such that, for all ℓ ≥ ℓ∗,
∣∣⋃{� ∈ Rℓ(r) : E�(h) ≥ ε}

∣∣ ≤ ε, (2.22)

where E�(h) :=
∣∣∣J1
a

(
κ∗ ∧

ffl

�
htdtdξ ,

ffl

�
hξdtdξ

)
−

 

�

J1
a(κ∗ ∧ ht, hξ)dtdξ

∣∣∣. (2.23)

Given that J1
a(κ∗ ∧ ·, ·) is bounded and Borel-measurable, the statement (2.22) follows from standard

real analysis, similarly to the proof of [CKP01, Lemma 2.2]. We given a formal proof here for the sake of
completeness. In addition to ℓ∗, we consider an axillary parameter ℓ∗∗ . Both ℓ∗ and ℓ∗∗ will be specified
in the sequel. Write ht ∧ κ∗ =: hκ∗

t to simplify notations. Regard the pair of derivatives F := (hκ∗

t , hξ)
as a measurable map F : [0, T ] × [−r, r] → [0, κ∗] × [0, 1]. Partition the range [0, κ∗] × [0, 1] of F into
subsets U1, . . . , Un, each of diameter at most 1

ℓ∗∗
. We let Vi := F−1(Ui) be the preimage of Ui. With

Bb(t, ξ) ⊂ R
2 denoting the ball of radius b centered at (t, ξ), by the theory of measure density (see, e.g.,

[Rud87, Section 7.12]), we have that

lim
b↓0

|Bb(t, ξ) ∩ Vi|

|Bb(t, ξ)|
= 1 for a.e. (t, ξ) ∈ Vi, i = 1, . . . , n.

This being the case, there exists a compact set Ki ⊂ Vi, with |Ki| ≥ |Vi| −
1

2ℓ∗
, such that

lim
b↓0

|Bb(t, ξ) ∩ Vi|

|Ba(t, ξ)|
= 1 for every (t, ξ) ∈ Ki.

From this and the compactness of Ki, we further constructed a finite union of open balls Oi ⊃ Ki, such that

|Oi| ≥ |Ki| −
1

2ℓ∗
≥ |Vi| −

1
ℓ∗
. (2.24)

Now, for a fix Oi, we classify rectangles � ∈ Rℓ(r) that intersects with Oi (i.e., �∩Oi 6= ∅) into three types:

• Desired rectangles: � ⊂ Oi with |� ∩ Vi| ≥ (1− 1
ℓ∗∗

)|�|;

• Undesired rectangles: � ⊂ Oi with |� ∩ Vi| < (1 − 1
ℓ∗∗

)|�|;

• Boundary rectangles: � ∩Oi 6= ∅ and � ∩Oci 6= ∅.

Let Ai
des, A

i
und and Ai

bdy denote the respective sets of desired, undesired, and boundary rectangles with

respect to Oi, and let Aides, A
i
und and Aibdy denote the areas (i.e., Lebesgue measure) of the union of

rectangles in Ai
des, A

i
und and Ai

bdy, respectively. First, for each of the desired rectangle � ∈ Ai
des,

|Vi ∩�| ≥ (1− 1
ℓ∗∗

)|�|, (2.25)

|hκ∗

t (t, ξ) − hκ∗

t (t′, ξ′)|, |hξ(t, ξ)− hξ(t
′, ξ′)| ≤ 1

ℓ∗∗
, ∀(t, ξ), (t′, ξ′) ∈ Vi ∩�. (2.26)

Recall the definition of E�(h) from (2.23). Since hκ∗

t and hξ are bounded, and since (κ, ρ) 7→ J1
a (κ, ρ) is

continuous, for some large enough ℓ∗∗ ∈ N, the condition (2.25)–(2.26) implies

E�(h) ≤ ε, ∀� ∈
n⋃

i=1

Ai
des. (2.27)

Next, since each Oi is finite union of open balls, and since the rectangles� ∈ Rℓ(r) in Rℓ(r) shrinks uniformly
as ℓ→ ∞, there exists ℓ∗ ∈ Z ∩ [3nℓ∗∗,∞) such that

n∑

i=1

Aibdy ≤
ε

3ℓ∗∗
, ∀ℓ ≥ ℓ∗. (2.28)

Moving onto undesirable rectangles. From the preceding definition of undesirable rectangles, we have
Aiund(1 −

1
ℓ∗∗

) +Aides +Aibdy ≥ |Vi|. Combining this with (2.24) gives

Aiund(1 −
1
ℓ∗∗

) +Aides +Aibdy ≥ |Oi| −
1
ℓ∗

≥ (Aiund +Aides)−
1
ℓ∗
. (2.29)
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Rearrange terms in (2.29) and sum over i to obtain

n∑

i=1

Aiund ≤
n∑

i=1

ℓ∗∗

( 1

ℓ∗
+Aibdy

)
≤
nℓ∗
ℓ∗∗

+
ε

3
≤

2ε

3
. (2.30)

Combining (2.27)–(2.28) and (2.30), we conclude (2.22).
Having established (2.22), we now let ℓ→ ∞ in (2.22) to get

lim sup
ℓ→∞

∣∣∣∣∣
∑

�∈Rℓ(r)

|�| J1
a

(
κ∗ ∧

ffl

�
htdtdξ ,

ffl

�
hξdtdξ

)
−

ˆ T

0

ˆ r

−r

J1
a(κ∗ ∧ ht, hξ)dtdξ

∣∣∣∣∣

≤ 2rT ε+ ‖J1
a(κ∗ ∧ ·, ·)‖∞ε.

As ε > 0 is arbitrary, further letting ε ↓ 0 gives

lim
ℓ→∞

{ ∑

�∈Rℓ(r)

|�| J1
a

(
κ∗ ∧

ffl

�
htdtdξ ,

ffl

�
hξdtdξ

)}
=

ˆ T

0

ˆ r

−r

J1
a (κ∗ ∧ ht, hξ)dtdξ. (2.31)

Indeed, J1
a (ht ∧ κ∗, hξ) increases as κ

∗ increases. We then remove κ∗ ∧ · on the l.h.s. of (2.31) to make the
resulting quantity larger, and let κ∗ → ∞ using the monotone convergence theorem on the r.h.s. This gives

lim sup
ℓ→∞

{ ∑

�∈Rℓ(r)

|�| J1
a

(
ffl

�
htdtdξ ,

ffl

�
hξdtdξ

)}
≥

ˆ T

0

ˆ r

−r

J1
a (ht, hξ)dtdξ.

Further letting (r, a) → (∞, 0), using the monotone convergence theorem on the r.h.s. (J1
a increases as a

decrease), we conclude the desired result (2.21). �

3. Proof of Theorem 1.2

3.1. Upper bound. We begin by establishing the exponential tightness of PN . To this end, consider, for
h ∈ D , n, r <∞, the following modulo of continuity

w′(h, n, r) := sup
i=1,...,n

‖h( iTn )− h( (i−1)T
n )‖C[−r,r]. (3.1)

Note that for h ∈ D , we have h( iTn , ξ) − h( (i−1)T
n , ξ) = |h( iTn , ξ) − h( (i−1)T

n , ξ)|. The main step of showing
exponential tightness is the following.

Lemma 3.1. For each fixed ε > 0 and r <∞, we have that

lim sup
n→∞

lim sup
N→∞

1

N2
logPN

(
w′(hN , n, r) ≥ ε

)
= −∞. (3.2)

Proof. Write ti :=
iT
n to simplify notations. Our goal is to bound the following probability:

pN := PN

( n⋃

i=1

⋃
x
N

∈[−r,r]

{
hN (ti,

x
N )− hN (ti−1,

x
N ) ≥ ε

})
. (3.3)

Let m := ⌈ 4r
ε ⌉ and partition [−r, r] into subintervals Uj := [ r(j−1)

m , rjm ], j = 1 −m, . . . ,m. Since hN (t) ∈ E ,

for each x, x′ such that x
N ,

x′

N ∈ Uj , we have
∣∣(hN (ti,

x
N )− hN (ti−1,

x
N )

)
−
(
hN (ti,

x′

N )− hN (ti−1,
x′

N )
)∣∣ ≤ 2| xN − x′

N | ≤ 2r
m ≤ ε

2 .

Consequently, if h(ti,
x
N )− h(ti−1,

x
N ) ≥ ε for some x

N ∈ Uj , then h(ti,
x′

N )− h(ti−1,
x′

N ) ≥ ε
2 for all x′

N ∈ Uj .
This gives

pN ≤ PN

( n⋃

i=1

m⋃

j=1−m

(⋃

Uj

{
hN(ti,

x
N )− hN (ti−1,

x
N ) ≥ ε

}))

≤
n∑

i=1

m∑

j=1−m

PN

(⋂

Uj

{
hN (ti,

x
N )− hN (ti−1,

x
N ) ≥ ε

2

})
. (3.4)
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Under the law PN , the condition hN (ti,
x
N )− hN (ti−1,

x
N ) ≥ ε

2 forces the underlying Poisson clock at site x

to tick at least N ε
2 times in a time interval of length NT

n . Using this in (3.4) gives

pN ≤ n
m∑

j=1−m

P(XN ≥ N ε
2 )

#(Uj∩
Z

N
),

where XN ∼ Pois(NTn ). Since Uj is an interval of length r
m , m := ⌈ 4r

ε ⌉, we necessarily have #(Uj∩
Z

N ) ≥ εN
5 ,

for all N large enough. This yields

pN ≤ 2mnP
(
XN ≥ N ε

2

) εN
5 . (3.5)

Recall from (1.16) that ψ(λ|u) denotes the large deviation rate function for Poisson variables. In particular,
limN→∞

1
N logPN (XN ≥ N ε

2 ) = −ψ( ε2 |
T
n ). Using this in (3.5) gives

lim sup
N→∞

1

N2
log pN ≤ −

ε

5
ψ
(
ε
2

∣∣T
n

)
. (3.6)

Now, combining (3.3) and (3.6) gives

lim sup
N→∞

1

N2
logPN (w′(hN , n, r) ≥ ε) ≤ −

ε

5
ψ
(
ε
2

∣∣T
n

)
.

The last expression tends to −∞ as n→ ∞. This concludes the desired result . �

Given Lemma 3.1, the exponential tightness follows by standard argument, as follows.

Proposition 3.2. Given any b <∞, there exists a compact set K ⊂ D such that

lim sup
N→∞

1

N2
logPN (hN /∈ K) ≤ −b. (3.7)

Proof. Define, for h ∈ D([0, T ], C(R)), the modulo of oscillation as

w(h, δ) := inf
{ti}

max
i

sup
s∈[ti−1,ti)

dC(R)(h(s), h(t)), (3.8)

where the infimum goes over all partitions {0 = t0 < t1 < . . . < tn = T } of [0, T ] such that ti − ti−1 ≥
δ, i = 1, . . . , n. Note that w(h, δ) decreases as δ decreases. Under these notations, recall from [EK09,
Theorem 3.6.3] that A ⊂ D([0, T ], C(R)) is precompact if:

(1) there exists compact K′ ⊂ C(R) such that h(t) ∈ K′, ∀t ∈ [0, T ], h ∈ A;
(2) For each h ∈ A, limδ↓0 w(h, δ) = limn→∞ w(h, Tn ) = 0.

The condition (1) holds automatically for any A ⊂ D because E is already a compact subset of C(R).
In (3.8), take the equally the spaced partition {0 < T

n < . . . < T } we obtain that, for h ∈ D and k <∞,

w(h, Tn ) ≤ max
i=1,...,n

‖f( (i−1)T
n )− f( iTn )‖C[−k,k] + 2−k = w′(h, n, k) + 2−k. (3.9)

For each fixed k <∞, using Lemma 3.1 with ε = 2−k to bound the term w′(h, n, k) in (3.9) gives

lim sup
n→∞

lim sup
N→∞

1

N2
logPN

(
w(hN ,

T
n ) ≥ 2−k+1

)
= −∞.

Fix further b <∞. We then obtain n∗(b, k), N∗(b, k) <∞, depending only on b, k, such that

1

N2
logPN

(
w(hN ,

T
n ) ≥ 2−k+1

)
< −kb, ∀n ≥ n∗(b, k), N ≥ N∗(b, k). (3.10)

Further, for each N ∈ {1, . . . , N∗(b, k)}, it is straightforward to show that limδ↓0 PN (w(hN , δ) ≥ 2−k+1) = 0.
Hence, by making n∗(b, k) larger in (3.10) if necessary, the inequality (3.10) actually holds for all N ≥ 1, i.e.,

1

N2
logPN

(
w(hN ,

T
n ) ≥ 2−k+1

)
< −kb, ∀n ≥ n∗(b, k), N ≥ 1. (3.11)

Now let A := ∩∞
k=1{h : w(h, T

n∗(b,k)
) ≥ 2−k+1}. By the previously stated criteria (1)–(2), the set A is

precompact. Rewriting (3.11) as PN (w(hN ,
T

n∗(b,k)
) ≥ 2−k+1) ≤ e−kbN

2

and taking the union bound over

k ≥ 1, we obtain PN (Ac) ≤ c(b)e−bN
2

, for some constant c(b) <∞ depending only on b. This concludes (3.7)
for K := A. �
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We next prepare a lemma that allows us to ignore discontinuous deviations g in proving Theorem 1.2(a).

Lemma 3.3. Given any b < ∞ and any g ∈ D \ C([0, T ], C(R)), i.e., discontinuous g, there exists a
neighborhood O of g, i.e., an open set with g ∈ O, such that

lim sup
N→∞

1

N2
logPN (hN ∈ O) ≤ −b. (3.12)

Proof. Recall that, Skorokhod’s J1-topology is induced from the following metric

dS(g, h) := sup
v

{(
sup
t∈[0,T ]

|v(t) − t|
)
∨
(

sup
t∈[0,T ]

dC(R)(g(t), (h ◦ v)(t))
)}
. (3.13)

Here the supremum goes over all v : [0, T ] → [0, T ] that is bijective, strictly increasing and continuous.
Given g ∈ D \ C([0, T ], C(R)), there exists t ∈ (0, T ], ξ ∈ R and ε0 > 0 such that g(t, ξ) − g(t−, ξ) ≥ ε0.

From the expression (3.13) of the Skorohod metric dS(·, ·), we see that dS(h, g) < δ implies h
(
(t+δ)∧T, ξ

)
≥

g(t, ξ)− δ and h
(
(t− δ) ∨ 0, ξ

)
≤ g(t, ξ) + δ. The last two conditions gives

w′(h, 2δ, |ξ|) ≥ g(t, ξ)− g(t−, ξ)− 2δ ≥ ε0 − 2δ.

Equivalent,

{h : dS(h, g) < δ} ⊂ {w′(h, 2δ) ≥ ε0 − 2δ}. (3.14)

Now, for any given b <∞, by Lemma 3.1 there exists some small enough δ > 0 such that

lim sup
N→∞

1

N2
logPN

(
w′(hN , 2δ, |ξ|) ≥ ε0 − 2δ

)
≤ −b. (3.15)

Combining (3.14)–(3.15), we see that (3.12) holds for O := {h : dS(h, g) < δ}. �

We now begin the proof of Theorem 1.2(a). The main ingredient is Proposition 3.4, which we state in
the following. To setup notations, give a continuous deviation g ∈ D ∩ C([0, T ], E ), we define the following
tubular set around g:

Ua,r(g) :=
{
h ∈ D : sup

t∈[0,T ]

‖h(t)− g(t)‖C[−r,r] < a
}
. (3.16)

For generic aN ↓ 0 and rN ↑ ∞, we consider the following conditioned law:

QN :=
1

PN (UaN ,rN (g))
PN |UaN,rN

(g). (3.17)

Recall that, for probability laws Q,P , the relative entropy of Q with respect to P is defined as H(Q|P ) :=
EQ(log

dQ
dP ) if Q≪ P ; and H(Q|P ) := −∞ otherwise.

Proposition 3.4. Fix a continuous deviation g ∈ D ∩ C([0, T ], E ), and let {QN}N and UaN ,rN (g) be as
in (3.17), with generic aN ↓ 0 and rN ↑ ∞. Then

− lim sup
N→∞

1

N2
logPN (hN ∈ UaN ,rN (g)) = lim inf

N→∞

1

N2
H(QN |PN ) ≥ I1(g). (3.18)

Proposition 3.4 is proven in Section 4 in the following. Assuming this result here, we proceed to complete
the proof of Theorem 1.2(a).

Proof of Theorem 1.2(a). Recall from (3.13) that dS denotes Skorokhod’s metric. Throughout this proof we

write Bb(h) := {h̃ ∈ D : dS(h, h̃) < b} for the open ball of radius b centered at a given h. First, given the
exponential tightness from Proposition 3.2, it suffices to prove the upper bound (1.22) for compact C. Fix

a compact C ⊂ D . For each given radius b > 0, let {Bb(hbi)}
n(b)
i=1 ⊂ D be a finite cover of C that consists of

open balls of radius b. Choose a sequence bN ↓ 0 in such a way that 1
N2 logn(bN ) → 0, and write hbNi := hNi

to simplify notations. We then have

lim sup
N→∞

1

N2
logPN (C) ≤ lim sup

N→∞

1

N2
log

( n(bB)∑

i=1

PN (hN ∈ BbN (h
N
i ))

)

≤ lim sup
N→∞

n(bN )
max
i=1

1

N2
logPN (hN ∈ BbN (h

N
i )). (3.19)
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· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

τ

b

Figure 4. The triangulation Σ(τ, b)

In (3.19), pass to a subsequences NM and iM that achieves the limit, and write h̃M := hNM

iM
and b̃M := bNM

to simply notations. As C is compact, the subsequence {h̃M}∞M=1 has a limit point g ∈ C. Hence, by refining

the subsequences, we assume without lost of generality h̃M → g, as M → ∞.
Consider first the case where g is continuous, i.e., g ∈ C([0, T ], E ). For such g, converges to g under the

J1-topology is equivalent to convergence under the uniform topology. This being the case, there exist aN ↓ 0

and rN ↑ ∞ such that, with Ua,r(g) defined in (3.16), Bb̃M (h̃M ) ⊂ UaNM
,rNM

(g), for all M . This gives

lim sup
N→∞

n(bN )
max
i=1

1

N2
logPN (hN ∈ BbN (h

N
i )) = lim

M→∞

1

N2
M

logPN (hMN
∈ Bb̃M (h̃M ))

≤ lim sup
N→∞

1

N2
logPN (hN ∈ UaN ,rN (g)).

The desired upper bound (1.22) thus follows from Proposition 3.4.
For the case of a discontinuous g, fix arbitrary b <∞. By Lemma 3.3 there exists a neighborhood O of g

such that (3.12) holds. With h̃M → g and b̃M → 0, we have Bb̃M (h̃M ) ⊂ O, for all M large enough. Hence

lim sup
N→∞

n(bN )
max
i=1

1

N2
logPN (BbN (hNi )) ≤ lim sup

N→∞

1

N2
log(O) ≤ −b.

Letting b→ ∞ gives the desired result (1.22). �

3.2. Lower bound. We begin by setting up notations and conventions. In the following, in addition to
the process hN with initial condition hicN as in (1.21), we will also consider processes with other initial
conditions. We use different notations to distinguish these processes, e.g., gN with initial condition gicN .
The initial conditions considered in the following are deterministic. This being the case, we couple all the
processes with different initial conditions together by the basic coupling (see, for example, [Lig13]). That
is, all the processes are driven by a common set of Poisson clocks. Abusing notations, we write PN the joint
law of all the processes with distinct initial conditions, and write Pg

N for the marginal law of a given process
g. It is straightforward to verify that the basic coupling preserves order, i.e.,

if h(0, x) ≥ h(0, x), ∀x ∈ Z, then h(t, x) ≥ h(t, x), ∀t ∈ [0, NT ], x ∈ Z, (3.20)

and that height processes are shift-invariant

if h1(0) = h2(0) + k, then h1(t) = h2(t) + k, ∀t ∈ [0, NT ]. (3.21)

In the following we will often consider partition of subsets of [0, T ]× R. We adopt the convention that
the t-axis is vertical, while the ξ-axis is horizontal. The direction going into larger/smaller t is referred to
as upper/lower, which the direction going to larger/smaller ξ is referred to as right/left. For a given τ = T

ℓ ,
ℓ ∈ N, we let Σ(τ, b) denote the triangulation of [0, T ]×R as depicted in Figure 4. Each triangle △ ∈ Σ(τ, b)
has a vertical edge of length τ , and horizontal edge of length b, and a hypotenuse going upper-right-lower-left.
We say a function h ∈ C([0, T ]× R) is Σ(τ, b)-piecewise linear if h is linear (i.e., ∇h is constant) on each
△ ∈ Σ(τ, b).
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Recall from (3.16) that Ua,r(h) denotes a tubular set around a given deviation h. The main ingredient of
the proof is the following proposition.

Proposition 3.5. Fix ε∗ > 0, r∗ < ∞; τ, b such that T
τ ,

r∗
b ∈ N; and a D-valued, Σ(τ, b)-piecewise linear

deviation g such that

0 < sup
[0,T ]×R

gt <∞, (3.22)

0 < inf
[0,T ]×R

gξ ≤ sup
[0,T ]×R

gξ < 1, (3.23)

Write gic := g(0). Given a TASEP height process gN , with an initial condition gic satisfying

dC(R)(g
ic

N , g
ic) −→ 0, as N → ∞, (3.24)

there exists a probability law QN on D , supported on the trajectories of gN , such that

lim
N→∞

QN

(
gN ∈ Uε∗,r∗(g)

)
= 1, (3.25)

sup
N

EQN

( 1

N2
log

dQN

dPg
N

)2

<∞, (3.26)

lim sup
N→∞

1

N2
H(QN |Pg

N ) <

ˆ T

0

ˆ r∗

−r∗

J2(gt, gξ)dtdξ +

ˆ T

0

ˆ

r∗≤|ξ|≤r∗
ψ
( gt
gξ(1− gξ)

)
dtdξ, (3.27)

where r∗ is defined in terms of r∗ and g as

r∗ := r∗ + r∗⌈
Tλ
r∗

⌉, (3.28)

λ := sup
[0,T ]×R

gt
gξ(1− gξ)

∈ (0,∞). (3.29)

Proposition 3.5 is proven in Section 5–7 in the following. Here we assume this result, and proceed to complete
the proof of Theorem 1.2(b). To this end, we first prepare a few technical results. First, using standard
change-of-measure techniques, we have the following consequence of Proposition 3.5:

Proposition 3.5*. Let gN , g, ε∗, r∗, r
∗ be as in Proposition 3.5. We have

lim inf
N→∞

1

N2
logPN

(
gN ∈ Uε∗,r∗(g)

)
> −

ˆ T

0

ˆ

R

J2(gt, gξ)dtdξ +

ˆ T

0

ˆ

r∗≤|ξ|≤r∗
ψ
( gt
gξ(1 − gξ)

)
dtdξ + ε∗.

(3.30)

Proof. Let {QN}N be as in Proposition 3.5, and write U := Uε∗,r∗(g) to simply notations. Changing measures
from PN to QN , we write PN (gN ∈ U) as

PN (gN ∈ U) = EQN

(
1U exp

(
− log

dQN

dPg
N

))
.

Apply Jensen’s inequality
´

F (X)dµ ≥ (
´

dµ)F (
´

Xdµ
´

dµ
) with the convex function F (ξ) = exp(−ξ), and with

X = log dQN

dPg

N

and µ = EQN
(1U·). We then obtain

PN (gN ∈ U) ≥ QN (U) exp
(
−

1

QN (U)
EQN

(
1U log

dQN

dPg
N

))

= QN (U) exp
(
−

1

QN (U)
H(QN |P

g
N ) +

1

QN (U)
EQN

(
1Uc log

dQN

dPg
N

))
.

(3.31)

Take 1
N2 log(·) on both sides of (3.31), and let N → ∞. We have

lim inf
N→∞

1

N2
logPN (gN ∈ U)

≥ lim inf
N→∞

( 1

N2
logQN (U) +

1

QN (U)

−1

N2
H(QN |P

g
N ) +

1

QN (U)
EQN

(
1Uc

1

N2
log

dQN

dPg
N

))
. (3.32)
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With (3.26) and EQN
(Uc) → 0, we have that EQN

(1Uc
1
N2 log

dQN

dPg
N

) → 0. Using this in (3.32) gives

lim inf
N→∞

1

N2
logPN (gN ∈ U) ≥ lim inf

N→∞

( 1

N2
logQN (U) +

1

QN (U)

−1

N2
H(QN |P

g
N )

)
. (3.33)

Now, in (3.33), using (3.25) to replace each QN (U) with 1, and then using (3.27) to take limit of the last
term, we obtain the desired result (3.30). �

The next Lemma allows us to approximate h∗ ∈ D with I2(h∗) <∞ with a piecewise linear g of the form
considered in Proposition 3.5.

Lemma 3.6. Fix a, ε∗ > 0, r0 < ∞, and a deviation h∗ ∈ D such that I2(h∗) < ∞. There exist r∗ ≥ r′∗ ∈
[r0,∞), ℓ∗ ∈ N, and a Σ( Tℓ∗ ,

r∗
ℓ )-piecewise linear function g ∈ D , such that

sup
[0,T ]×[−r′∗,r

′
∗]

|g − h∗| < a, (3.34)

ˆ T

0

ˆ r∗

−r∗

J2(gt, gξ)dtdξ < I2(h∗) + ε∗, (3.35)

ˆ T

0

ˆ

r∗≤|ξ|≤r∗
ψ
( gt
gξ(1− gξ)

)
dtdξ < ε∗, (3.36)

and satisfies (3.22)–(3.23), and

g(0, r′∗) >
(

sup
[0,T ]×[−r0,r0]

g
)
+
a

5
, (3.37)

g(0,−r′∗) + r′∗ >
(

sup
[0,T ]×[−r0,r0]

(g(t, ξ)− ξ)
)
+
a

5
, (3.38)

where r∗ ≥ r∗ is defined in terms of r∗ and g as in (3.28)–(3.29).

Remark 3.7. Indeed, Σ(Tℓ ,
r′∗
ℓ )-piecewise linear functions have derivatives everywhere except along the

edges of the underlying triangulation. Slightly abusing notations, the supremum and infimum in (3.22)–
(3.23) neglect a set of zero Lebesgue measure where ∇g is undefined. We adopt this convention also in the
following.

Remark 3.8. Here we explain the role of this lemma and the conditions (3.22)–(3.23), (3.34)–(3.38) therein.
The idea behind Lemma 3.6 is to approximate a generic h∗ with a specific type of deviation g, with various
properties that facilitates the subsequent analysis. Indeed, (3.34) allows us to approximate the deviation
h∗ with g, and (3.35)–(3.36) ensure the corresponding cost does not increase, up to an error of ε∗. The
conditions (3.22)–(3.23) assert that (∇g) is bounded away from the boundary of (κ, ρ) ∈ [0,∞) × [0, 1]. In
particular, the resulting rate density J2(gt, gξ) is uniformly bounded. The purpose of having (3.37)–(3.38)
is to incorporate a localization result from Lemma 3.9 in following.
Proof.
Step 0, some properties of h∗. Fix a > 0, r0 < ∞ and h∗ ∈ D with I2(h∗) < ∞. Note that for such h∗

we must have h∗(0) = hic. Before starting the proof, let us first prepare a few useful properties of h∗. Since
hic ∈ D , ξ 7→ hic(ξ) is nondecreasing and ξ 7→ hic(ξ)− ξ is nonincreasing. We let

α+ := lim
ξ→∞

hic(ξ) = sup
R

hic ∈ R ∪ {∞}, α− := lim
ξ→−∞

(hic(ξ)− ξ) = sup
ξ∈R

(hic(ξ) − ξ) ∈ R ∪ {∞}.

Under the current assumption I2(h∗) <∞, we claim that

α+ = sup
[0,T ]×R

h∗, (3.39)

α− = sup
[0,T ]×R

(h∗(t, ξ)− ξ), (3.40)

sup
ξ∈R

(h∗(T, ξ)− h∗(0, ξ)) <∞. (3.41)
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To see why (3.39) should hold, assume the contrary: h∗(t0, ξ0) = α > α+, for some t0 ∈ (0, T ], ξ0 ∈ R. Since
h∗(t0) ∈ E , we necessarily have that h∗(t0, ξ)|ξ≥ξ0 ≥ α. Using (2.17), we write

I2(h∗) ≥

ˆ ∞

ξ0

ˆ t0

0

J2(h∗t , h
∗
ξ)dtdξ ≥

ˆ ∞

ξ0

ˆ t0

0

ψ(h∗t )dtdξ.

Further utilizing the convexity of λ 7→ ψ(λ) gives

I2(h∗) ≥

ˆ ∞

ξ0

t0ψ
( t0

0

h∗t dt
)
dξ ≥

ˆ ∞

ξ0

t0ψ
(α− α+

t0

)
dξ = ∞.

This contradicts with the assumption I2(h∗) < ∞. Hence (3.39) must hold. Likewise, if (3.40) fails, i.e.,
h∗(t0, ξ0) − ξ0 = α′ > α−, we must have (h∗(t0, ξ) − ξ)|ξ≤ξ0 ≥ α′. The last inequality gives (h∗(t0, ξ) −
hic(ξ))|ξ≤ξ0 ≥ α′ − α− > 0. From here a contradiction is derived by similar calculation to the preceding.
Hence (3.40) must also hold. Turning to (3.41), for each ξ0 ∈ R, using h∗(T ), h∗(0) ∈ E we write

(
h∗(T, ξ0)− h∗(0, ξ0)

)
− 1 ≤ inf

|ξ−ξ0|≤
1
2

(
h∗(T, ξ)− h∗(0, ξ)

)
. (3.42)

Recall the definitions of Ĩn(h, ξ) and Ĩ(h) from (2.6)–(2.7). With limλ→∞ ψ(λ)λ−1 = ∞, we have that

λ ≤ ψ(λ) + c0, ∀λ ∈ [0,∞), for some universal constant c0 < ∞. Using this for λ = h∗(T,ξ)−h∗(0,ξ)
T on the

r.h.s. of (3.42), we obtain

(
h∗(T, ξ0)− h∗(0, ξ0)

)
− 1− Tc0 ≤

ˆ

|ξ−ξ0|≤
1
2

Tψ
(h∗(T, ξ)− h∗(0, ξ)

T

)
dξ

≤

ˆ

R

Tψ
(h∗(T, ξ)− h∗(0, ξ)

T

)
dξ =

ˆ

R

Ĩ1(h
∗, ξ)dξ. (3.43)

By (2.7) and Lemma 2.3, the last expression in (3.43) is bounded by Ĩ(h∗), which is further bounded by
I2(h∗). Namely,

(
h∗(T, ξ0) − h∗(0, ξ0)

)
− 1 − Tc0 ≤ I2(h∗). Under the assumption I2(h∗) < ∞, taking the

supremum over ξ0 ∈ R gives (3.41).
Step 1, tilting. Our goal is to construct a suitable g that satisfies all the prescribed conditions. The
construction is done in three steps. Starting with h∗, in each step we perform a surgery on the function from
the previous step. Here, in the first step, we ‘tilt’ h∗ to obtain g̃, described as follows.

Set γ0 := supt∈[0,T ] |h
∗(t, 0)| < ∞, and let r′ > (8a) ∨ r0 ∨ (2aγ0) be an auxiliary parameter. We tilt the

function h∗ to get

g̃r
′

(t, ξ) := (1− a
2r′ )h

∗(t, ξ) + a
4r′ ξ. (3.44)

Such a tilting ensures the ξ-derivatives are bounded away from 0 and 1. More precisely,

g̃r
′

ξ = (1 − a
2r′ )h

∗
ξ +

a
4r′ ∈ [ a4r′ , 1−

a
4r′ ], (3.45)

Also, g̃r
′

t = (1− a
2r′ )h

∗
t ≤ h∗t , and

sup
[0,T ]×[−r0,r0]

|g̃r
′

− h∗| −→ 0, as r′ → ∞. (3.46)

Furthermore, evaluating g̃r
′

at (t, ξ) = (0,±r′) gives

g̃r
′

(0, r′) =
(
1− a

2r′

)
hic(r′) + a

4 −→ α+ + a
4 , as r′ → ∞, (3.47)

g̃r
′

(0,−r′) + r′ =
(
1− a

2r′

)
(hic(−r′) + r′) + a

4 −→ α− + a
4 , as r′ → ∞. (3.48)

We now list a few consequence of the prescribed properties of g̃r
′

. Recall that Φ2(ρ) := ρ(1 − ρ).

From (3.45), it is straightforward to verify that |g̃r
′

ξ − 1
2 | ≤ |h∗ξ −

1
2 |, so in particular Φ2(g̃r

′

ξ ) ≥ Φ2(h∗ξ).

Combining this with (2.5), together with g̃r
′

t ≤ h∗t , we obtain

J2(g̃r
′

t , g̃
r′

ξ ) ≤ J2(h∗t , h
∗
ξ). (3.49)

Next, with |g̃r
′

(t, ξ)− h∗(t, ξ)| ≤ a
2r′ |h

∗(t, ξ)|+ a|ξ|
4r′ , |h

∗(t, ξ)| ≤ γ0 + |ξ|, and r′ > 2aγ0 , we have that

sup
[0,T ]×[−r′,r′]

|g̃r
′

− h∗| ≤
a

2r′
(γ0 + r′) +

ar′

4r′
< a. (3.50)
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Further, combining (3.47) with (3.39) and (3.46), we have that

lim inf
r′→∞

(
g̃r

′

(0, r′)− sup
[0,T ]×[−r0,r0]

g̃r
′
)
≥ α+ +

a

4
− sup

[0,T ]×[−r0,r0]

h∗ ≥
a

4
. (3.51)

Similarly, (3.48), (3.40) and (3.46) gives

lim inf
r′→∞

(
g̃r

′

(0,−r′) + r′ −
(

sup
[0,T ]×[−r0,r0]

g̃r
′

(t, ξ) + ξ
))

≥
a

4
. (3.52)

In view of (3.50)–(3.52). we now fix r′ = r′∗, and write g̃r
′
∗ =: g̃, for large enough r′∗ so that

sup
[0,T ]×[−r′∗,r

′
∗]

|g̃ − h∗| < a, (3.53)

g̃(0, r′∗) >
(

sup
[0,T ]×[−r0,r0]

g̃
)
−
a

5
. (3.54)

g̃(0,−r′∗) + r′∗ >
(

sup
[0,T ]×[−r0,r0]

(
g̃(t, ξ)− ξ

))
−
a

5
. (3.55)

Step 2, mollification. Having constructed g̃, we next mollify g̃ to obtain a smooth function ĝ. To prepare
for this, let us first fix the threshold r∗. From (3.49),we have that

ˆ T

0

ˆ

|ξ|≥r

J2(g̃t, g̃ξ)dtdξ ≤

ˆ T

0

ˆ

|ξ|≥r

J2(h∗t , h
∗
ξ)dtdξ −→ 0, as r → ∞.

This being the case, we fix r∗ ≥ r′∗ such that
´ T

0

´

|ξ|≥r∗
J2(g̃t, g̃ξ)dtdξ < ( a

4r′∗
)2ε∗.

Fix a mollifier ω ∈ C∞(R× R), i.e., nonnegative, supported on the unit ball, integrates to unity. Extend
g̃ to R×R by setting g̃(t, ξ)|t<0 := g(0, ξ) and g̃(t, ξ)|t>T := g(T, ξ). Under this setup, for δ > 0, we mollify
g̃, and then tilt in t, to obtain

ĝδ(t, ξ) :=

ˆ

R2

g̃(s, ζ) ω( t−sδ , ξ−ζδ )dsdζδ2 + δt. (3.56)

With g̃ being continuous on [0, T ]× [−r′∗, r
′
∗], the properties (3.53)–(3.55) hold also for ĝδ in place of g̃, for

all δ small enough. Further, the convexity of (κ, ρ) 7→ J2(κ, ρ) gives
ˆ T

0

ˆ r∗

−r∗

J2(ĝδt , ĝ
δ
ξ)dtdξ ≤

ˆ T+δ

−δ

ˆ

|ξ|≤r∗+δ

J2(g̃t + δ, g̃ξ)dtdξ −→

ˆ T

0

ˆ r∗

−r∗

J2(g̃t, g̃ξ)dtdξ ≤ I2(h∗),

ˆ T

0

ˆ

−|ξ|≥r∗

J2(ĝδt , ĝ
δ
ξ)dtdξ ≤

ˆ T+δ

−δ

ˆ

|ξ|≥r∗+δ

J2(g̃t + δ, g̃ξ)dtdξ −→

ˆ T

0

ˆ

−|ξ|≥r∗

J2(g̃t, g̃ξ)dtdξ <
( a

4r′∗

)2

ε∗,

as δ ↓ 0. In view of these properties, we now fix small enough δ = δ∗ > 0, set ĝ := ĝδ∗ , so that

sup
[0,T ]×[−r′∗,r

′
∗]

|ĝ − h∗| < a, (3.57)

ˆ T

0

ˆ r∗

−r∗

J2(ĝt, ĝξ)dtdξ < I2(h∗) + ε∗, (3.58)

ˆ T

0

ˆ

|ξ|≥r∗

J2(ĝt, ĝξ)dtdξ <
( a

4r′∗

)2

ε∗, (3.59)

ĝ(0, r′∗) >
(

sup
[0,T ]×[−r0,r0]

ĝ
)
−
a

5
. (3.60)

ĝ(0,−r′∗) + r′∗ >
(

sup
[0,T ]×[−r0,r0]

(
ĝ(t, ξ)− ξ

))
−
a

5
. (3.61)

Further, since ĝξ is an average of g̃ξ, from (3.45) we have that

ĝξ ∈ [ a4r′∗
, 1− a

4r′∗
]. (3.62)

As for the t-derivative, we claim that, for some fixed constant c∗ <∞ (depending on δ∗),

δ∗ ≤ sup
[0,T ]×R

ĝt ≤ c∗. (3.63)
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Indeed, the tilting in (3.56) ensures ĝt ≥ δ∗. To show the upper bound, we use (3.56) to write

ĝt(t, ξ) =

ˆ

R2

g̃(s, ζ)ωt(
t−s
δ∗
, ξ−ζδ∗ )dsdζδ3∗

=

ˆ

R2

(
g̃(s, ζ)− g̃(0, ζ)

)
ωt(

t−s
δ∗
, ξ−ζδ∗ )dsdζδ3∗

. (3.64)

Under the convention g̃(t, ξ)|t<0 := g(0, ξ) and g̃(t, ξ)|t>T := g(T, ξ), referring back to (3.44), we have that

sup
t∈R

(
sup
ξ∈R

|g̃(t, ξ)− g̃(0, ξ)|
)
= sup

ξ∈R

(g̃(T, ξ)− g̃(0, ξ)) =
(
1−

a

4r′∗

)
sup
ξ∈R

(h∗(T, ξ)− h∗(0, ξ)).

The last quantity, by (3.41), is finite, so in particular |g̃(t, ξ) − g̃(0, ξ)| is uniformly bounded. Using this
bound in (3.64) gives sup[0,T ]×R

ĝt <∞. This concludes (3.63). Also, combining (3.62) with (3.59), we have
that

ˆ T

0

ˆ

|ξ|≥r∗

ψ
( ĝt
ĝξ(1− ĝξ)

)
dtdξ =

ˆ T

0

ˆ

|ξ|≥r∗

1

ĝξ(1− ĝξ)
J2(ĝt, ĝξ)dtdξ < ε∗. (3.65)

Step 3, linear interpolation. Given the smooth function ĝ, we are now ready to construct the piecewise
linear g. Similarly to the preceding, the construction involves an auxiliary parameter, ℓ ∈ N, which will

be fixed toward the end of the proof. For ℓ ∈ N, consider the triangulation Σ(Tℓ ,
r′∗
ℓ ). Define a Σ(Tℓ ,

r′∗
ℓ )-

piecewise linear function gℓ by letting gℓ = g̃ at each of the vertices of the triangle △ ∈ Σ(Tℓ ,
r′∗
ℓ ), and then

linearly interpolating within △.
Similarly to (3.28)–(3.29), we let

r∗,ℓ := r∗ + r∗

⌈ T
r∗

(
sup

[0,T ]×R

gℓt
gℓξ(1 − gℓξ)

)⌉
.

Since each △ has a vertical edge and a horizontal edge, and since gℓ is the linear interpolation of g̃ on △,
the (constant) derivatives gℓt |△◦ and gℓξ|△◦ are the averages of ĝt and ĝξ along the vertical and horizontal

edges of △, respectively. This together with (3.62)–(3.63) gives

gℓt ∈ [δ∗, c∗], ĝξ ∈ [ a4r′∗
, 1− a

4r′∗
]. (3.66)

Using this bound (3.66) on the derivatives, we have

r∗,ℓ ≤ r∗ + r∗

⌈ T
r∗

(
sup

[0,T ]×R

c∗
(a/4r′∗)

2

)⌉
:= r̂∗. (3.67)

Now, since ĝ ∈ C∞([0, T ]× R) is smooth, we necessarily have that

lim
ℓ→∞

sup
[0,T ]×[−r′∗,r

′
∗]

|gℓ − ĝ| = 0, lim
ℓ→∞

sup
[0,T ]×[−r̂∗,r̂∗]

(|gℓt − ĝt|+ |gℓξ − ĝξ|) = 0. (3.68)

In view of (3.66)–(3.68), and the properties (3.57)–(3.58), (3.60)–(3.61), (3.65) that g̃ enjoys, we fix some
large enough ℓ = ℓ∗, so that g := gℓ∗ satisfies all the desired conditions (3.34)–(3.38) and (3.22)–(3.23). �

The next lemma allows us to localize the dependence on initial conditions. Hereafter, we adopt the
convention inf ∅ := ∞ and sup ∅ := −∞. To setup notations, define, for f ∈ E , b, x0 ∈ Z,

k+(f, b, x0) := inf{x ∈ Z ∩ [x0,∞) : f(x) ≥ b}, (3.69a)

k−(f, b, x0) := sup{x ∈ Z ∩ (−∞, x0] : f(x)− x ≥ b− x0}, (3.69b)

V(f, b, x0) := [k−(f, b, x0), k
+(f, b, x0)] ∩ Z. (3.69c)

Lemma 3.9. Let h1 denote a generic, pre-scale TASEP height process, with initial condition h1(0) = f ∈ EZ,
and let b, x0 ∈ Z, t0 ∈ [0, NT ].

(a) The event {h1(t, x0) < b} depends on the initial condition f only through its restriction onto V(f, b, x0).
That is, given any other process h2 such that h2(0)|V(f,b,x0) = f|V(f,b,x0), (under the prescribed basic
coupling) we have

{
h1(t0, x0) < b

}
=

{
h2(t0, x0) < b

}
.

(b) Similarly, the event {h1(t0, x0) > b} dependent on f only through its restriction onto V(f, b, x0).
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Proof. The proof of Part(a) and (b) are similar, so we consider only the former. The proof goes through the
correspondence between surface growths and particle systems. More precisely, let

Yn(t) := inf{y ∈ 1
2 + Z : h1(t, y + 1

2 ) ≥ n}, n ∈ Z. (3.70)

Referring back the correspondence (1.2)–(1.3) between height profiles and particle configurations, one readily
verifies that {. . . < Y1(t) < Y2(t) < . . .} gives the trajectories of the corresponding particles. Let f∗ :=
limx→∞ f(x) ∈ Z ∪ {∞} and f∗ := limx→−∞ f(x) ∈ Z ∪ {−∞}. Note that, by definition, Yn(t) ≡ ∞, ∀n > f∗

and Yn(t) ≡ −∞, ∀n ≤ f∗, so we allow phantom particles to be placed at ±∞ if f∗ < ∞ or f∗ > −∞. In
addition to particles, we also consider the trajectories of holes (i.e., empty sites). Let

Ỹn(t) := sup{y ∈ 1
2 + Z : h1(t, y − 1

2 )− (y − 1
2 ) ≥ n}, n ∈ Z. (3.71)

The holes {. . . < Ỹ2(t) < Ỹ1(t) < . . .} evolve under the reverse dynamics of the particles: each Ỹn attempts
to jump to the right in continuous time, under the exclusion rule.

Fix x0, b ∈ Z, t0 ∈ [0, NT ]. Under the preceding setup, we have

{h1(t0, x0) < b} = {Yb(t0) > x0} = {Ỹb−x0(t0) < x0}.

Also, from (3.69)–(3.71), it is straightforward to verify that

Yb(0) +
1
2 = k+(f, b, x0), Ỹb−x0(0)−

1
2 = k−(f, b, x0). (3.72)

Indeed, since particles in TASEP always jumps to the left, all the particles {Yn}n>b to the right of Yb do not
affect the motion of Yb. In particular, the event {Yb(t0) > x0} is independent of {Yn(0)}n>b. Translating this
statement into the language of height function using (3.72), we conclude that {h1(t0, x0) < b} is independent
of f(x)|x>k+(f,b,x0). The same argument applied to holes in places of particles shows that {h1(t0, x0) < b} is
independent of f(x)|x<k−(f,b,x0). �

We now prove Theorem 1.2(b).

Proof of Theorem 1.2(b). Indeed, the lower bound (1.23), is equivalent to the following statement

lim inf
N→∞

1

N2
logPN (hN ∈ O) ≥ −I2(h∗), ∀h∗ ∈ O ⊂ D , O open. (3.73)

To show (3.73), we fix h∗ ∈ O ⊂ D hereafter, and assume without lost of generality I2(h∗) < ∞. Under

such an assumption, h∗ is necessarily continuous (otherwise it is straightforward to show that Ĩ(h∗) = ∞).
This being the case, there exist a > 0 and r0 <∞ such that U3a,r′∗(h

∗) ⊂ O. Hence it suffices to show

lim inf
N→∞

1

N2
logPN

(
hN ∈ U3a,r0(h

∗)
)
≥ −I2(h∗). (3.74)

The step is to approximate h∗ with g of the form described in Proposition 3.5. Fix ε∗ ∈ (0, a7 ]. We apply

Lemma 3.6 with the prescribed a, r0, ε∗ and h∗, to obtain a D-valued, Σ( Tℓ∗ ,
r∗
ℓ∗
)-piecewise linear function g

that satisfies (3.34)–(3.38), together with ℓ∗ ∈ N and r∗, r
′
0 ≥ r0. Write gic := g(0) Next, we discretize gic

to obtain gic(x) := ⌊Ng( xN )⌋. Indeed, with gic ∈ E , this defines a EZ-valued (see (1.1)) profile. Also, one

readily check that the corresponding scaled gicN profile does converge to gic, i.e.,

lim
N→∞

dC(R)(g
ic
N , g

ic) = 0. (3.75)

Let gN (t, ξ) denote the TASEP height process starting from gicN . We apply Proposition 3.5* with the
prescribed ε∗ ≤ a

5 , r∗ ≥ r0 and g to get

lim inf
N→∞

1

N2
logPN

(
gN ∈ U a

5 ,r∗
(g)

)
≥ −

ˆ T

0

ˆ

R

J2(gt, gξ)dtdξ −

ˆ T

0

ˆ

r∗≤|ξ|≤r∗
ψ
( gt
gξ(1− gξ)

)
dtdξ − ε∗.

Further use (3.35)–(3.36) to bound the r.h.s. by −I2(h∗)− 3ε∗ from below, we obtain

lim inf
N→∞

1

N2
logPN

(
gN ∈ U a

5
,r0(g)

)
≥ −I2(h∗)− 3ε∗. (3.76)
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The next step is to relate the l.h.s. of (3.76) to a bound on 1
N2 logPN (hN ∈ U3,r0(h

∗)). To this end,
we consider the super-process g and sub-process g, which are TASEP height processes starting from the
following shifted initial conditions:

gic := gic + ⌊Na⌋, gic := gic − ⌊Na⌋. (3.77)

Recall from (3.21) that height processes are shift-invariant, so, in fact, g(t) = g(t) + ⌊Na⌋ and g(t) =
g(t)− ⌊Na⌋, ∀t ∈ [0, NT ]. In particular,

{
gN ∈ U a

5 ,r0
(g)

}
⊂ (A(gN ) ∩A(g

N
)), (3.78)

where

A(gN) :=
{
gN(t,

x
N ) < g(t, xN ) + a+ a

5 , ∀(t,
x
N ) ∈ [0, T ]× [−r0, r0]

}
,

A(g
N
) :=

{
g
N
(t, xN ) > g(t, xN )− a− a

5 , ∀(t,
x
N ) ∈ [0, T ]× [−r0, r0]

}
.

Furthermore, rewriting (3.34) for t = 0 as g(0, ξ)− a < h∗(0, ξ) < g(0, ξ) + a, ∀ξ ∈ [−r′∗, r
′
∗], and combining

this with (3.77), (1.21) and (3.75), we obtain

gic(x) < hic(x) < gic(x), ∀x ∈ [−Nr′∗, Nr
′
∗], (3.79)

for all N large enough.
Our goal is to utilize the ordering property (3.20) to sandwich the process h(t) in between the super- and

sub-processes. However, in order for (3.20) to apply, we need the inequality in (3.79) to hold for all x ∈ Z,
not just x ∈ [Nr−, Nr+]. With this in mind, writing [−Nr′∗, Nr

′
∗] ∩ Z = [−x′∗, x

′
∗], x

′
∗ ∈ N, we perform the

following surgery on g(0) and g(0):

g∗,ic(x) :=





gic(x) , for x ∈ [−x′∗, x
′
∗],

gic(x′∗) + |x− x′∗|, for x ∈ (x′∗,∞),
gic(−x′∗) , for x ∈ (−∞,−x′∗),

gic∗ (x) :=





gic(x) , for x ∈ [−x′∗, x
′
∗],

gic(x′∗) , for x ∈ (x′∗,∞),
gic(−x′∗)− |x+ x′∗|, for x ∈ (−∞,−x′∗).

This gives gic∗ (x) < hic(x) < g∗,ic(x), ∀x ∈ Z. Let g∗ and g∗ denote the height processes starting from gic∗
and g∗,ic, respective. We then have

g∗(t, x) < h(t, x) < g∗(t, x), ∀(t, x) ∈ [0, TN ]× Z. (3.80)

Next, recall the definition of k±(f, b, x) and V(f, b, x) from (3.69). By Lemma 3.9, the event A(gN ) depends
on gic only through gic|V , where

V :=
⋃

t∈[0,NT ]

⋃

x∈[−Nr0,Nr0]

V(gic, βN , x), βN (t, x) := ⌈N(g(t, xN ) + a+ a
5 ⌉.

Referring to (3.69a)–(3.69b) and (3.37)–(3.38), we have that

lim
N→∞

sup
{

1
N k

+(gic, βN(t, x), x) : x ∈ [−Nr0, Nr0]
}

= inf
{
ξ ≥ r0 : g(0, ξ) + a >

(
sup

[0,T ]×[−r0,r0]

g
)
+ a+ a

5

}
< r′∗,

lim
N→∞

inf
{

1
N k

−(gic, βN(t, x), x) : x ∈ [−Nr0, Nr0]
}

= sup
{
ξ ≤ −r0 : g(0, ξ) + a− ξ >

(
sup

[0,T ]×[−r0,r0]

g(t, ξ)− ξ
)
+ a+ a

5

}
> −r′∗.

Consequently, V ⊂ [−Nx′∗, Nx
′
∗], for allN large enough. Since, by construction, g∗,ic|[−Nx′

∗,Nx
′
∗]
= gic|[−Nx′

∗,Nx
′
∗]
,

we thus have A(gN ) = A(g∗N). A similar argument also gives A(g
N
) = A(g∗,N ). Referring back to (3.78),

we now have {gN ∈ U a
5 ,r0

(h∗)} ⊂ (A(g∗N) ∩ A(g∗,N )). Combining this with (3.80) gives
{
gN ∈ U a

5 ,r0
(g)

}
⊂

{
hN ∈ U(1+ 1

5 )a,r0
(g)

}
. (3.81)
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Since g satisfies (3.34) and since r′∗ ≥ r0, we have U(1+ 1
5 )a,r0

(g) ⊂ U(2+ 1
6 )a,r0

(h∗) ⊂ U3a,r0(h
∗). Using this to

replace U(1+ 1
5 )a,r0

(g) by U3a,r0(h
∗) in (3.81), and inserting the result into (3.76), we arrive at

lim inf
N→∞

1

N2
logPN

(
hN ∈ U3a,r0(h

∗)
)
≥ −I2(h∗)− 3ε∗.

Since ε∗ ∈ (0, a5 ] is arbitrary, letting ε∗ ↓ 0 gives the desired result (3.74). �

4. Upper Bound: Proof of Proposition 3.4

4.1. The Conditioned Law QN . Recall from (3.16) the definition of the tubular set Ua,r(g). This purpose
of this subsection is to prepare a few basic properties of the conditioned law QN as in (3.17). Roughly
speaking, Proposition 4.4–4.5 in the following assert that the conditioned law QN is written as a perturbed
TASEP, where the underlying Poisson clocks have rates λ(t, x, h(t)) that vary over (t, x) and depend on
the current configuration h(t) at the given time. In a finite state space setting (e.g., TASEP on the circle
Z/(NZ)) such a result follows at once by standard theories. For the TASEP on the full line Z considered
here, as we cannot identify a complete proof of Proposition 4.4–4.5 in the literature, we include a brief,
self-contained treatment in this subsection.

For the rest of this subsection, fix a > 0, r < ∞, a continuous deviation g ∈ D ∩ C([0, T ], E ), and let
U = Ua,r(g) denote the tubular set around g. Scaling is irrelevant in this subsection, we often drop the
dependence on N , e.g., writing P in place of PN . Hereafter, for a given v ∈ R, ⌈v⌉ := inf{i ∈ Z : v ≤ x}
and ⌊v⌋ := sup{i ∈ Z :≥ i} denote the correspond round-up and round-down. We write the tubular set U as

U =
⋂

t∈[0,NT ]

{
h(t) ∈ B(t)

}
, (4.1)

B(t) :=
⋂

x∈[−k0,k0]

B(t, x), B(t, x) :=
{
f ∈ EZ : b(t, x) < f(x) < b(t, x)

}
, (4.2)

where [−k0, k0] = [−Nr,Nr]∩Z, and t 7→ b(t, x), b(t, x) are the upper and lower envelops, given by b(t, x) :=
limε↓0⌈N(g(t, xN ) + a) + ε⌉ and b(t, x) := limε↓0⌊N(g(t, xN )− a)− ε⌋.

Let us first step up a few notations. Define

EZ(h
ic) :=

{
f ∈ EZ : f(x) ≥ hic(x), ∀x ∈ Z

}
. (4.3)

Indeed, the space EZ(h
ic) contains the set of all possible configurations h(t) of the TASEP height process

starting from hic, (because TASEP height function grows in time). We say F : EZ(h
ic) → R and G :

[0, NT ]× EZ(h
ic) → R are local, with support V = [k−, k+], if,

F (f1) = F (f2), ∀f1, f2 such that f1|V = f2|V ,

G(t, f1) = G(t, f2), ∀t ∈ [0, NT ], ∀f1, f2 ∈ such that f1|Z∩[−k,k] = f2|V .

Namely, F,G are local with support V if they reduce to functions on Z
Z∩V and [0, T ]× Z

Z∩V , respectively.

Remark 4.1. We emphasize here that our definition of local functions differs slightly from standard ter-
minologies. In the conventional setup, one considers a Markov process with a state space S , and functions
F : S → R, G : [0, NT ]× S → R that act on the entire state space S . Under such a setup, functions are
local if they have finite supports, independent of the initial conditions of the process. Here, unlike the con-
ventional setup, we have fixed the initial condition hic, and consider functions F,G that act on the subspace
EZ(h

ic). The supports of functions consider here may refer to hic in general.

Define, for f ∈ EZ(h
ic), Doob’s conditioning function

q(t, f) := P
( ⋂

s∈[t,NT ]

{
h(s) ∈ B(s)

}∣∣∣h(t) = f
)
. (4.4)

This function is the building block of various properties of the conditioned law QN . We begin by showing
the following.



22 S. OLLA AND L.-C. TSAI

Lemma 4.2. The function (4.4) is local, and, t 7→ q(t, f) is Lipschitz, uniformly over [0, NT ]×EZ(h
ic). The

derivative is given by

d
dt q(t, f) = −

(
Lq(t, f)

)
1B(t)(f), (4.5)

for all (t, f) ∈ [0, NT ]× EZ(h
ic) where d

dt q(t, f) is defined.

Proof. We begin by showing that q(t, f) is local. With g being continuous, the upper and lower envelops

t 7→ b(t, x), b(t, x) are necessarily D([0, NT ],Z)-valued. We enumerate the discontinuity of t 7→ b(t, x) and
t 7→ b(t, x), x ∈ [−k0, k0], within t ∈ [0, NT ) as 0 ≤ t1 < t1 < . . . < tn−1 < NT , set t0 = 0 and tn = NT for
consistency of notations. Under such notations, we write

⋂

s∈[t,NT ]

{
h(s) ∈ B(s)

}
=

⋂

x∈[−k0,k0]

( n−1⋂

i=1

⋂

s∈[ti−1,ti)∩[t,NT ]

{
h(s, x) > b(ti, x)

}
∩
{
h(s, x) < b(ti, x)

}
(4.6)

∩
{
h(tn, x) > b(tn, x)

}
∩
{
h(tn, x) < b(tn, x)

})
.

Our goal is to show that, the probability of the event (4.6), conditioned on h(t) = f, depends on f in a
local fashion. Recall the notations k±(f, b, x) and V(f, b, x) from (3.69). View f as the initial condition of the
TASEP starting at time t. Lemma 3.9 asserts that the event

{
h(s, x) < b

}
depends on f only through f|V(f,b,x).

We say f1 ≥ f2 ∈ EZ, if f
1(x) ≥ f2(x), ∀x ∈ Z. From (3.69), one readily checks that V(f1, b, x) ⊂ V(f2, b, x),

if f1 ≥ f2. Further, recall from (4.3) that f ≥ hic, ∀f ∈ EZ(h
ic), so in particular V(f, b, x) ⊂ V(hic, b, x).

Now, if V(hic, b, x) is an unbounded interval, i.e., k+(hic, b(s, x), x) = ∞ or k−(hic, b(s, x), x) = −∞, is it
straightforward to verify that {h(s) < b, ∀s ∈ [0, NT ]} must hold. In this case, {h(s) < b, ∀s ∈ [t, NT ]} holds
regardless of f. Consequently, the event {h(s) < b, ∀s ∈ [t, NT ]} depends on f only through its restriction
onto

V ′(hic, b, x) :=

{
V(hic, b, x), if V(hic, b, x) is bounded,
∅ , otherwise.

A similar argument shows that {h(s) > b, ∀s ∈ [t, NT ]} depends on f only through its restriction onto
V ′(hic, b, x). Using these properties for b = b(ti, x), b(ti, x), i = 1, . . . , n, and x ∈ [−k0, k0] in (4.6), we see
that the event

⋂
s∈[t,NT ]{h(s) ∈ B(s)} depends on f only through f|V , where V is the finite interval

V :=

n⋃

i=1

⋃

x∈[−k0,k0]

V ′(hic, b, x).

This concludes the locality of Doob’s function q(t, f).
Next we turn to the Lipschitz continuity. Fix t1 < t2 ∈ [0, NT ]. Referring back to (4.4), we have that

q(t1, f) = E
(
q(t2, h(t2))1∩s∈[t1,t2]{h(s)∈B(s)}|h(t1) = f

)
. (4.7)

Let V denote the event that none of the underlying Poisson clocks among sites x ∈ [−k0, k0] ever ring during
s ∈ [t1, t2]. On the event V , we have that q(t2, h(t2))1∩s∈[t1,t2]{h(s)∈B(s)} = q(t2, h(t1)). Using this in (4.7)
gives

q(t1, f) = q(t2, f)P(V ) +E
(
q(t2, h(t2))1∩s∈[t1,t2]{h(s)∈B(s)}∩V c

∣∣h(t1) = f
)
. (4.8)

For the event V , there exists a constant c <∞, depending only on k0, such that P(V ) ≥ 1− c|t2− t1|. Using
this in (4.8) gives

|q(t1, f)− q(t2, f)| ≤ cq(t2, f)|t2 − t1| ≤ c|t2 − t1|.

This concludes the Lipschitz continuity of t 7→ q(t, f).
To show (4.5), fix t1 and let σ := inf{s ≥ t1 : h(s) /∈ B(s)} to be the first hitting time for h(s) to be

outsides of the tubular set U . Since, by definition, q(t, f) = 0 for f /∈ B(t), we have that

q(t2, h(t2))1∩s∈[t1,t2]{h(s)∈B(s)} = q(t2 ∧ σ, h(t2 ∧ σ)). (4.9)

Since q(t, f) is local and uniformly Lipschitz in t, we have that

t 7−→ q(t, h(t))−

ˆ t

t1

(
∂t + L

)
q(t, h(s))ds (4.10)
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is a P-martingale. Furthermore, with q(t, f) being local and uniformly Lipschitz in t, the process (4.10) is
bounded. Hence the localized process

t 7−→ q(t ∧ σ, h(t ∧ σ)) −

ˆ t∧σ

t1

(
∂t + L

)
q(s, h(s))ds

is also a P-martingale. Combining this with (4.9) and (4.7) gives

E
(ˆ t2∧σ

t1

(
∂t + L

)
q(s, h(s))ds

∣∣∣h(t1) = f
)
= 0. (4.11)

Now, consider the case h(t1) = f ∈ B(t1). In this case we necessarily have σ > t1. Hence, for fixed t1, almost
surely as t2 ↓ t1,

1

t2 − t1

ˆ t2∧σ

t1

(
∂t + L

)
q(s, h(s))ds −→

(
∂t + L

)
q(t1, h(t1)). (4.12)

With q(t, f) being local and uniformly Lipschitz in t, the l.h.s. of (4.12) is uniformly bounded over t2 ∈
(t1, NT ]. Hence the almost sure convergence (4.12) give convergence in expectation, i.e.,

1

t2 − t1
E
( ˆ t2∧σ

t1

(
∂t + L

)
q(s, h(s))ds

∣∣∣h(t1) = f
)
−→ ∂tq(t1, h(t1)) + Lq(t1, h(t1)). (4.13)

Combining (4.13) with (4.11) gives (4.5), for the case f ∈ B(t1). For the case f = h(t1) 6∈ B(t1), since the
envelops b(t, x) and b(t, x) are right-continuous in t, we have that q(t2, f) = 0 = q(t1, f), for all 0 < t2 − t1
small enough. Hence ∂tq(t1, f) = 0 and (4.5) follows. �

The next step is to derive the Itô formula for h under the conditioned law Q. To this end, define, for
f ∈ EZ(h

ic), the perturbed rate

λ(t, x, f) :=
q(t, fx)

q(t, f)
. (4.14)

Recall that fx := f + 1{x} and recall from (1.4) that φ(f, x) denotes the mobility function. We consider the
perturbed, time-dependent generator acting on local f:

(
L̃(t)F

)
(f) :=





∑

x∈Z

λ(t, x, f)φ(f, x)
(
F (fx)− F (f)

)
, if f ∈ B(t),

0, otherwise.

(4.15)

Since the term 1/q(t, f) is unbounded in general, the expression (4.15) could potentially cause issues when

integrating L̃(t)F over EQ. We show in the next lemma that this is not the case.

Lemma 4.3. For all t ∈ [0, NT ],

EQ

( 1

q(t, h(t))

)
≤

1

q(0, hic)
. (4.16)

In particular, for any local, bounded G : [0, NT ]× EZ(h
ic) → R with support V,

EQ

∣∣L̃(t)G(t, h(t))
∣∣ ≤ #(V ∩ Z)

q(0, hic)
‖G(t, ·)‖∞.

Proof. Indeed, since Q is the conditioned law around the tubular set U , we have

EQ

( 1

q(t, h(t)

)
=

1

q(0, hic)
E
( 1

q(t, h(t))
1∩s∈[0,NT ]{h(s)∈B(s)}

)
. (4.17)

Let Ft denote the canonical filtration of h(t). We indeed have that

E
(
1∩s∈[0,NT ]{h(s)∈B(s)}

∣∣Ft) = 1∩s∈[0,t]{h(s)∈B(s)}E
(
1∩s∈[t,NT ]{h(s)∈B(s)}

∣∣Ft)

= 1∩s∈[0,t]{h(s)∈B(s)}q(t, h(t)). (4.18)

Inserting (4.18) into (4.17) gives the desired result (4.16). �

We now derive the Itô formula for h under the conditional law Q.
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Proposition 4.4. Let G : [0, NT ]×EZ(h
ic) → R be a bounded local function which is Lipschitz in t, uniformly

over [0, NT ]× EZ(h
ic). We have, for each fixed t1 < t2 ∈ [0, NT ],

EQG(t, h(t))|
t=t2
t=t1 = EQ

ˆ t2

t1

(
∂t + L̃(t)

)
G(t, h(t))dt. (4.19)

Proof. By definition,

EQ

(
G(t2, h(t2))

∣∣Ft1

)
=

1

q(t1, h(t1))
E
(
G(t2, h(t2))1∩t∈[t1 ,NT ]{h(t)∈B(t)}

∣∣Ft1

)
. (4.20)

Let σ := inf{t ≥ t1 : h(t) ∈ B(t)c} be the first time that h reaches outside of the tubular set U . Using (4.18)
for [s, t] = [t1, t2] on the r.h.s. of (4.20), together with q(σ, h(σ)) = 0, we rewrite (4.20) as

EQ

(
G(t2, h(t2))

∣∣Ft1

)
=

1

q(t1, h(t1))
E
(
1∩t∈[t1,t2]{h(t)∈B(t)}

(
qG

)
(t2, h(t2))

∣∣Ft1

)

=
1

q(t1, h(t1))
E
(
1∩t∈[t1,σ∧t2]{h(t)∈B(t)}(qG)(t2 ∧ σ, h(t2 ∧ σ))

∣∣Ft1

)
. (4.21)

Our next step is to express (4.21) in terms of a time integral. To this end, note that since (qG)(t, f) is
bounded, local, and uniformly Lipschitz in t, the process

t 7−→

ˆ t∧σ

t1

(
∂t + L

)(
qG

)
(t, h(t))dt

is a P-martingale. Consequently,

E
(
(qG)(t2 ∧ σ,h(t2 ∧ σ))

∣∣Ft1

)

= (qG)(t1, h(t1)) +

ˆ t2

t1

E
(
1σ>t2

(
∂t + L

)(
qG

)
(t, h(t))

∣∣∣Ft1

)
dt

= (qG)(t1, h(t1)) +

ˆ t2

t1

E
(
1∩s∈[t1,t]{h(s)∈B(s)}

(
∂t + L

)(
qG

)
(t, h(t))

∣∣∣Ft1

)
dt. (4.22)

Next, in (4.22), use (4.18) to write 1∩s∈[t1,t]{h(s)∈B(s)} = 1
q(t,h(t))E(1∩s∈[t1,NT ]{h(s)∈B(s)}|Ft), and divide the

resulting equation (4.22) by q(t1, h(t1)). We now obtain

1

q(t1, h(t1))
E
(
(qG)(t2 ∧ σ, h(t2 ∧ σ))

∣∣Ft1

)
= G(t1, h(t1)) +

ˆ t2

t1

EQ

((1
q

(
∂t + L

)
(qG)

)
(t, h(t))

∣∣∣Ft1

)
dt.

Combining this expression with (4.21) gives

EQ

(
G(t2, h(t2))

∣∣Ft1

)
= G(t1, h(t1)) +

ˆ t2

t1

EQ

((1
q

(
∂t + L

)
(qG)

)
(t, h(t))

∣∣∣Ft1

)
dt.

Now, move the term G(t1, h(t1)) to the l.h.s., and aver the result over EQ, we arrive at

EQ(G(t, h(t)))|t=t2t=t1 =

ˆ t2

t1

EQ

((1
q

(
∂t + L

)
(qG)

)
(t, h(t))

)
dt. (4.23)

Finally, a straightforward calculation from the definition (4.15), together with the identity (4.5), gives
1
q (∂t + L)(qG) = (∂t + L̃(t))G. Inserting this into (4.23) gives the desired result (4.19). �

Recall that ψ(λ) denote the rate function for Poisson variables. We next derive an expression for the
relative entropy H(Q|Ph).

Proposition 4.5. The relative entropy of the conditioned Q with respect to P is given by

H(Q|Ph) = EQ

(ˆ NT

0

∑

x∈Z

φ(h(t), x)ψ
(
λ(t, x, h(t))

)
dt
)
. (4.24)
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Proof. From (4.5), we have that
ˆ NT

0

(1q (∂t + L)q)(t, h(t))dt = 0, Q-a.s. (4.25)

Write q̇(t, f) := d
dtq(t, f). Since q(t, f) is local, the random variables Lq = −q̇ are uniformly bounded, i.e.,

|Lq(t, f)|, |q̇(t, f)| ≤ c, ∀t ∈ [0, NT ], f ∈ B(t), (4.26)

for some c < ∞ depending only on the support of q. Combining this with Lemma 4.3, we see that the
random variables Lq

q (t, h(t)) and q̇
q (t, h(t)) are L

1 under Q, uniformly over t ∈ [0, NT ]. Taking expectation

Q in (4.25) thus gives

0 = EQ

ˆ NT

0

q̇

q
(t, h(t))dt +EQ

ˆ NT

0

Lq

q
(t, h(t))dt. (4.27)

With Q being the conditioned law around the tubular set U , we haveH(Q|Ph) = − logP(U) = − log q(0, hic).
Subtracting (4.27) from the previous expression gives

H(Q|Ph) = − log q(0, hic)−EQ

ˆ NT

0

q̇

q
(t, h(t))dt−EQ

ˆ NT

0

Lq

q
(t, h(t))dt. (4.28)

The next step is to apply Proposition 4.4 with the function G(t, f) = log(q(t, f)). However, such a function
is not Lipschitz in t due to the singularity at q(t, f) = 0. We hence introduce a small threshold a > 0, and
apply Proposition 4.4 with G(t, f) = log(q(t, f) + a). This gives

0 = EQ log
q(NT, h(NT )) + a

q(0, hic) + a
−EQ

ˆ NT

0

q̇

q + a
(t, h(t))dt− EQ

ˆ NT

0

L log(q + a)(t, h(t))dt. (4.29)

Since h(NT ) ∈ B(NT ), Q-a.s, the first term in (4.29) is equal to 1+a
q(0,hic)+a . Subtracting (4.29) from (4.28),

we arrive at

H(Q|Ph) = H1 +H2 +H3 +EQ

ˆ NT

0

(
L log q −

Lq

q

)
(t, h(t))dt, (4.30)

where

H1 := log
q(0, hic) + a

(1 + a)q(0, hic)
,

H2 := EQ

ˆ NT

0

( q̇

q + a
−
q̇

q

)
(t, h(t))dt = EQ

ˆ NT

0

( aq̇

(q + a)q

)
(t, h(t))dt,

H3 := EQ

ˆ NT

0

L
(
log(q + a)− log q

)
(t, h(t))dt.

A straightforward calculation shows that (L log q−Lq
q )(t, f) =

∑
x∈Z

φ(f, x)ψ( q(t,f
x)

q(t,f) ) =
∑

x∈Z
φ(f, x)ψ(λ(t, x, f)).

Refer back to (4.30). It now remains only to show Hi → 0, as a ↓ 0, for i = 1, 2, 3.
Clearly, H1 → 0, as a ↓ 0. As for H2, using (4.26) to bound |q̇|, we have

|H2| ≤
(
EQ

ˆ NT

0

ca

q(t, h(t))(q(t, h(t)) + a)
dt
)
= c

(
EQ

ˆ NT

0

1

q(t, h(t))
dt−EQ

ˆ NT

0

1

q(t, h(t)) + a
dt
)
.

By Lemma 4.3 and the monotone convergence theorem, the r.h.s. tends to zero as a ↓ 0. Turning to H3, we

let V be a support of q, and write H3 as H3 = EQ

´ NT

0 H̃3(t)dt, where

H̃3(t) :=
∑

x∈V

φ(h(t), x) log
q(t, hx(t)) + a

q(t, h(t)) + a

q(t, h(t))

q(t, hx(t))
. (4.31)

Clearly, H̃3(t) → 0 as a ↓ 0, and

|H̃3(t)| ≤
∑

x∈V

log
1

q(t, hx(t))(q(t, h(t))
≤

∑

x∈V

( 1

q(t, h(t))
+

1

q(t, hx(t))

)
. (4.32)

By Lemma 4.3, the r.h.s. of (4.32) is L1 with respect to EQ

´ NT

0
dt. Consequently, by the dominated

convergence theorem, H3 → 0 as a ↓ 0. �
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For convenience for referencing, we now summary Proposition 4.4–4.5 in the scaled form as follows.

Corollary 4.6. Let QN be as in (3.17), λ(t, x, f) be as in (4.14), and set λN (t, x, f) := N−1λ(Nt, x, f). For
each t1 < t2 ∈ [0, T ] and x ∈ Z,

EQN
(hN (t2,

x
N )− hN (t1,

x
N )) = EQN

ˆ t2

t1

φ(h(Nt), x)λN (t, x, h(Nt))dt, (4.33)

1

N2
H(QN |Ph

N ) = EQN

( 1

N

∑

x∈Z

ˆ T

0

φ(h(Nt), x)ψ(λN (t, x, h(Nt)))dt
)
. (4.34)

Proof. The identity (4.33) essentially follows from Proposition 4.4 for G(t, f) = f(x). The only twist is that
such a function is not bounded above. (Such G is bounded below because f(x) ≥ hic(x), ∀f ∈ EZ(h

ic),
by (4.3)). We hence fix a large threshold r <∞, and apply Proposition 4.4 with G(t, f) = f(x) ∧ r to obtain

EQN
(hN (t2,

x
N ) ∧ r) −EQN

(hN (t1,
x
N ) ∧ r) = EQN

ˆ t2

t1

φ(h(Nt), x)λN (t, x, h(Nt))1{h(Nt)≤r}dt.

Referring back to (3.17), we have that h(t, x) is bounded under QN , so let r → ∞ gives (4.33). The
identity (4.34) follows directly from Proposition 4.5. �

4.2. Proof of Proposition 3.4. To simplify notations, in the following we often write φ(x) = φ(f, x) for

the mobility function, and write λN = λN (t, x) = λN (t, x, f) for the rate. Recall the expression of Ĩ(g)

from (2.7). We consider first the degenerate case Ĩ(g) = ∞.

The case Ĩ(g) = ∞. We show that, in fact,

lim inf
N→∞

1

N2
H(QN |Ph

N ) = ∞, (4.35)

so in particular (3.18) holds. We achieve (4.35) by bounding the expression (4.34) of the relative entropy
from below. To this end, fixing arbitrary n, we recall that {σni = iT

2n }
2n

i=0 denotes a dyadic partition, and
rewrite (4.34) accordingly as

1

N2
H(QN |Ph

N ) =
1

N

∑

x∈Z

2n∑

i=1

EQN

ˆ σn
i

σn
i−1

φ(x)ψ
(
λN (t, x)

)
dt. (4.36)

In (4.36), for each fixed i ∈ {1, . . . , 2n} and x ∈ Z, view the corresponding expression as an average of

ψ
(
λN (t, x)

)
over the measure EQN

´ σn
i

σn
i−1

( · )dt, with total mass Ai,x := EQN

´ σn
i

σn
i−1

φ(h(Nt), x)dt. Using the

convexity of λ 7→ ψ(λ), followed by applying the identity (4.33) for (t1, t2) = (σni−1, σ
n
i ), we have

EQN

ˆ σn
i

σn
i−1

φ(x)ψ
(
λN (t, x)

)
dt ≥ Ai,xψ

( 1

Ai,x
EQN

ˆ σn
i

σn
i−1

φ(x)λN (t, x)dt
)

= Ai,xψ
( 1

Ai,x
EQN

(
hN (t, xN )

)∣∣σn
i

σn
i−1

)

≥ Ai,xψ
( 1

Ai,x
EQN

(
hN (t, xN )

)∣∣σn
i

σn
i−1

)
. (4.37)

The mobility function φ(x) = φ(f, x) is {0, 1}-valued, so in particular 0 ≤ Ai,x ≤ (σni − σni−1) =
T
2n . Using

this and (2.5) (for ξ = Ai,x) in (4.37), and inserting the result back into (4.36), we arrive at

1

N2
H(QN |Ph

N ) ≥
1

N

∑

x∈Z

T

2n
ψ
( 1

σni − σni−1

EQN

(
hN (t, xN )

)∣∣σn
i

σn
i−1

)
. (4.38)

Next, with QN being the conditioned law as in (3.17), we have that

|EQN
(hN (t, xN ))− g(t, xN )| ≤ aN , ∀(t, xN ) ∈ [0, T ]× [−rN , rN ]. (4.39)
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In particular, EQN
(hN (t, xN ))|

σn
i

σn
i−1

≥ g(σni ,
x
N ) − g(σni−1,

x
N ) − 2aN . In (4.38), using this, together with the

fact that λ 7→ ψ(λ) is nondecreasing, we further obtain

1

N2
H(QN |Ph

N ) ≥
1

N

∑
x
N

∈[−rN∧r,rN∧r]

2n∑

i=1

T

2n
ψ
((g(σni , xN )− g(σni−1,

x
N )− 2aN

σni − σni−1

)
+

)
. (4.40)

Now, fix r <∞, and let N → ∞ in (4.40). Under this limit aN ↓ 0 and rN ↑ ∞, so

lim inf
N→∞

1

N2
H(QN |Ph

N ) ≥

ˆ r

−r

2n∑

i=1

T

2n
ψ
(g(σni , ξ)− g(σni−1, ξ)

σni − σni−1

)
dξ. (4.41)

Recall the expression of Ĩn(h, ξ) from (2.6). Upon letting r → ∞, the r.h.s. of (4.41) gives
´

R
Ĩn(g, ξ)dξ.

Further taking the supremum over n thus gives the desired result:

lim inf
N→∞

1

N2
H(QN |P

h
N ) ≥ sup

n

ˆ

R

Ĩn(g, ξ) = Ĩ(g) = ∞.

The case Ĩ(g) < ∞. Without lost of generality, we assume g(0) = hic. Otherwise, if g(0, ξ) 6= hic(ξ), for
some ξ ∈ R, with QN being the conditioned law as in (3.17) and aN ↓ 0, by the assumption (1.21), we
necessarily have QN 6≪ PN , for all large enough of N . Hence lim infN→∞

1
N2H(QN |Ph

N ) = ∞.

Under the assumption Ĩ(g) < ∞, by Lemma 2.2 we have g ∈ Dd. This together with g(0) = hic implies

I1(g) =
´ T

0

´

R
J1
a(gt, gξ)dtdξ. Recall from (2.20) the partition Rℓ(r) that consists of rectangles. The first

step is to localize the function I1(g) and relative entropy 1
N2H(QN |Ph

N ) onto each rectangle � ∈ Rℓ(r). To

this end, recalling the definition of J1
a (κ, ρ) from (2.3). and fixing ε > 0, we apply Lemma 2.4 for h = g, to

obtain r, ℓ <∞ and a > 0 such that
∑

�∈Rℓ(r)

|�| J1
a(κ�, ρ�) ≥ I1(g) ∧ ε−1 − ε, (κ�, ρ�) :=

(ffl
�
gtdtdξ ,

ffl

�
gξdtdξ

)
. (4.42)

As for the relative entropy, in (4.34), we drop those terms corresponding to x
N /∈ [−r, r], and write

1

N2
H(QN |P

h
N ) ≥ EQN

( 1

N

ˆ T

0

∑
x
N

∈[−r,r]

φ(x)ψ(λN (t, x))dt
)
. (4.43)

Then, decompose the r.h.s. of (4.43) as

1

N2
H(QN |Ph

N ) ≥
∑

�∈Rℓ(r)

HN (�), HN (�) := EQN

( 1

N

ˆ ∑
1{(t, x

N
)∈�}φ(x)ψ(λN (t, x))dt

)
. (4.44)

In view of (4.42) and (4.44), the next step is to show that HN (�) approximately bound |�|J1
a(κ�, ρ�)

from above, for each � ∈ Rℓ(r). Recall from (2.1) the definition of Φ1
a. Fix � ∈ Rℓ(r), and, for each

(t, xN ) ∈ �, use the convexity of λ 7→ ψ(λ) to write

ψ(λN (t, x)) ≥ ψ
( κ�
Φ1
a(ρ�)

)
− ψ

′
( κ�
Φ1
a(ρ�)

)( κ�
Φ1
a(ρ�)

− λN (t, x)
)
. (4.45)

Set AN (�) := EQN
( 1
N

´ ∑
(t, x

N
)∈�

φ(x)dt) and BN (�) := EQN
( 1
N

´ ∑
(t, x

N
)∈�

φ(x)λN (t, x)dt). In (4.45),

multiply both sides by φ(x), and apply EQN
( 1
N

´ ∑
(t, x

N
)∈�

( · )dt) to the result. Using that ψ ≥ ψ, this

gives

HN (�) ≥ ψ
( κ�
Φ1
a(ρ�)

)
AN (�)− ψ

′
( κ�
Φ1
a(ρ�)

) κ�
Φ1
a(ρ�)

AN (�) + ψ
′
( κ�
Φ1
a(ρ�)

)
BN (�). (4.46)

Further, parametrizing the rectangle as � = [t�, t�]× [ξ−
�
, ξ+

�
], using (4.33) for (t1, t2) = (t�, t�), we have

BN (�) = EQN

( 1

N

∑

x
N

∈[ξ−
�
,ξ+

�
]

ˆ t�

t
�

φ(x)λN (t, x)dt
)
= EQN

( 1

N

∑

x
N

∈[ξ−
�
,ξ+

�
]

hN (t, xN )|t=t�t=t
�

)
. (4.47)
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Letting N → ∞ in (4.47), using (4.39) on the r.h.s., we obtain

lim inf
N→∞

BN (�) ≥

ˆ ξ+
�

ξ−
�

g(t, ξ)
∣∣∣
t=t�

t=t
�

dξ = |�|κ�. (4.48)

Combining this with (4.46) gives

HN (�) ≥
(
ψ(λ)− λψ

′
(λ)

)
|λ= κ

�

Φ1
a(ρ

�
)

AN (�) + ψ
′
( κ�

Φ1
a(ρ�) )|�|κ� + εN (�), (4.49)

for some remainder term such that limN |εN (�)| = 0. Adding and subtracting the expression |�|J1
a(κ�, ρ�) =

|�|Φ2
a(ρ�)ψ(

κ�

Φ1
a(ρ�) ) on the r.h.s. of (4.49), we arrive at

HN (�) ≥ |�|J1
a(κ�, ρ�) +

(
λψ

′
(λ)− ψ(λ)

)
|λ= κ

�

Φ1
a(ρ

�
)

(
|�|Φ1

a(ρ�)−AN (�)
)
+ εN(�). (4.50)

The expression λψ
′
(λ)− ψ(λ) = (λ− 1)+ in (4.50) nonnegative. Furthermore, with AN (�) defined as in

the preceding and with φ(t, x) := η(t, x)(1 − η(t, x)), parameterizing � := [t�, t�]× [ξ−
�
, ξ+

�
], we have

AN (�) ≤
1

N
EQN

ˆ t�

t
�

dt
( ∑

x
N

∈�

η(Nt, x) ∧
∑
x
N

∈�

(1− η(Nt, x))
)
. (4.51)

Since
1

N

∑
x
N

∈�

η(Nt, x) = |ξ+
�
− ξ−

�
|
(
hN (t, ξ+

�
)− hN (t, ξ−

�
)
)
,

1

N

∑
x
N

∈�

(1− η(Nt, x)) = |ξ+
�
− ξ−

�
|
(
1− hN (t, ξ+

�
)− hN (t, ξ−

�
)
)
.

It follows that

AN (�) ≤ EQN

ˆ t�

t
�

dt|ξ+
�
− ξ−

�
|Φ1(hN (t, ξ+

�
)− hN (t, ξ−

�
))

With QN being the conditioned law as in (3.17), we have

lim sup
N→∞

AN (�) ≤

ˆ t�

t
�

|ξ+
�
− ξ−

�
|Φ1(g(t, ξ+

�
)− g(t, ξ−

�
))dt = |�|Φ1(ρ�), (4.52)

Combining this with (4.50) and the fact that λψ
′
(λ) − ψ(λ) ≥ 0, we arrive at

lim inf
N→∞

HN (�) ≥ |�|J1
a(κ�, ρ�).

This gives the desired bound on each rectangle � ∈ Rℓ(r). Referring back to (4.42) and (4.44), we now
have

lim inf
N→∞

HN (QN |Ph
N ) ≥ I1(g) ∧ ε−1 − ε.

The proof is completed upon letting ε ↓ 0.

5. Lower Bound: Inhomogeneous TASEP

The remaining of this article, Section 5–7, are devoted to proving Proposition 3.5. To this end, hereafter
we fix ε∗ > 0, r∗ < ∞, τ, b such that T

τ ,
r∗
b ∈ N as in Proposition 3.5. To simplify notations, we write

Σ = Σ(τ, b) for the triangulation. Fix further a D-valued, Σ-piecewise linear function g that satisfies (3.22)–
(3.23), write gic := g(0), and fix a TASEP height process gN with initial condition that satisfies (3.24), as

in Proposition 3.5. Let r∗, λ be given as in (3.28)–(3.29). We write (κ△, ρ△) := (gt, gξ)|△◦ for the constant
derivatives of g on a given △ ∈ Σ, and let λ△ :=

κ△

ρ△(1−ρ△) . With g satisfying the properties (3.22)–(3.23),

we have

0 < inf
△∈Σ

κ△ ≤ sup
△∈Σ

κ△ <∞, 0 < inf
△∈Σ

ρ△ ≤ sup
△∈Σ

ρ△ < 1, 0 < inf
△∈Σ

λ△ ≤ sup
△∈Σ

λ△ ≤ λ <∞. (5.1)

Let Σ∗ := {△ ∈ Σ : △ ⊂ [0, T ] × [−r∗, r∗]} denote the restriction of the triangulation onto [−r∗, r∗], and
similarly Σ∗ := {△ ∈ Σ : △ ⊂ [0, T ]× [−r∗, r∗]}.
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Proving Proposition 3.5 amounts to constructing probability laws {QN}N that satisfies (3.25)–(3.27). We
will achieve this using inhomogeneous TASEP, defined as follows. We say S : [0, T ) × R → (0, λ] is a

speed function if S is Borel measurable, positive, and bonded by λ from above. We say S is a simple
speed function if it a speed function that takes the following form

S :[0, T )× R → (0,∞), S(t, ξ) :=

n∑

i=1

1[ti−1,ti)(t)Si(ξ), 0 = t0 < t2 < . . . < tn = T, (5.2)

where each Si : R → (0,∞) is lower semi-continuous, piecewise constant, with finitely many discontinuities,
and lim|ξ|→∞ Si(ξ) = 1. Now, given a simple speed function S, we define the associated inhomogeneous

TASEP similarly to the TASEP, starting from the initial condition gicN (as fixed in the preceding), but,
instead of having unit-rate Poisson clocks at each x ∈ Z, we let the rate be S( tN ,

x
N ). We do not define the

value of S at t = T for convenience of notations, and these values S(T, ξ) do not pertain to the dynamics of
the inhomogeneous TASEP, define for t ∈ [0, NT ]. We write QS

N for the law of the inhomogeneous TASEP
with a simple speed function S.

For a time-homogeneous (i.e., S(t, ξ) = S(ξ), ∀t ∈ [0, T )) simple speed function, the corresponding
inhomogeneous TASEP sits within the scope studied in [GKS10]. For simple speed functions of the form
(5.2) considered here, the associated inhomogeneous TASEP is constructed inductively in time from the time
homogeneous process. A key tool from [GKS10] in our proof is the hydrodynamic limit. To state this result
precisely, For given f ∈ E , and a speed function S, we define the Hopf–Lax function G [S, f ] via the following
variational formula:

G [S, f ] : [0, T ]× R → R, G [S, f ](t, ξ) := inf
w∈W (t,ξ)

{
Θ0,t(w;S) + f(w(0))

}
, (5.3)

where W (t, ξ) is the set of piecewise C1 paths w : [0, t] → R connected to (t, ξ), i.e.,

W (t, ξ) := {w : [0, t] → R : w piecewise C1, w(t) = ξ}, (5.4)

and Θt1,t2(w;S) is a functional on (w, S), defined as

Θt1,t2(w;S) :=

ˆ t2

t1

S(s, w(s))θ
( w′(s)

S(s, w(s))

)
ds, (5.5)

θ(ξ) :=





0 , for ξ ≤ −1,
1
4 (ξ + 1)2, for ξ ∈ (−1, 1),
ξ , for ξ ≥ 1.

(5.6)

As we show in Lemma 6.1(b) in the following, the variational formula (5.3) does define a D ∩ C([0, T ], E )-
valued height function. Such a height function can be viewed as the viscosity solution of the inhomogeneous
Burgers equation:

ht(t, ξ) = Shξ(1 − hξ), h(0) = f.

We will, however, operate entirely with the variational formula (5.5) and avoid referencing to the PDE.
The following is the hydrodynamic result from [GKS10].

Proposition 5.1 ([GKS10]). Fix a time-homogeneous, simple speed function S. For each fixed (t, ξ) ∈
[0, T ]× R, the random variable gN (t, ξ) converges to G [S, gic](t, ξ), QS

N -in probability.

Proposition 5.1 is readily generalized to the time-inhomogeneous setting considered here. To see this, we
first prepare a simple lemma that leverages pointwise convergence into uniform convergence.

Lemma 5.2. Let {hN} ⊂ D be a sequence that converges to h ∈ C([0, T ], E ) pointwisely, i.e., hN (t, ξ) →
h(t, ξ), ∀(t, ξ) ∈ [0, T ]× R. Then, in fact, sup

t∈[0,T ]

dC(R)(hN (t), h) → 0 holds.

Proof. Fix arbitrary ε > 0 and r < ∞, and consider the partition Rℓ(r) as in (2.20). As h is continuous,
there exists large enough ℓ <∞ such that, on each of the rectangle � ∈ Rℓ(r),

|h(t, ξ)− h(s, ζ)| ≤ ε, ∀(t, ξ), (s, ζ) ∈ �. (5.7)
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Fix a rectangle � ∈ Rℓ(r) and parametrize it as [t�, t�] × [ξ−
�
, ξ+

�
]. With hN being nondecreasing in t and

ξ, for each t, ξ ∈ �, we have

h(t, ξ)− hN (t, ξ) ≤ h(t, ξ)− hN (t�, ξ
−
�
) =

(
h(t, ξ)− h(t�, ξ

−
�
)
)
+ h(t�, ξ

−
�
)− hN (t�, ξ

−
�
), (5.8a)

h(t, ξ)− hN (t, ξ) ≥ h(t, ξ)− hN (t�, ξ
+
�
) =

(
h(t, ξ)− h(t�, ξ�)

)
+ h(t�, ξ�)− hN (t�, ξ

+
�
). (5.8b)

Let V denote the set of all vertices of the rectangles in Rℓ(r). Using (5.7) in (5.8) gives,

h(t, ξ)− hN (t, ξ) ≤ ε+ sup
V

(h− hN ), h(t, ξ)− hN (t, ξ) ≥ −ε+ inf
V
(h− hN ).

Equivalently, sup[0,T ]×[−r,r] |hN − h| ≤ maxV |hN − h| + ε. As V is a fixed, finite set, letting N → ∞ gives

lim supN→∞ sup[0,T ]×[−r,r] |hN − h| ≤ ε. With ε > 0 and r < ∞ being arbitrary, this concludes the desired

result supt∈[0,T ] dC(R)(hN (t), h) → 0. �

The following Corollary generalizes Proposition 5.1 to the time-inhomogeneous setting considered here.

Corollary 5.3. For any given simple speed function S,

sup
t∈[0,T ]

dC(R)(gN (t),G [S, gic](t)) −→ 0, QS
N -in probability.

Proof. Let 0 := t0 < t1 < . . . < tn = T denote the discontinuities of S. Combining Proposition 5.1 and
Lemma 5.2 gives supt∈[t0,t1] dC(R)(gN (t),G [S, f ](t)) → 0,QS

N -in probability. In particular dC(R)(gN (t1), h(t1)) →

0, QS
N -in probability. This allows us to progress onto [t1, t2]. The proof is completed by inductively applying

Proposition 5.1 and Lemma 5.2 for [t1, t2], . . ., [tn−1, tn]. �

In addition to the hydrodynamic result Corollary 5.3, to the end of proving Proposition 3.5, we also need
a formula for the Radon–Nikodym derivative. Using the Feynman–Kac formula, it is standard to show that

dQS
N

dPg
N

= exp
(∑

x∈Z

ˆ NT

0

(
logS

(
Nt, xN

)
dh(t, x)− φ(h(t), x)

(
S
(
Nt, xN

)
− 1

)
dt
))
. (5.9)

In particular, with ψ(ξ) := ξ log ξ − (ξ − 1), taking EQS
N
(·) in (5.9) gives

1

N2
H(QS

N |Pg
N ) =

1

N

∑

x∈Z

EQN

(ˆ T

0

φ(hN (t), x)ψ
(
S
(
t, xN

))
dt
)
. (5.10)

Our strategy of proving Proposition 3.5 is to construct a simple speed function S, so that, QS
N satis-

fies (3.25)–(3.27). In view of Corollary 5.3, achieving (3.25) amounts to constructing S in such a way that
G [S, gic] well approximates g. To this end, it is more convenient to consider piecewise constant speed func-

tions that are not necessarily simple. In Section 6, we will first construct a speed function Λ̃ that is not

simple, and in Section 7, we obtain the desired simple speed function Λ as an approximate of Λ̃. As the

functions Λ̃ and Λ depend on the two auxiliary parameters m,n (introduced in the sequel), hereafter we

write Λ̃ = Λ̃m,n and Λ = Λm,n to emphasize such dependence.

6. Lower Bound: Construction of Λ̃m,n

6.1. Overview of the Construction. To motivate the technical construction in the sequel, in this subsec-
tion we give an overview. The discussion here is informal, and does not constitute any part of the proof.

Corollary 5.3 asserts that gN converges to G [S, gic] under QS
N . In order to achieve (3.25), it is desirable

to construct construct Λ̃m,n so that G [Λ̃m,n, g
ic] approximates g on [0, T ]× [−r∗, r∗], i.e.,

sup
[0,T ]×[−r∗,r∗]

∣∣G [Λ̃m,n, g]− g
∣∣ ≈ 0.

Indeed, it is well-known that the Burgers equation (1.6) is solved by characteristics, which a linear tra-
jectories of speed 1 − 2gξ. We generalize the idea of characteristic velocity to the inhomogeneous setting

considered here, and call Λ̃m,n(t, ξ)(1−2gξ(t, ξ)) the characteristic velocity at a given point (t, ξ). Informally

speaking, the Hopf–Lax function h = G [Λ̃m,n, g
ic] corresponds to a solution of the inhomogeneous equation

ht = Λ̃m,nhξ(1− hξ) with initial condition gic. As g is a Σ-piecewise linear function, a natural, preliminary

proposal is to set Λ̃m,n|△◦ := λ△ on each triangle △ ∈ Σ, so that g solves the aforementioned inhomogeneous
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Burgers equation. One then hopes that (after extending Λ̃m,n onto the edges of the triangulation Σ in a

suitable way), the resulting Hopf–Lax function G [Λ̃m,n, g
ic] matches g. This is false in general. To see why,

assume G [Λ̃m,n, g
ic] = g were the case. Then, on each △ ∈ Σ, characteristic velocity is constant λ△. Along

vertical or diagonal edges of the triangulation Σ, characteristics may: merge, semi-merge, refract, semi-
refract, or diverge, as illustrated in Figure 5. While the first four scenarios are admissible, the Hopf–Lax

function G [Λ̃m,n, g
ic] does not permit diverging characteristics as depicted in Figure 5e.

(a) Merging (b) Semi-merging (c) Refracting (d) Semi-refracting (e) Diverging

Figure 5. Configurations at a vertical or diagonal edge

We circumvent this problem by introducing buffer zones around vertical and diagonal edges. These zones
are thin stripes of width O( 1

m ). If, the neighboring triangles of a given (vertical or diagonal) edge demand

diverging characteristics as depicted in Figure 5e, we tune Λ̃m,n on the buffer zone, in such a way that
characteristics run parallel to the edge on in the zone, as depicted in Figure 6. This way, instead of diverging
characteristics, along the sides of the buffer zone we have semi-refracting characteristics. As m→ ∞, buffer

zones become effectively invisible, and the resulting G [Λ̃m,n, g
ic] should well-approximate g.

O( 1
m )O( 1

m )

Figure 6. Buffer zones (yellow) in action.

The preceding construction achieves G [Λ̃m,n, g
ic] ≈ g, but is not cost efficient in terms of entropy. A few

modifications are in place to improve the entropy cost. Recall the definition of r∗ and λ from (3.28)–(3.29).

First, to avoid the entropy being infinite, we truncation Λ̃m,n, by setting it to unity outsides of [−r∗, r∗], i.e.,

Λ̃m,n||ξ|>r∗ := 1. Refer to the formula (5.10) for relative entropy: the prescribed truncation ensures the cost

from {|ξ| > r∗} is zero. Further, such a truncation does not change the value of G [Λ̃m,n, g
ic](t, ξ) for |ξ| ≤ r∗.

To see why, recall that r∗ ≥ r∗ + Tλ, and note that, with 1 − 2gξ ∈ [−1, 1] and Λ̃m,n ≤ λ, characteristic

velocity is always bounded by λ in magnitude. This being the case, the value of Λ̃m,n in {|ξ| > r∗} does not

affect G [Λ̃m,n, g
ic]||ξ|≤r∗ , because characteristics starting from {|ξ| > r∗} at t = 0 cannot reach {|ξ| ≤ r∗}

within [0, T ].
Next, recalling the the discussion in Section 1.2, we see that on those triangles △ with λ△ < 1, having

Λ̃m,n = λ△ is too cost ineffective. Instead, we should perform the intermittent constriction as sketched in
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Section 1.2. On each of the triangle △ with λ△ < 1, we place thin vertical stripes of width O( 1
n2m ), every

distance O( 1
nm ) apart. We then set Λ̃m,n = λ△ on those thin stripes, and set Λ̃m,n = 1 for the rest of the

triangles. As explained in Section 1.2, as n→ ∞, the prescribed construction should produce approximately
the desired linear function on △, at effectively zero cost.

This concludes our overview of the construction of Λ̃m,n. The precise construction is carried out in Sec-
tion 6.3 in the following, and in Section 6.4 we verify that the resulting Hopf–Lax function G [Λm,n, g

ic]
converges to g, under a limit procedure. Even though the preceding heuristic discussion invokes inhomo-

geneous Burgers equation as a motivation for constructing Λ̃m,n, our analysis in the following completely
bypasses references to PDEs. Instead, we work directly with the variational formula (5.3) of Hopf and Lax.
To prepare for this, in Section 6.2 we establish some elementary properties of the Hopf–Lax function.

6.2. Properties of the Hopf–Lax function. Let us first setup the notations. For a given setA ⊂ [0, T ]×R

and h ∈ D ∩ C([0, T ], E ), we define the localization GA[S, f ] of (5.3) onto A as follows:

GA[S, h] : A → R, GA[S, h](t, ξ) := inf
w∈WA(t,ξ)

{
Θtw,t(w;S) + h(tw, w(tw))

}
, (6.1)

where WA(t, ξ) denotes the set of piecewise C1 paths that lie within A◦ and connect (t, ξ) to the boundary
∂A := A \ A◦ of A, i.e.,

WA(t, ξ) := {w : [tw, t] → R :w piecewise C1, (s, w(s))|s∈(tw ,t) ∈ A◦, (6.2)

w(t) = ξ, (tw, w(tw)) ∈ ∂A}.

The expression (6.1) depends on (S, h) only through (S|A◦ , h|∂A), and is hence referred to as the localization
onto A. For the special case A := [s0, T ]× R, s0 ∈ [0, T ], sightly abusing notations, we write

Gs0 [S, f ] : [t0, T ]× R → R, Gs0 [S, f ](t, ξ) := inf
w∈Ws0(t,ξ)

{
Θs0,t(w;S) + f(w(s0))

}
, (6.3)

where f ∈ E and Ws0 (t, ξ) := {w : [s0, T ] → R : w piecewise C1, w(t) = ξ}.
Recall that, by definition, each speed function S is bounded by λ. We hence refer to λ as the light speed,

and let

C(t0, ξ0) :=
{
(t, ξ) : t ∈ [0, t0], |ξ − ξ0| ≤ λ(t0 − t)

}
(6.4)

denote the light cone going backward in time from (t0, ξ0).
The following lemma contains the elementary properties of the Hopf–Lax function that will be used in

the sequel.

Lemma 6.1. Let S, S1, S2 be speed functions, f ∈ D .

(a) Let A ⊂ [0, T ]× R. The Hopf–Lax function (5.3) localizes onto A as

G [S, f ]
∣∣
A
= GA[S,G [S, f ]].

Similarly, let s0 ≤ s1 ∈ [0, T ]. We have

G [S, f ]|[s0,T ]×R = Gs0 [S, f0], where f0(·) := G [S, f ](s0, ·),
Gs0 [S, f0]|[s1,T ]×R = Gs1 [S, f1], where f1(·) := G [S, f0](s1, ·).

(b) We have

0 ≤ G [S, f ](t′0, ξ0)− G [S, f ](t0, ξ0) ≤
λ
4 (t

′
0 − t0), ∀t0 ≤ t′0 ∈ [0, T ], ξ0 ∈ R, (6.5)

0 ≤ G [S, f ](t0, ξ
′
0)− G [S, f ](t0, ξ0) ≤ ξ′0 − ξ0, ∀t0 ∈ [0, T ], ξ0 ≤ ξ′0 ∈ R. (6.6)

0 ≤ Gs0 [S, f ](t
′
0, ξ0)− Gs0 [S, f ](t0, ξ0) ≤

λ
4 (t

′
0 − t0), ∀t0 ≤ t′0 ∈ [s0, T ], ξ0 ∈ R, (6.7)

0 ≤ Gs0 [S, f ](t
′
0, ξ0)− Gs0 [S, f ](t0, ξ0) ≤ ξ′0 − ξ0, ∀t0 ∈ [s0, T ], ξ0 ≤ ξ′0 ∈ R. (6.8)

In particular G [S, f ] ∈ D ∩C([0, T ], E ).
(c) Given a piecewise C1 path w : [s0, t0] → R and any t′0 ∈ [s0, t0], there exists a piecewise C1 path

v : [s0, t0] → R such that

v|[t′0,t0] = w|[t′0,t0], (6.9)

(t, v(t))|t∈[s0,t′0]
∈ C(t′0, w(t

′
0)) (6.10)
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Θs0,t0(v;S) + f(t0, v(t0)) ≤ Θs0,t0(w;S) + f(t0, w(t0)). (6.11)

Namely, without making the functional Θs0,t0(w;S) + f(t0, w(t0)) larger, we can replace w with a path
that: agrees with w on [t′0, t0]; and lies within a the light cone C(t′0, w(t

′
0)) for t ∈ [s0, t

′
0].

(d) Let f1, f2 ∈ E , and s0 ∈ [0, T ]. For any given (t0, ξ0) ∈ [s0, T ]× R, let

C′(s0, t0, ξ0) := C(t0, ξ0) ∩
(
(s0, t0)× R

)
(6.12)

denote the restriction of C(t0, ξ0) onto t ∈ (s0, t0). If S1|C′(s0,t0,ξ0) = S2|C′(s0,t0,ξ0) and f1(ξ)|(s0,ξ)∈C(t0,ξ0) =
f2(ξ)|(s0,ξ)∈C(t0,ξ0), then

Gs0 [S1, f1](t0, ξ0) = Gs0 [S2, f2](t0, ξ0).

(e) Let f1, f2 ∈ E , and s0 ∈ [0, T ]. We have
∣∣G [S, f1](t0, ξ0)− G [S, f2](t0, ξ0)

∣∣ ≤ sup
|ξ−ξ0|≤t0λ

|f1(ξ) − f2(ξ)|, ∀(t0, ξ0) ∈ [0, T ]× R.

∣∣Gs0 [S, f1](t0, ξ0)− Gs0 [S, f2](t0, ξ0)
∣∣ ≤ sup

|ξ−ξ0|≤(t0−s0)λ

|f1(ξ)− f2(ξ)|, ∀(t0, ξ0) ∈ [s0, T ]× R.

Proof. (a) We prove only the statement for GA[S, f ], as the other statements follow similarly. Fix (t0, ξ0) ∈ A.
Under the convention, for any given w ∈ W (t0, ξ0), consider its first exist time s⋆ := inf{s ∈ [tw, t0] :
(s, w(s)) ∈ A◦}∧ t0 from A, and cut w into two pieces accordingly as: w1 : [0, s⋆] → R and w2 : [s⋆, t0] → R.
Under this set up we have

Θ0,t0(w;S) + g(0, w(0)) = Θs⋆,t0(w2;S) + Θ0,s⋆(w1;S) + g(0, w1(0)). (6.13)

For such w, the resulting paths w2 and w1 are WA(t0, ξ0)-valued and W (s⋆, w(s⋆))-valued, respectively.
Conversely, given w2 ∈ WA(t0, ξ0) and w1 ∈ W (tw2 , w2(tw2)), the joint path w(t) := w1(t)1[0,tw2)

(t) +

w2(t)1[tw2 ,t0]
(t) is W (t0, ξ0)-valued. Hence, in (6.13), taking infimum over w ∈ W (t0, ξ0) is equivalent

to taking infimum over w2 ∈ WA(t0, ξ0) and w1 ∈ W (tw2 , w2(tw2)). This concludes the desired result
G [S, f ](t0, ξ0) = GA[S,G [S, f ]].

(b) We prove only (6.5)–(6.6), as (6.7)–(6.8) follow similarly. To this end, we note the following useful
properties of θ(·), which are readily verified from the definition (5.6):

uθ
(
β
u

)
= β+, ∀α ∈ R, u ∈ (0,∞) with |αu | ≥ 1, (6.14)

u 7→ uθ(αu ) is nondecreasing in u ∈ [0,∞), ∀α ∈ R. (6.15)

Fixing t0 ≤ t′0 ∈ [0, T ] and ξ0 ≤ ξ′0 ∈ R, we consider a generic path w ∈ W (t0, ξ0). For small δ > 0 we
perform a surgery on w to obtain wδ ∈ W (t0, ξ

′
0):

wδ(t) := w(t)1[0,t0−δ](t) +
ξ′0−w(t0−δ)

δ (t− t0 + δ)1[t0−δ,t0](t).

That is, we let wδ follow w for t ∈ [0, t0 − δ] and then linearly connect wδ(t0 − δ) to (t0, ξ
′
0). Recall that

speed functions are bounded by λ. Under this assumption, using (6.15) gives

Θ0,t0(wδ;S) = Θ0,t0−δ(w;S) + Θt0−δ,t0(w;S) ≤ Θ0,t0−δ(w;S) + δλθ(
ξ′0−w(t0−δ)

δλ
).

Letting δ ↓ 0 using (6.14) for β = ξ′0 − w(t0 − δ), we obtain

lim sup
δ↓0

Θ0,t0(wδ;S) ≤ Θ0,t0(w;S) + (ξ′0 − w(t0))+ = Θ0,t0(w;S) + ξ′0 − ξ0.

Adding f(w(0)) = f(wδ(0)) to both sides gives

G [S, f ](t0, ξ
′
0) ≤ lim sup

δ↓0

{
Θ0,t0(wδ ;S) + f(wδ(0))

}
≤ Θ0,t0(w;S) + f(w(0)) + ξ′0 − ξ0.

Since w ∈ W (t0, ξ0), further taking infimum over w gives G [S, f ](t0, ξ
′
0) − G [S, f ](t0, ξ0) ≤ ξ′0 − ξ0. This

proves one half of (6.6). The other half, G [S, f ](t0, ξ0)− G [S, f ](t0, ξ
′
0) ≥ −(ξ′0 − ξ0), is proven similarly, by

performing the same type of surgery on any given w ∈W (t0, ξ
′
0). We omit repeating the argument here.

We now turn to showing (6.5). First, for any given w ∈ W (t0, ξ0), continuing the path vertically gives
v(t) := w(t)1t∈[0,t0] + ξ01t∈(t0,t′0]

∈ W (t′0, ξ0). Referring to the definition (5.6) of Θt1,t2(w;S), we have that

Θt0,t′0(v;S) ≤ λ(t′0 − t0)θ(0) = λ(t′0 − t0)
1
4 . This gives G [S, f ](t′0, ξ0) − G [S, f ](t0, ξ0) ≤ 1

4λ(t
′
0 − t0). This
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settles one half of (6.5). To show the other half, we apply Part(a) with s0 = t0 to localize the expression
G [S, f ] onto t ∈ [t0, T ] as

G [S, f ](t′0, ξ0) = Gt0 [S, f0](t
′
0, ξ0) = inf

w∈Wt0 (t
′
0,ξ0)

{
Θt0,t′0(w;S) + G [S, f ](t0, w(t0))

}
. (6.16)

The convexity of ξ 7→ θ(ξ) gives

Θt1,t2(w;S) ≥(t2 − t1)uθ
( 1

u

ˆ t2

t1

w′(t)dt
)∣∣∣
u=

ffl t2
t1
S(t,w(t))dt

= (t2 − t1)uθ
(w(t2)− w(t1)

(t2 − t1)u

)∣∣∣
u=

ffl t2
t1
S(t,w(t))dt

. (6.17)

Also, by (6.6) we have G [S, f ](t0, w(t0)) ≥ G [S, f ](t0, ξ0)− (w(t0)− ξ0)−. Using this and (6.17) for (t1, t2) =
(t0, t

′
0) in (6.16) gives

G [S, f ](t′0, ξ0) ≥ inf
w(t0)∈R

inf
u∈(0,λ]

{
(t′0 − t0)uθ

(w(t′0)− w(t0)

(t′0 − t0)u

)
+ G [S, f ](t0, ξ0)− (w(t0)− ξ0)−

}
. (6.18)

By (6.15), the infimum over u ∈ (0, λ] in (6.18) occurs at u ↓ 0. Taking such a limit u ↓ 0 using (6.14) for
β = w(t′0)− w(t0) gives

lim
u↓0

(t′0 − t0)uθ
(w(t′0)− w(t0)

(t′0 − t0)u

)
= (w(t′0)− w(t0))+ = (ξ0 − w(t0))+.

From this we then obtain

G [S, f ](t′0, ξ0) ≥ inf
w(t0)∈R

{
(ξ0 − w(t0))+ + G [S, f ](t0, ξ0)− (w(t0)− ξ0)−

}
≥ G [S, f ](t0, ξ0).

This completes the proof of (6.5).

(c) Fixing s0 ≤ t′0 ≤ t0 ∈ [0, T ], a piecewise C1 path w : [s0, t0] → R, we write C := C(t0, w(t0)) to simplify
notations. Our goal is to construction v ∈W (t0, w(t0)) that satisfies (6.9)–(6.11). To this end, without lost
of generality assume (t, w(t)) /∈ C, for some t ∈ [s0, t

′
0), otherwise simply take v = w. For such a path w let

s⋆ := inf{t ∈ [s0, t
′
0] : (t, w(t)) /∈ C} denote the first exists time from C. Let (s0, ξ

±
0 ) denote the intersection

of ∂C and {s0} × R, i.e., ξ±0 := w(t′0)± λ(t′0 − s0). We set

v(t) := w(t)1[s0,s⋆)∪(t′0,t0]
(t) +

(
(t− s⋆)

w(t′0)− α

t′0 − s⋆
+ α

)
1[s⋆,t′0]

(t),

α :=





w(s⋆), if s⋆ > s0,
ξ+0 , if s⋆ = s0, and w(s0) ∈ (ξ+0 ,∞),
ξ−0 , if s⋆ = s0, and w(s0) ∈ (−∞, ξ−0 ).

Such a path v indeed satisfies (6.9)–(6.10). To verify the last condition (6.11), using w|[s0,s⋆)∪(t′0,t0]
=

v|[s0,s⋆)∪(t′0,t0]
, we write

(
Θs0,t0(w;S) + f(w(s0)

)
−
(
Θs0,t0(v;S) + f(v(s0))

)

=

{
Θs⋆,t′0(w;S)−Θs⋆,t′0(v;S) , if s⋆ > s0,(
Θs⋆,t′0(w;S) + f(w(s0))

)
−
(
Θs⋆,t′0(v;S) + f(α)

)
, if s⋆ = s0.

(6.19)

Next, apply (6.17) with (t1, t2) = (s⋆, t
′
0) to get

Θs⋆,t′0(w;S) ≥ (t′0 − s⋆)u⋆θ
(w(t0)− w(s⋆)

(t′0 − s⋆)u⋆

)
where u⋆ :=

 t′0

s⋆

S(t, w(t))dt. (6.20)

Since S ≤ λ, we have u⋆ ≤ λ, so w(t0)−w(s⋆)
(t′0−s⋆)u⋆

≥ |w(t′0)−w(s⋆)

(t0−s⋆)λ
| = 1. With this property, using (6.14) for

β = w(t0)−w(s⋆)
t0−s⋆

and u = u⋆ in (6.20) gives

Θs⋆,t′0(w;S) ≥ (w(t′0)− w(s⋆))+. (6.21)
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As for Θs⋆,t′0(v;S), since the path v has a constant derivative v′(t) = ±λ for t ∈ (s⋆, t
′
0), using (6.14) for

β = v′(t) and u = S(t, v(t)), and integrating the result over t ∈ (s⋆, t
′
0), we obtain

Θs⋆,t′0(v;S) =

ˆ t′0

s⋆

(v′(t))+dt = (v(t′0)− v(s⋆))+ = (w(t′0)− v(s⋆))+. (6.22)

Given (6.19), Our goal of showing (6.11) amounts to showing the r.h.s. of (6.19) is nonnegative. For
the case s⋆ > s0, we have v(s⋆) = w(s⋆), so combining (6.21)–(6.22) gives Θs⋆,t′0(w;S) − Θs⋆,t′0(v;S) ≥ 0.
Inserting this into (6.19) gives the desired result. For the case s⋆ = s0, we consider further the sub-cases
w(s0) ∈ (−∞, ξ−0 ) and w(s0) ∈ (ξ+0 ,∞), as follows:

• if w(s0) ∈ (ξ+0 ,∞), we have f(w(s0)) ≥ f(ξ+0 ) = f(α). Using this and (6.21)–(6.22) gives
(
Θs⋆,t′0(w;S) + f(w(s0))

)
−
(
Θs⋆,t′0(v;S) + f(α)

)
≥ (w(t′0)− w(s0))+ − (w(t′0)− ξ+0 )+ = 0.

• if w(s0) ∈ (−∞, ξ−0 ), f(w(s0)) ≥ f(ξ−0 ) − (ξ−0 − w(s0)) = f(α) − (ξ−0 − w(s0)). Using this and (6.21)–
(6.22) gives

(
Θs⋆,t′0(w;S) + f(w(s0))

)
−
(
Θs⋆,t′0(v;S) + f(α)

)

≥ (w(t′0)− w(s0))+ − (w(t′0)− ξ−0 )+ − (ξ−0 − w(s0)) = 0.

The preceding discussions verify that (6.19) is nonnegative.

(d) Fix (t0, ξ0) ∈ [s0, T ]× R. Applying Part(c) with (s0, t
′
0, t0) = (s0, t0, t0), have that

Gs0 [S, f ](t0, ξ0) :=
{
Θs0,t0(w;S) + f(w(s0)) : w ∈Ws0(t0, ξ0), (t, w(t))|t∈[s0,t0] ∈ C(t0, ξ0)

}
(6.23)

=
{
Θs0,t0(w;S) + f(w(s0)) : w ∈Ws0(t0, ξ0), (t, w(t))|t∈(s0 ,t0) ∈ C′(s0, t0, ξ0)

}
.

The last expression depends on S and f only through S|C′(s0,t0,ξ0) and f(ξ)|ξ:(s0,ξ)∈C(t0,ξ0). From this we
conclude the desired result.

(e) Similarly to (6.23), applying Part(c) with (s0, t
′
0, t0) = (0, t0, t0) gives

G [S, f ](t0, ξ0) :=
{
Θ0,t0(w;S) + f(w(s0)) : w ∈W (t0, ξ0), (t, w(t))|t∈[0,t0 ] ∈ C(t0, ξ0)

}
. (6.24)

The desired results follow immediately by comparing the expressions (6.23)–(6.24) for f = f1 and for
f = f2. �

In view of the overview given in Section 6.1, to prepare for the construction of Λ̃m,n, here we solve
explicitly the variational formula (5.3) of Hopf and Lax, for a few piecewise constant speed functions S and
piecewise linear initial conditions f . To setup notations, fix κ, κ−, κ+ ∈ (0,∞), ρ, ρ−, ρ+ ∈ (0, 1), and set

λ := κ
ρ(1−ρ) , λ

± := κ±

ρ±(1−ρ±) . We assume λ, λ± ∈ (0, λ]. Fix further ζ0 ∈ R and s0 ∈ [0, T ], we divide the

region [s0, T )× R into two parts: through a vertical cut into

A− := [s0, T )× (−∞, ζ0), A+ := [s0, T )× (ζ0,∞); (6.25)

or through a diagonal cut into

B− := {(t, ξ) : ξ < ζ0 +
b
τ (t− s0), t ∈ [s0, T )}, B+ := {(t, ξ) : ξ > ζ0 +

b
τ (t− s0) t ∈ [s0, T )}. (6.26)

Under these notations, consider a pair (S, f) of speed function and E -valued profile, of the following form:

(a) constant S := λ, and linear f ∈ E with f ′ := ρ;
(b) piecewise constant S with S|A± := λ± and unique extension onto [s0, T )×R by lower semi-continuity,

and a piecewise linear f ∈ E with f ′|(−∞,ζ0) = ρ− and f ′|(ζ0,∞) = ρ+;

(c) piecewise constant S with S|B± := λ± and unique extension onto [s0, T )× R by lower semi-continuity,
and a piecewise linear f ∈ E with f ′|(−∞,ζ0) = ρ− and f ′|(ζ0,∞) = ρ+;

(d) constant speed function S := 1, and a piecewise linear f ∈ E with f ′|(−∞,ζ0) = ρ− and f ′|(ζ0,∞) = ρ+;

See Figure 7 for an illustration.
For each of the case (b)–(d) in the preceding, we assume the following condition:

(b) κ− = κ+; (6.27)

(c) κ− + b
τ ρ

− = κ+ + b
τ ρ

+, (6.28)

(d) κ− + κ− = κ+. (6.29)
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(a) (b) (c) (d)

s0
ζ0ζ0ζ0

S = λS = λ

S = λ−

S = λ−

S = λ+

S = λ+

f ′ = ρ f ′ = ρ−f ′ = ρ−f ′ = ρ− f ′ = ρ+f ′ = ρ+f ′ = ρ+

Figure 7. Four types of (S, f)

Under these assumptions, for each of the case (a)–(d) in the preceding, we consider a piecewise linear function
Γ, specified by its derivatives and value at (s0, 0), as follows:

Γ ∈C([s0, T ]× R), Γ(s0,R) := f(0),

(a) ∇Γ(t, ξ) := (κ, ρ), ∀(t, ξ) ∈ [s0, T ]× R,

(b) ∇Γ(t, ξ) := (κ±, ρ±), ∀(t, ξ) ∈ A±; (6.30)

(c) ∇Γ(t, ξ) := (κ±, ρ±), ∀(t, ξ) ∈ B±;

(d) ∇Γ(t, ξ) := (κ±, ρ±), ∀(t, ξ) ∈ A±.

Indeed, given f(0), (6.30) admits at most one such function Γ. The conditions (6.27)–(6.29) ensures the
existence of such Γ. The following Lemma shows that, under suitable conditions, the Hopf–Lax function
G [S, f ] is given by the piecewise linear Γ for each of the case (a)–(d).

Lemma 6.2. Let κ, κ±, ρ, ρ±, λ, λ± be as in the preceding, and assume λ, λ± ∈ (0, λ]. Consider (S, f) of the
form (a)–(d) as in the preceding. For each of the cases, we assume (6.27)–(6.29) and, additionally:

(b) 2ρ− − 1 ≥ 0, or 2ρ+ − 1 ≤ 0; (6.31)

(c) λ−(2ρ− − 1) ≥ b
τ , or λ+(2ρ+ − 1) ≤ b

τ ; (6.32)

(d) ρ− + ρ+ = 1, ρ− ≥ ρ+. (6.33)

Then, the Hopf–Lax function G [S, f ] matches the piecewise linear Γ as in (6.30):

G [S, f ] = Γ.

Remark 6.3. In the language of Figure 5, the conditions (6.31)–(6.32) amount to saying that characteristics
must not diverge along the discontinuity of S. As for (6.33), under the assumption (6.29) the first condition
ρ− + ρ+ = 1 together with (6.29) ensures λ± = 1, which is consistent with the form of S as in (d). This
being the case, we must have ρ− ≥ ρ+ to avoid diverging characteristics.

Proof. Assume without lost of generality s0, ζ0 = 0 and f(0) = 0. Fixing arbitrary (t0, ξ0) ∈ [0, T ]× R, we
proceed by solving the variational problem:

inf
w∈W (t0,ξ0)

{
Θ0,t0(w;S) + f(w(0))

}

for each of the cases (a)–(d).

(a) Applying (6.17) with (t1, t2) = (0, t0) gives Θ0,t0(w;λ) ≥ t0λθ(
ξ−w(0)
t0λ

). Add ρw(0) to both sides of

the inequality, and further optimize over w(0). We obtain

G [λ, f ](t0, ξ0) ≥
(
t0λθ(

ξ−w(0)
t0λ

) + ρw(0)
)∣∣
w(0)=ξ−(2ρ−1)λt0

= κt0 + ρξ0.

Conversely, the linear path w̃(t) := ξ0 − (2ρ − 1)λ(t0 − t), w̃ ∈ W (t0, ξ0), does yield the desired value, i.e.,
Θ0,t0(w0;λ) + ρw̃(0) = κt0 + ρξ0. This concludes the desired result:

G [λ, ρξ](t0, ξ0) = inf
w∈W (t0,ξ0)

{
Θ0,t0(w;λ) + ρw(0)

}
= κt0 + ρξ0, for λ :=

κ

ρ(1− ρ)
. (6.34)
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(b) Assume λ− ≤ λ+ for simplicity of notations. The proof of the other scenario λ− > λ+ is similar.
We consider first the case when (t0, ξ0) sits on where S is discontinuous, i.e., ξ0 = ζ0 := 0, and prove
G [S, f ](t0, 0) = κ−t0. To this end, given any w ∈ W (t0, 0), with S(t0, w(t0)) = λ−, let s0 := inf{[0, t0] :
S(s, w(s)) = λ−} be the entrance time of w into the region [0, T ]× (−∞, 0].

• If s0 = 0, we have w(s0) ≤ 0 and S(s, w(s))|s∈[0,t0 ] = λ−. The last two conditions give Θ0,t0(w;S) +

f(w(0)) = Θ0,t0(w;λ
−) + ρ−w(0). Combining this with (6.34) for ξ0 = 0 and (κ, ρ) = (κ−, ρ−) gives

Θ0,t0(w;S) + f(w(0)) = Θ0,t0(w;λ
−) + ρ−w(0) ≥ κ−t0.

• If s0 > 0, decompose Θ0,t0(w;S) + f(w(0)) as Θs0,t0(w;S) + (Θ0,s0(w;S) + ρ+w(0)). For the first term
apply (6.17) with (t1, t2) = (s0, t0) to get

Θs0,t0(w;S) ≥ (t0 − s0)λ
−θ(0) = (t0 − s0)

1
4λ

−

≥ (t0 − s0)ρ
−(1− ρ−)λ− = (t0 − s0)κ

−. (6.35)

For the second term, with S(0, w(s))|s∈[0,s0) = λ+, applying (6.17) with (t1, t2) = (0, s0) gives

Θ0,s0(w;S) + ρ+w(0) ≥ s0λ
+θ(−w(0)

s0λ+ ) + ρ+w(0). (6.36)

Let w⋆(t) := w(0) − tw(0)
t0

denote the linear path that joins (0, w(0)) and (t0, 0). Applying (6.34) with

(t0, ξ0;κ, ρ) = (s0, 0;κ
+, ρ+) gives

s0λ
+θ(−w(0)

s0λ+ ) + ρ+w(0) = Θ0,s0(w⋆;λ
+) + ρ+w⋆(0) ≥ κ+t0.

Inserting this into (6.36), and combining the result with (6.35), we obtain

Θ0,t0(w;S) + f(w(0)) ≥ κ−(t0 − s0) + κ+s0 = κ−t0.

The preceding argument gives G [S, f ](t0, 0) ≥ κ−t0. Conversely, for the linear paths

w̃−(t) := λ−(2ρ− − 1)(t− t0),

w̃+
δ (t) := λ+

(
(2ρ+δ − 1)(t− t0), ρ+δ := ρ+ ∧ (1− δ),

it is straightforward to verify that

Θ0,t0(w̃
−;S) + f(w̃−(0)) = (ρ−)2t0λ

− − ρ−
∣∣∣λ−(2ρ− − 1)(−t0)

∣∣∣ = κ−t0, if 2ρ− − 1 ≥ 0,

Θ0,t0(w̃
+
δ ;S) + f(w̃δ2(0)) = (ρ+δ )

2t0λ
+ + ρ+

∣∣∣λ+(2ρ+δ − 1)(−t0)
∣∣∣ δ↓0
−−→ κ+t0, if 2ρ+ − 1 ≤ 0.

That is, under the assumption (6.31), one of the linear path w1 or wδ2 (under a limiting procedure δ ↓ 0)
does yield the value κ−t0 = κ+t0.

So far we have shown G [S, f ](t0, 0) = κ−t0, ∀t0 ∈ [0, T ]. Next, fix ξ0 < 0. Applying Lemma 6.1(a) with
A = [0, T ]× (−∞, 0) and h = G [S, f ], we localize the expression G [S, f ](t0, ξ0) onto [0, T ]× (−∞, 0) as

G [S, f ](t0, ξ0) = inf
w∈WA(t0,ξ0)

{
Θtw,t(w;S) + G [S, f ](tw, w(tw))

}
. (6.37)

Similarly, applying Lemma 6.1(a) with A = [0, T ]× (−∞, 0) and h = G [λ−, ρ−ξ] gives

G [λ−, ρ−ξ](t0, ξ0) = inf
w∈WA(t0,ξ0)

{
Θtw,t(w;λ

−) + G [λ−, ρ−ξ](tw, w(tw))
}
. (6.38)

In (6.38), further using (6.34) for (κ, λ) = (κ−, λ−) to replace G [λ−, ρ−ξ](t, ξ) with κ−t+ρ−ξ, we rewrite (6.38)
as

κ−t0 + ρ−ξ0 = inf
w∈WA(t0,ξ0)

{
Θtw,t(w;λ

−) + κ−tw + ρ−w(tw)
}
. (6.39)

The r.h.s. of (6.37) depends on S and G [S, f ] only through S|[0,T ]×(−∞,0), G [S, f ](·, 0) and G [S, f ](0, ξ)|ξ≤0.

Since S|[0,T ]×(−∞,0) = λ−, G [S, f ](t, 0) = κ−t, G [S, f ](0, ξ)|ξ≤0 = ρ−ξ, we conclude that the r.h.s. of (6.37)

and (6.39) must be the same. This gives G [S, f ](t0, ξ0) = κ−t0 + ρ−ξ0 = κ−t0 + f(ξ0) for ξ0 < 0. The case
ξ0 > 0 follows by the same localization and matching procedures.

(c) Assume λ− ≤ λ+ for simplicity of notations. The proof of the other scenario λ− > λ+ is similar. We
consider first the case when (t0, ξ0) sits on where S is discontinuous, i.e., ξ0 = b

τ t0, and prove G [S, f ](t0, ξ0) =
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(κ− + b
τ ρ

−)t0. To this end, for any given w ∈ W (t0, ξ0), with S(t0, w(t0)) = λ−, we let s0 := inf{[0, t0] :

S(s, w(s)) = λ−} be the entrance time of w into the region {(t, ξ) : ξ ≤ t bτ }.

• If s0 = 0, namely w(s0) ≤ 0 and S(s, w(s))|s∈[0,t0 ] = λ−, we have Θ0,t0(w;S)+f(w(0)) = Θ0,t0(w;λ
−)+

ρ−w(0). Combining this with (6.34) for (κ, ρ) = (κ−, ρ−) gives

Θ0,t0(w;S) + f(w(0)) = Θ0,t0(w;λ
−) + ρ−w(0) ≥ κ−t0 + ρ−ξ0 = (κ− + b

τ ρ
−)t0.

• If s0 > 0, decompose Θ0,t0(w;S) + f(w(0)) as Θs0,t0(w;S) + (Θ0,s0(w;S) + ρ+w(0)). For the first term
applying (6.17) with (t1, t2) = (s0, t0) gives

Θs0,t0(w;S) ≥ (t0 − s0)λ
−θ( b

τλ− ). (6.40)

For the second term, with S(0, w(s))|s∈[0,s0) = λ+, applying (6.17) with (t1, t2) = (0, s0) gives

Θ0,s0(w;S) + ρ+w(0) ≥ s0λ
+θ(w(s0)−w(0)

s0λ+ ) + ρ+w(0). (6.41)

Further, letting w⋆(t) := w(0) + tw(s0)−w(0)
s0

denote the linear path that joins (0, w(0)) and (s0, w(s0)),

applying (6.34) with (t0, ξ0;κ, ρ) = (s0, w(s0);κ
+, ρ+), we obtain

s0λ
+θ(w(s0)−w(0)

s0λ+ ) + ρ+w(0) = Θ0,s0(w⋆;λ
+) + ρ+w⋆(0) ≥ κ+s0 + w(s0)ρ

+. (6.42)

Use w(s0) = b
τ s0 and κ+ + b

τ ρ
+ = κ− + b

τ ρ
− in the last expression in (6.42), and then combine the

result with (6.41). We have

Θ0,s0(w;S) + ρ+w(0) ≥ (κ− + b
τ ρ

−)s0. (6.43)

Combining (6.40) and (6.43) gives

Θ0,t0(w;S) + ρ+w(0) ≥ (t0 − s0)λ
−θ( b

τλ− ) + (κ− + b
τ ρ

−)s0

≥ t0 min
{
λ−θ( b

τλ− ), κ− + b
τ ρ

−
}
. (6.44)

Let w⋆⋆(t) = b
τ t denote the linear path that goes along the discontinuity of S. Using (6.34) for

(t0, ξ0;κ, ρ) = (t0, w⋆⋆(t0);κ
−, ρ−) we have

t0λ
−θ( b

τλ− ) = Θ0,t0(w⋆⋆;λ
−) + ρ−w⋆⋆(0) ≥ κ−t0 + ρ−ξ0 = t0(κ

− + b
τ ρ

−).

Inserting this into (6.44) gives

Θ0,t0(w;S) + ρ+w(0) ≥ t0(κ
− + b

τ ρ
−).

The preceding argument gives G [S, f ](t0, ξ0) ≥ (κ− + b
τ ρ

−)t0. Conversely, for the linear paths

w−(t) := λ−(2ρ− − 1)(t− t0) +
b
τ t0,

w+
δ (t) := λ+(2ρ+δ − 1)(t− t0) +

b
τ t0, ρ+δ := ρ+ ∧

(
1
2

(
b

τλ+ + 1− δ
))
,

it is straightforward to verify that

Θ0,t0(w̃
−;S) + f(w−(0)) = (κ− + b

τ ρ
−)t0, if λ−(2ρ− − 1) ≥ b

τ ,

lim
δ↓0

Θ0,t0(w̃
+
δ ;S) + f(w+

δ (0)) = (κ+ + b
τ ρ

+)t0 = (κ− + b
τ ρ

−)t0, if λ+(2ρ+ − 1) ≤ b
τ .

That is, under the assumption (6.32), one of the linear paths wδi (under a limiting procedure) does yield the
value t0(κ

− + b
τ ρ

−).

So far we have shown G [S, f ](t, t bτ ) = (κ− + b
τ )t. The desired result G [S, f ](t, ξ) = f(ξ − b

τ t) + (κ− + b
τ )t

follows by the same localization and matching procedures as in Part(b).
(d) We consider first the case (t0, ξ0) sits on where S is discontinuous, i.e., ξ0 = 0, and prove G [S, f ](t0, 0) =

κt0. Fix a generic w ∈ W (t0, 0). Since f(ξ) = ρ−ξ1ξ<0 + ρ+ξ1ξ≥0, depending on where w(0) sits, we have

Θ0,t0(1;w) + f(w(0)) =

{
Θ0,t0(1;w) + ρ+w(0), if w(0) ≥ 0,
Θ0,t0(1;w) + ρ−w(0), if w(0) ≤ 0,

(6.45)

By (6.34) for ξ0 = 0 and (κ, ρ) = (ρ±(1 − ρ±), ρ±) (where κ := ρ±(1 − ρ±) so that λ := κ
ρ±(1−ρ±) = 1), the

r.h.s. of (6.45) is bounded blew by
{
ρ−(1 − ρ−), if w(0) ≥ 0,
ρ+(1− ρ+), if w(0) < 0.



SPEED-N2 LDP OF THE TASEP 39

t

T

...

...
...

r∗−r∗

S1

S2

Sℓ∗

T0

T1

T2

Tℓ∗

3τ ′m

3τ ′m

6τ ′m

ξ

Figure 8. The Slabs Si (white boxes) and transition zones Ti (gray)

Under the assumption ρ− + ρ+ = 1 from (6.33), we have ρ−(1 − ρ−) = ρ+(1 − ρ+). This being the case,
taking the infimum over w ∈W (t0, 0) gives G [1, f ](t0, 0) ≥ ρ−(1− ρ−)t0. Conversely, under the assumption
ρ− ≥ ρ+ from (6.33), the linear paths w̃±(t) := (2ρ± − 1)(t− t0) both give the optimal value ρ±(1− ρ±)t0.
That is,

Θ0,t0(1; w̃
−) + f(w̃−(0)) = ρ−(1− ρ−)t0 = ρ+(1− ρ+)t0 = Θ0,t0(1; w̃

+) + f(w̃+(0)).

So far we have shown G [1, f ](t, 0) = ρ−(1 − ρ−)t. The desired result G [1, f ](t, ξ) = f(ξ) + ρ−(1 − ρ−)t
follows by the same localization and matching procedures as in Part(b). �

6.3. Constructing Λ̃m,n. First, we set Λ̃m,n to unity out side of [0, T ]× [−r∗, r∗], i.e.,

Λ̃m,n(t, ξ)||ξ|>r∗ := 1. (6.46)

Recall that each △ ∈ Σ has height τ and width b, such that T
τ ,

r∗
b ∈ N (the latter implies r∗

b ∈ N). We write

ℓ∗ := T
τ ∈ N. Given the auxiliary parameter m ∈ N, we divide τ, b into m parts, and introduce the scales:

τ ′m := τ
m , b′m := b

m . (6.47)

Under these notations, we divide the region [0, T ]× [−r∗, r∗] into ℓ∗ horizontal slabs, each has height τ−6τ ′m:

Si := [ti, ti]× [−r∗, r∗], i = 1, . . . , ℓ∗, (6.48)

ti := (i − 1)τ + 3τ ′m, ti := iτ − 3τ ′m. (6.49)

We omit the dependence of Si, ti and ti onm to simplify notations. Such a convention is frequently practiced
in the sequel. In between the slabs Si are thin, horizontal stripes of height 6τ ′m or 3τ ′m:

Ti :=
(
[ti, ti+1] ∩ [0, T ]

)
× [−r∗, r∗], i = 0, . . . , ℓ∗. (6.50)

We refer to these regions Ti as the transition zones, transitioning from one slab to another. See Figure 8.

We set Λ̃m,n to unity within the interior T ◦
i of each transition zone:

Λ̃m,n|T ◦
i
:= 1, i = 0, . . . , ℓ∗. (6.51)

Fixing i ∈ {1, . . . , ℓ∗}, we now focus on constructing Λ̃m,n within the slab Si. To this end, we will first

construct a partition Zi of Si, and then, build Λ̃m,n as a piecewise constant function on Si according to this
partition Zi.
Constructing the partition Zi. To setup notations, we write

(t1, ξ1)−(t2, ξ2) := {(t, ξ2−ξ1t2−t1
(t− t1)}t∈[t1,t2]
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for the line segment joining (t1, ξ1) and (t2, ξ2), and consider the sets of vertical and diagonal edges from Σ
that intersect Si:

Ev
i :=

{
e = ((i − 1)τ, jb)−(iτ, jb) : j = − r∗

b , . . . ,
r∗

b

}
,

Ed
i :=

{
e = ((i − 1)τ, (j − 1)b)−(iτ, jb) : j = − r∗

b + 1, . . . , r
∗

b

}
. (6.52)

Around each vertical or diagonal edge e ∈ Ev
j ∪ Ev

j , we introduce a buffer zone of width 2b′m or b′m, as
depicted in Figure 9. More explicitly, for ev = ((i − 1)τ, jb)−(iτ, jb) ∈ Ev

i ,

Be := [ti, ti]×
(
[jb− b′m, jb+ b′m] ∩ [−r∗, r∗]

)
,

and for ed = ((i− 1)τ, (j − 1)b)−(iτ, jb) ∈ Ed
i

Be := {(t, ξ) : |(ξ − (j − 1)b)− (t− (i− 1)τ)| ≤ b′m, t ∈ [ti, ti]}. (6.53)

We call Be a vertical buffer zone if e ∈ Ev
i , and likewise call Be a diagonal buffer zone if e ∈ Ed

i .
Referring to Figure 9, the buffer zones Be and the transition zones Ti shrink the triangle △ ∈ Σ, resulting
in trapezoidal regions. Despite the trapezoidal shapes, we refer to these regions as reduced triangles,
use the symbol ⨻ to denote them, and let Σ×

i be the collection of all reduced triangles within the slab Si.
Each reduced triangle ⨻ is uniquely contained in triangle △ ∈ Σ. Under such a correspondence, we set
(κ⨻, ρ⨻, λ⨻) := (κ△, ρ△, λ△).

2b′m

2b′m b′mb′m

· · ·· · ·

Figure 9. Buffer zones (yellow) and reduced triangles (gray)

As mentioned in Section 6.1, those ⨻ ∈ Σ×
i with λ⨻ < 1 need an intermittent construction. To this end,

we divide the slab Si into thinner slabs, each of height τ ′m, as

Si,i′ := [ti,i′ , (i − 1)τ + i′ti,i′ ]× [−r∗, r∗], i′ = 4, . . . ,m− 3, (6.54)

ti,i′ := (i− 1)τ + (i′ − 1)τ ′m = ti + (i− 4)τ ′m, ti,i′ := (i − 1)τ + i′τm = ti + (i− 3)τ ′m. (6.55)

With n ∈ N being an auxiliary parameter, we divide the scales τ ′m, b
′
m (as in (6.47)) into m2 parts, and

introduce the finer scales

τ ′′n :=
τ ′
m

n2 , b′′m,n :=
b′m
n2 . (6.56)

Now, fix ⨻ ∈ Σ×
i with λ⨻ < 1, and fix i′ ∈ {4, . . . ,m− 3}. Referring to Figure 10, on ⨻ ∩ Si,i′ , we place a

vertical stripe Ii′,j′′ (⨻) of width b′′m,n, every distance (m−1)b′′m,n apart. These stripes start from the vertical
edge of ⨻, and continue until reaching distance b′m from the hypotenuse. Making a vertical cut at distance
b′m from the hypotenuse, we denote the region beyond by Ii′,⋆(⨻); see Figure 10 We refer to Ii′,j′′(⨻) and
Ii′,⋆(⨻) as the intermittent zones.

Outside of the intermittent zones on ⨻∩Si,i′ are stripes of width (m−1)b′′m,n. We enumerate these regions
as Ri′,j′′ (⨻), as depicted in Figure 11a. We further divide each of these regions Ri′,j′′ (⨻) into two parts,
R1
i′,j′′ (⨻) on the left and R2

i′,j′′ (⨻) on the right, one of width r1m,n(⨻) and width r2m,n(⨻), respectively, as

depicted in Figure 11b. The values of r1m,n(⨻) and r2m,n(⨻) are given in (6.61)–(6.62) in the following. The

regions Ri′,j′′ (⨻), R1
i′,j′′ (⨻) and R2

i′,j′′(⨻) are referred to as residual regions. For convenient of notations,

in the following we do not explicitly specify the range of the indice i′, j′′ in Ii′,j′′(⨻), R1
i′,j′′ (⨻), etc., under

the conscientious that it alway runs through admissible values as described in the preceding.
Collecting the regions introduced in the preceding, we define the partition Zi of the slab Si as

Zi :=
{
Be : e ∈ Ev

i ∪ Ed
i

}
∪
{
⨻ ∈ Σ×

i : λ⨻ ≥ 1
}
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Ii′,⋆(⨻) Ii′,⋆(⨻)
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3
3

···
···

· · · · · ·

4 = j′′
5
⨻ ∩ Si,i′

... ...

m− 3

j′′ = 4
5

⨻ ∩ Si,i′

m− 3

b′m

b′m

b′′n b′′n(n−1)b′′n (n−1)b′′n

Figure 10. Intermittent zones (gray) on a given ⨻ with λ⨻ < 1

YY

Ri′,j′′ (⨻)Ri′,j′′ (⨻)

j′′=1 1=j′′2 23 3··· ···· · · · · ·

(a) Residual regions Ri′,j′′(⨻) (white areas) on ⨻ ∩ Si,i′

R1 R2

(n−1)b′′m,n

r1m,n(⨻) r2m,n(⨻)

(b) The region R = Ri′,j′′ (⨻), is fur-

ther divided into R1 = R1
i′,j′′

(⨻) and

R2 = R1
i′,j′′

(⨻).

Figure 11. Residual regions

∪
{
Ii′,⋆(⨻), Ii′,j′′ (⨻),R1

i′,j′′ (⨻),N 2
i′,j′′(⨻) : ⨻ ∈ Σ×

i , λ⨻ < 1
}
.

Further, collecting these partitions Zi, i = 1, . . . , ℓ∗, the transition zones Ti (as in (6.50)), and the ‘outer
regions’ [0, T ]× [r∗,∞) and [0, T ]× (−∞, r∗], we obtain a partition X of the entire domain [0, T ]× R:

X :=
{
[0, T ]× [r∗,∞), [0, T ]× (−∞,−r∗]

}
∪

ℓ∗⋃

i=0

{Ti} ∪
ℓ∗⋃

i=1

Zi. (6.57)

The edges of Z ∈ X collectively gives rise to a graph, and we call the collection of these edges the skeleton
Ske(X ). More precisely,

Ske(X ) :=
{
E = Z1 ∩ Z2 : Z1 6= Z2 ∈ X , E is not a point

}
. (6.58)

In the following we will also consider the coarser version Ẑ of Z :

Ẑi :=
{
Be : e ∈ Ev

i ∪ E
d
i

}
∪ Σ×

i . (6.59)

That is, we dismiss the intermittent construction on those ⨻ ∈ Σ×, λ⨻ < 1, and replace the regions
{Ii′,⋆(⨻), Ii′,j′′(⨻),R1

i′,j′′ (⨻),N 2
i′,j′′(⨻)} simply by {⨻} itself.
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Having constructed the partition Zi, we proceed to define Λ̃m,n on each region Z ∈ Zi of Zi. To do this
in a streamline fashion, in the following we assign a triplet (κZ , ρZ , λZ) to each Z ∈ Zi. To this end, let us
first prepare a simple result regarding (κ△, ρ△, λ△)△∈Σ.

Lemma 6.4. . Let e ∈ Ev

i ∪ Ed

i , i = 1, . . . , ℓ∗, be a vertical or diagonal edge, and △−,△+ ∈ Σ be the
neighboring triangles of e. If e is vertical, we have κ△− = κ△+ ; if e is diagonal, we have κ△− + b

τ ρ△− =

κ△+ + b
τ ρ△+ .

Proof. Parametrize e as e = (t, ξ)−(t, ξ) and consider the difference of g across the two ends of e. With g

being piecewise linear on △− and on △+, we have

κ△− , if e ∈ Ev
i

κ△− + b
τ ρ△− , if e ∈ Ed

i

}
=
g(t, ξ)− g(t, ξ)

t− t
=

{
κ△+ , if e ∈ Ev

i

κ△+ + b
τ ρ△+ , if e ∈ Ed

i

�

Previously, we have already associated the triplet (κ⨻, ρ⨻, λ⨻) := (κ△, ρ△, λ△) to each ⨻ ∈ Σ×, where
△ ⊃ ⨻ is the unique triangle that contains ⨻. We now proceed to do this for each other region Z ∈ Zi.

Defining the triplet (κZ , ρZ , λZ), for Z ∈ Zi.

• For a vertical buffer zone Be:
We let △− and △+ be the left and right neighboring triangles of e, set κe = κ△− = κ△+ , (κ△− = κ△+

by Lemma 6.4), and set (κe, ρe, λe) := (κe,
1
2 , 4κe).

• For a diagonal buffer zone Be:
We let △− and △+ be the left and right neighboring triangles of e. To define (κe, ρe, λe), we consider
the two cases separately, as follows.
∗ If the condition holds:

(2ρ△− − 1)λ△− < b
τ < (2ρ△+ − 1)λ△+ . (6.60)

By Lemma 6.4, κ△− + b
τ ρ△− = κ△+ + b

τ ρ△+ . We let α := κ△− + b
τ ρ△− denote this quantity, and let

F (ρ) := (2ρ− 1)
α− b

τ
ρ

ρ(ρ−1) . Under the condition (6.60), we necessarily have that ρ+ > 1
2 , and therefore

α > b
τ ρ

+ > b
2τ . It is then straightforward to verify that F is increasing on ρ ∈ [ 12 , 1) and that

F ([ 12 , 1)) = [0,∞). Further, using λ△± =
κ
△±

ρ
△± (1−ρ

△± ) and κ△± = α − b
τ ρ△± in (6.60), we have

that F (ρ△−) < τ
b < F (ρ△+). From these properties we see that F (ρ) = τ

b has a unique solution in

(12 , 1). We let ρe be this solution, and set λe := b/τ
(2ρe−1) and κe := λeρed(1 − ρe). To summarize,

(κe, ρe, λe) ∈ (0,∞)× (12 , 1)× (0,∞) is the unique solution of the following equations

κe = λeρe(1− ρe),

(2ρe − 1)λe =
b
τ ,

κe +
τ
b ρe = α := κ△− + m

τ ρ△− = κ△+ + m
τ ρ△+ .

∗ If the condition holds:

(2ρ△− − 1)λ△− ≥ b
τ , or (2ρ△+ − 1)λ△+ ≤ b

τ .

In this case we set (κe, ρe, λe) = (κ△− , ρ△− , λ△−).

• For the intermittent zones I = Ii′,⋆(⨻), Ii′,⋆(⨻), with λ⨻ < 1:
We let (κI , ρI , λI) := (κ⨻, ρ⨻, λ⨻).

• For the residual regions R1 = R1
i′,j′′((⨻)) and R2 = R2

i′,j′′ (⨻), with λ⨻ < 1:

Since λ⨻ < 1 and κ⨻ = λ⨻ρ⨻(1− ρ⨻), there are two solutions ρ1, ρ2 of the equation κ⨻ = ρ(1− ρ). We
order them as ρ1 > ρ2 ∈ [0, 1]. Under these notations, we set

(κR1 , ρR1 , λR1) := (κ⨻, ρ1, 1), (κR2 , ρR2 , λR2) := (κ⨻, ρ2, 1).

Note that, with ρ1 > ρ2 solving the equation κ⨻ = ρi(1 − ρi), we necessarily have ρ1 + ρ2 = 1.
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Recall that r1m,n(⨻) and r2m,n(⨻) denote the (yet to be specified) widths of the residual regions R1 =

R1
i′,j′′(⨻) and R2 = R2

i′,j′′(⨻). We now define

r1m,n(⨻) := (nb′′m,n − 1)
ρ⨻ − ρ1
ρ1 − ρ2

= (nb′′m,n − 1)
ρ⨻ − ρR1

i′,j′′
(⨻)

ρR1
i′,j′′

(⨻) − ρR2
i′,j′′

(⨻)

, (6.61)

r2m,n(⨻) := (nb′′m,n − 1)
ρ2 − ρ⨻

ρ1 − ρ2
= (nb′′m,n − 1)

ρR2
i′,j′′

(⨻) − ρ⨻

ρR1
i′,j′′

(⨻) − ρR2
i′,j′′

(⨻)

. (6.62)

We next list a few important properties of (κZ , ρZ , λZ)Z∈Z . These properties are readily verified from
the preceding construction. First,

κZ = λZρZ(1− ρZ), ∀Z ∈ Zi. (6.63)

Next, recall from (6.48) that Si denotes a slab. Consider vertical or diagonal edges E ∈ Ske(X ) in the
skeleton that is not on the boundary of the slabs Si, i = 1, . . . , ℓ∗:

Ske(X )′v :=
{
E ∈ Ske(X ) : E 6⊂

⋃ℓ∗

i=1
∂Si, E vertical

}
, Ske(X )′d :=

{
E ∈ Ske(X ) : E 6⊂

⋃ℓ∗

i=1
∂Si, E diagonal

}
.

Given E ∈ Ske(X )′v ∪ Ske(X )′d, letting Z+,Z− ∈ Z denote, respectively, the right and left neighboring
regions of E , we have

κZ− = κZ+ , if E ∈ Ske(X )′v, (6.64)

(κZ− + b
τ ρZ−) = (κZ+ + b

τ ρZ+), if E ∈ Ske(X )′d, (6.65)

(1− 2ρZ−) ≥ 0 or (1− 2ρZ+) ≤ 0, if E ∈ Ske(X )′v, (6.66)

(2ρZ− − 1)λZ− ≥ b
τ , or (2ρZ+ − 1)λZ+ ≤ b

τ , if E ∈ Ske(X )′d. (6.67)

Also, for a given pair of residual regions R1
i′,j′′(⨻) and R2

i′,j′′(⨻), we have

ρR1
i′,j′′

(⨻) + ρR2
i′,j′′

(⨻) = 1. ρR1
i′,j′′

(⨻) > ρR2
i′,j′′

(⨻), (6.68)

and, with r1m,n(⨻) and r2m,n(⨻) defined as in (6.61)–(6.62),

r1m,n(⨻)ρ1 + r2m,n(⨻)ρ2 = (nb′′m,n − 1)ρ⨻. (6.69)

Now, for the {λZ}Z∈Zi
defined in the preceding, we set

Λ̃m,n|Z◦ := λZ , Z ∈ Zi, i = 1, . . . , ℓ∗. (6.70)

This together with (6.46) and (6.51), defines Λ̃m,n ([0, T )×R)\ (
⋃

E∈Ske(X ) E), i.e., everywhere expect along

edges of the skeletons. To complete the construction, for any given (t, ξ) ∈
⋃

E∈Ske(X ) E , we define

Λ̃m,n(t, ξ) := lim
δ↓0

inf
{
Λ̃m,n(s, ζ) : (s, ζ) ∈ ([0, T )× R)\

(⋃
E∈Ske(X )

E
)
,

s ≥ t, |s− t|+ |ξ − ζ| < δ
}
. (6.71)

That is, we extend the value of Λ̃m,n onto the edges of the skeletons in such way that ξ 7→ Λ̃m,n(t, ξ) is

lower-semicontinuous for each t ∈ [0, T ), and t 7→ Λ̃m,n(t, ξ) is right-continuous for each ξ ∈ R.

This completes the construction of the speed function Λ̃m,n. We summarizes a few properties of Λm,n
that will be useful in the sequel. These properties are readily verified from the preceding construciton.

0 < λ =: inf
△∈Σ

λ△ ≤ Λ̃m,n(t, ξ) ≤ sup
△∈Σ

λ△ ≤ λ, ∀(t, ξ) ∈ [0, T )× R, (6.72)

lim
m→∞

lim
n→∞

∑

△∈Σ∗

ˆ

△

∣∣Λ̃m,n − (λ△ ∨ 1)
∣∣dtdξ = 0. (6.73)
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6.4. Estimating G [Λ̃m,n, g
ic]. Having constructed Λ̃m,n, in this subsection, we verify that the resulting

Hopf–Lax function G [Λ̃m,n, g
ic] does approximate the piecewise linear function g. More precisely, we show

in Proposition 6.8 in the following that, under the iterated limit n→ ∞, m→ ∞, G [Λ̃m,n, g
ic] converges to

g.
Recall from (6.48) and (6.54) the definitions of the slabs Si and Si,i′ , together with the corresponding ti,

ti, ti,i′ , ti,i′ from (6.49) and (6.55). Closely related to Λ̃m,n is the piecewise linear function Γi,i
′

m,n : Si,i′ → R,
defined by

Γi,i
′

m,n ∈ C(Si,i′ ,R), (6.74a)

∇Γi,i
′

m,n

∣∣
Z◦∩Si,i′

= (κZ , ρZ), ∀Z ∈ Zi, (6.74b)

Γi,i
′

m,n(ti, 0) = g(ti, 0). (6.74c)

Indeed, (6.74) admits at most one such Γi,i
′

m,n . On the other hands, The identities (6.64)–(6.65) guarantee

the existence of Γi,i
′

m,n that satisfies (6.74).
Recall from (6.4) that C(t, ξ) denote the light cone going back from (t, ξ). In the following we will often

work with on domain

D := {(t, ξ) : t ∈ [0, T ], ξ ∈ [−(T − t)λ− r∗, r∗ + (T − t)λ]}. (6.75)

This is the smallest region in [0, T ]× R that contains [0, T ]× [−r∗, r∗] and enjoys:

C(t, ξ) ⊂ D, ∀(t, ξ) ∈ D, (6.76)

Note also that [0, T ]× [−r∗, r∗] ⊂ D ⊂ [0, T ]× [−r∗, r∗].

The following result shows that, the Hopf–Lax function Gti,i′ [Λ̃m,n, f ] actually coincides with the piecewise

linear function Γi,i
′

m,n, provided that the initial condition f agrees with Γi,i
′

m,n.

Lemma 6.5. Fix i ∈ {1, . . . , ℓ∗}, i′ ∈ {4, . . . ,m− 3} and f ∈ E . If f(ξ) = Γi,i
′

(ti,i′ , ξ), ∀(ti,i′ , ξ) ∈ D, then

Gti,i′ [Λ̃m,n, f ]
∣∣
Si,i′∩D

= Γi,i
′

m,n

∣∣
Si,i′∩D

.

Proof. To simplify notations, throughout this proof we write Γi,i
′

m,n = Γ. Let

t⋆ := sup
{
s ∈ [ti,i′ , ti,i′ ] : Gti,i′ [Λ̃m,n, f ](t, ξ) = Γ(t, ξ), ∀(t, ξ) ∈ Si,i′ ∩D

}
(6.77)

denote the first time when the desired property fails. Our goal is to show t⋆ = ti,i′ . To this end, we advance

t⋆ by the small amount σ⋆ := b′′m/(λ+
b
τ ) and consider a generic point (t0, ξ0) ∈ D∩ ([t⋆, (t⋆+σ⋆)∧ ti,i′ ]×R).

Let f⋆(ξ) := Gsi,i′ [Λ̃m,n, f ](t⋆, ξ) denote the profile at time t⋆. Apply Lemma 6.1(a) for (s0, s1) = (ti,i′ , t⋆),
we write

Gti,i′ [Λ̃m,n, f ](t0, ξ0) = Gt⋆ [Λ̃m,n, f⋆](t0, ξ0). (6.78)

Recall the notation C′(s0, t0, ξ0) from (6.12), and write C′ := C(t⋆, t0, ξ0) to simplify notations. Let X := {ξ :
(ti,i′ , ξ) ∈ C(t0, ξ0)} denote the intersection of the light cone with the lower boundary of Si,i′ . As shown in

Lemma 6.1(d), the r.h.s. of (6.78) depends on (Λ̃m,n, f⋆) only through (Λm,n|C′ , f⋆|X ). Our next step is to
utilize this localization of dependence to evaluate the expression (6.78). First, With t⋆ defined in (6.77), we
necessarily have f⋆(ξ) = Γ(t⋆, ξ), ∀(t⋆, ξ) ∈ D. Also, by (6.76), {ti,i′} × X ⊂ D. Consequently,

f⋆|X = Γ(t⋆, ·)|X .
Next, recall the definition of the skeleton Ske(X ) from (6.58). We claim that C′ intersects with at most one
edge of Ske(X ), i.e.,

#
{
C′ ∩ E 6= ∅ : E ∈ Ske(X )

}
≤ 1. (6.79)

To see why, first note that, since C′ ⊂ (ti,i′ , ti,i′ )×R, the restricted cone C′ does not intersect with horizontal
edges of Ske(X ), and it suffices to consider vertical and diagonal edges of Ske(X ) within the slab Si,i′ .
From the preceding construction of Z ∈ Zi, we see that vertical and diagonal edges in Ske(X ) are at least
horizontally distance b′′m,n apart. Viewed as spacetime trajectories, vertical edges travel at zero velocity, and

diagonal edges travel at velocity b
τ . Since the cone C′ goes backward in time at a speed of at most λ, the
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time span of C′ has to be more than
b′′m,n

λ+ b
τ

=: σ⋆ for C′ to intersect with two vertical or diagonal edges in

Ske(X ). This, with C′ ⊂ [ti,i′ , ti,i′ + σ⋆], does not happen, so (6.79) follows.
Recall the four special types (a)–(d) of (S, f) from before Lemma 6.2, in Section 6.2. With (6.79) being

the case, the pair (Λ̃m,n,Γ(t⋆)), when restricted to C′ × X , coincides with (S, f) of the form considered in
Section 6.2 for s0 = t⋆, i.e.,

(
Λ̃m,n|C′ ,Γ(t⋆)|X

)
=

(
S|C′ , f |X

)
. (6.80)

The condition (6.27)–(6.29) holds thanks to (6.64)–(6.65). Given (6.80), we apply Lemma 6.1(d) with

(S1, f1;S2, f2) = (Λ̃m,n, f⋆;S0, f0), to replace (Λ̃m,n, f⋆) with (S, f) in (6.78) . This yields

Gti,i′ [Λ̃m,n, f ](t0, ξ0) = Gti,i′ [S, f ](t0, ξ0). (6.81)

Further, thanks to (6.63), (6.66)–(6.69), the conditions (6.31)–(6.33) hold. This being the case, we apply
Lemma 6.2 for s0 = t⋆ to conclude Gti,i′ [S, f ](t0, ξ0) = Γ(t0, ξ0). This together with (6.81) gives

Gti,i′ [Λ̃m,n, f ](t0, ξ0) = Γ(t0, ξ0).

As this holds for all (t0, ξ0) ∈ ([t⋆, (t⋆ + σ⋆) ∧ ti,i′ ] × R) ∩ D, we must have that t⋆ ≥ (t⋆ + σ⋆) ∧ ti,i′ . This
forces the desired result t⋆ = ti,i′ to be true. �

Given Lemma 6.5, our next step is to show that Γi,i
′

m,n approximates g. The this end, it is convenient to

consider an analog Γ̂im of Γi,i
′

m,n, defined as follows. Recall from (6.59) that Ẑi denotes the coarser version

of the partition Zi. We consider unique the piecewise linear function Γ̂im : Si → R with gradient given by

(κZ , ρZ) on each Z ∈ Ẑi, i.e.,

Γ̂im : ∈ C(Si,R), (6.82a)

∇Γ̂im
∣∣
Z◦ = (κZ , ρZ), ∀Z ∈ Ẑi, (6.82b)

Γ̂im(ti, 0) = g(ti, 0), (6.82c)

Lemma 6.6. For fixed i ∈ {1, . . . , ℓ∗},

lim
n→∞

(
sup
Si,i′

|Γi,i
′

m,n − Γ̂im|
)
= 0, i′ = 4, . . . ,m− 3, for each fixed m <∞, (6.83)

lim
m→∞

(
sup
Si

|Γ̂im − g|
)
= 0. (6.84)

Proof. We first establish (6.83). Since the partition Ẑi differs from Zi only on those reduced triangles ⨻

with λ⨻ < 1, we have

∇Γi,i
′

m,n

∣∣
Z◦ = ∇Γ̂im

∣∣
Z◦ , ∀Z ∈ Ẑ \ {⨻ ∈ Σ×

i : λ⨻ < 1}. (6.85)

On each ⨻ with λ⨻ < 1, the Z invokes the intermittent zones Ii′,⋆(⨻), Ii′,j′′ (⨻) and residual regions
R1
i′,j′′ (⨻), R2

i′,j′′ (⨻); see Figure 10–11. Referring to the definition of (κZ , ρZ)Z∈Zi
in the preceding, we have

that

κ⨻ = κIi′,⋆(⨻) = κIi′,j′′ (⨻) = κR1
i′,j′′

(⨻) = κR2
i′,j′′

(⨻), ρ⨻ = ρIi′,⋆(⨻) = ρIi′,j′′ (⨻), (6.86)

for all relevant i′, j′′. Also, the identity (6.69) implies that, for each R = Ri′,j′′ (⨻),

ˆ ξ+
R

ξ−
R

(Γi,i
′

m,n)ξ(t, ξ)dξ =

ˆ ξ+
R

ξ−
R

(Γ̂im)ξ(t, ξ)dξ, ∀t ∈ [tR, tR], where R = [tR, tR]× [ξ−R, ξ
+
R]. (6.87)

That is, the integrals of (Γm,n)
i
ξ and (Γ̂im)ξ along any horizontal line segment passing through R do match.

To briefly summarize, (6.85)–(6.86) shows that the derivatives of Γi,i
′

m,n and Γ̂im match everywhere they are
defined, except for the ξ-derivatives in Ri′,j′′(⨻), and (6.86) gives a matching of the ξ-derivatives in Ri′,j′′ (⨻)
in an integrated sense. These properties together with (6.74c) and (6.82c) gives that

Γi,i
′

m,n(t, ξ) = Γ̂im(t, ξ), ∀(t, ξ) ∈ Si \
⋃{

(Ri′,j′′(⨻))◦ : λ⨻ < 1, relevant i′, j′′
}
. (6.88)
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Since each Ri′,j′′(⨻) has a width of (n − 1)b′′m,n = n−1
n2 b

′
m, and since Γ̂im is continuous, letting n → ∞

in (6.88) gives (6.83).

Next, to prove (6.84), fix arbitrary (t0, ξ0) ∈ Si, and express Γ̂im(t0, ξ0) and g(t0, ξ0) in terms of the
integral of their derivatives along the vertical line segment (ti, 0)−(t0, 0) and the horizontal line segment
(t0, 0)−(t0, ξ0), i.e.,

Γ̂im(t0, ξ0) = Γ̂im(ti, 0) +

ˆ t0

ti

(Γ̂im)t(t, 0)dt+

ˆ ξ0

0

(Γ̂im)ξ(t0, ξ)dξ, (6.89)

g(t0, ξ0) = g(ti, 0) +

ˆ t0

ti

gt(t, 0)dt+

ˆ ξ0

0

gξ(t0, ξ)dξ. (6.90)

Note that the line segment (ti, 0)−(t0, 0) sits within a vertical line segment of the triangulation Σ; see
Figure 4. Even though g is in general not smooth along edges of Σ, gt does exist along vertical edges of Σ.
More explicitly, letting △⋆ ∈ Σ be a neighboring triangle of the line segment (ti, 0)−(t0, 0), we have that
gt(t, 0)|t∈(ti,t0)

= κ△∗
. Likewise, letting B⋆ be the (unique) buffer zone that contains (ti, 0)−(t0, 0), we have

(Γ̂im)t(t, 0)|t∈(ti,t0)
= κB∗

. For any triangle △ ∈ Σ that intersects with the slab Si, let e ∈ Ev
i denote its

neighboring vertical edge, and let ⨻ ⊂ △ denote the corresponding reduced triangle. Referring the definition
of (κZ , ρZ)Z∈Ẑi

in the preceding, we have that

(κ△, ρ△) = (κ⨻, ρ⨻) = (κBe
, ρBe

). (6.91)

In (6.89)–(6.90), use (6.91) for (△,Be) = (△⋆,B⋆) to match the t-derivatives (Γ̂im)t and gt, use (6.91) to

match the ξ-derivatives (Γ̂m)ξ and gξ on those reduced triangles ⨻ along the line segment (t0, 0)−(t0, ξ0)
(recall that gξ|△◦ = ρ△, ∀△ ∈ Σ), and take the difference of the result, using (6.82c). We arrive at

|Γ̂im(t0, ξ0)− g(t0, ξ0)| =
∣∣∣
ˆ ξ0

0

(
(Γ̂im)ξ − gξ

)
(t0, ξ)1{(t0,ξ)/∈⨻,∀⨻∈Σ×

i }dξ
∣∣∣ ≤ (ℓ ∗+1)2b′m‖(Γ̂

i
m)ξ − gξ‖∞.

With (Γ̂im)ξ, gξ being [0, 1]-valued, and with b′m = b
m , letting m→ ∞ gives (6.84). �

A useful consequence of Lemma 6.5–(6.6) is the following result. It controls the deviation of the Hopf–Lax

function Gti [fm,n, Λ̃m,n] from g in terms of the deviation of a given initial condition fm,n.

Lemma 6.7. Let {fm,n}m,n ⊂ E . For any fixed i ∈ {1, . . . , ℓ∗},

lim sup
m→∞

lim sup
n→∞

(
sup
Si∩D

∣∣Gti [Λ̃m,n, fm,n]− g
∣∣
)
≤ lim sup

m→∞
lim sup
n→∞

sup
(ti,ξ)∈Si∩D

|fm,n(ξ)− g(ti, ξ)|. (6.92)

Proof. Throughout this proof, to simplify notations, we write G := Gti [Λ̃m,n, fm,n]. Let us first setup a few

notations. For i′ = 4, . . . ,m− 3, let f i
′

:= G(ti,i′) denote the fixed time profile of the Hopf–Lax function at

ti,i′ . Consider also the fixed time profile γi
′

:= Γi,i
′

m,n(ti,i′) of Γ
i,i′

m,n at time ti,i′ . The function γi
′

is defined
on

Ξi
′

:= {ξ : (ti,i′ , ξ) ∈ Si,i′ ∩ D},

and we extend the function beyond Ξi
′

in such away that γi
′

∈ E . The precise way of extending γi
′

does
not matter, as long as the result is E -valued. We omit the dependence of G, f i

′

and γi
′

on m,n to simplify
notations.

Instead of showing (6.92), we show

lim sup
n→∞

(
sup
Si∩D

∣∣G− Γ̂im
∣∣
)
≤ lim sup

n→∞
sup

(ti,ξ)∈Si∩D

|fm,n(ξ)− Γ̂im(ti, ξ)|. (6.93)

By (6.84), the function Γ̂im uniformly approximates g on Si ∩ D as m→ ∞. This being the case, the desired
result (6.92) follows by letting m→ ∞ in (6.93).

To prove (6.93), we fix i′ = 4, . . . ,m− 3, and proceed to bound the difference |G− Γ̂im| on each Si,i′ ∩D.
First, by Lemma 6.1(a) for (s0, s1) = (ti, ti,i′ ), the Hopf–Lax function G localizes onto Si,i′ as G|Si,i′

=
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Gti,i′ [Λ̃m,n, f
i′ ]|Si,i′

. Given this property, applying Lemma 6.1(e) with (f1, f2) = (f i
′

, γi
′

) and s0 = ti,i′ , we

obtain
∣∣G(t0, ξ0)− Gti,i′ [Λ̃m,n, γ

i′ ](t0, ξ0)
∣∣

=
∣∣Gti,i′ [Λ̃m,n, f

i′ ](t0, ξ0)− Gti,i′ [Λ̃m,n, γ
i′ ](t0, ξ0)

∣∣ ≤ sup
(ti,i′ ,ξ)∈C(t0,ξ0)

|f i
′

(ξ)− γi
′

(ξ)|, (6.94)

for all (t0, ξ0) ∈ Si,i′ . Recall the definition of Ξi
′

from the preceding. By (6.76), for each (t0, ξ0) ∈ Si,i′ ∩ D,

we have that {ξ : (ti,i′ , ξ) ∈ C(t0, ξ0)} ⊂ Ξi
′

. Using this property, we take the supremum of (6.94) over
(t0, ξ0) ∈ Si,i′ ∩ D to get

sup
Si,i′∩D

∣∣G− Gti,i′ [Λ̃m,n, γ
i′ ]
∣∣ ≤ sup

Ξi′

|f i
′

− γi
′

|.

Next, using Lemma 6.5 for f = γi
′

, we replace the expression Gti,i′ [Λ̃m,n, γ
i′ ] with Γi,i

′

m,n, and write

sup
Si,i′∩D

∣∣G− Γi,i
′

m,n

∣∣ ≤ sup
Ξi′

|f i
′

− γi
′

| = sup
Ξi′

∣∣G(ti,i′ )− Γi,i
′

m,n(ti,i′ )
∣∣. (6.95)

Further, by (6.83), the function Γi,i
′

m,n uniformly approximates Γ̂im on Si,i′ ∩ D. This being the case, we let

n→ ∞ in (6.95), and replace each Γi,i
′

m,n with Γ̂im to get

lim sup
n→∞

sup
Si,i′∩D

∣∣G− Γ̂im
∣∣ ≤ lim sup

n→∞
sup
Ξi′

|G(ti,i′)− Γ̂im(ti,i′)|, i′ = 4, . . . ,m− 3. (6.96)

Indeed, since {ti,i′+1}×Ξi
′+1 ⊂ Si,i′ ∩D, we have supΞi′+1 |G(ti,i′ )− Γ̂im(ti,i′ )| ≤ supSi,i′∩D |G− Γ̂im|. Given

this property, inductively applying (6.96) for i′ = 4, . . . ,m− 3 gives the desired result (6.93). �

We now show that G [Λ̃m,n, g
ic] uniformly approximates g over [0, T ]× [−r∗, r∗]. More precisely,

Proposition 6.8. We have that lim sup
m→∞

lim sup
n→∞

(
sup

[0,T ]×[−r∗,r∗]

∣∣G [Λ̃m,n, g
ic]− g

∣∣
)
= 0.

Proof. Throughout this proof, to simplify notations, we write G := G [Λ̃m,n, g
ic] for the Hopf–Lax function.

Recall from Section 6.3 that [0, T ] × [−r∗, r∗] is divided into a stalk of slabs Si, with transition zones Ti,
i = 0, . . . , ℓ∗ in between the slabs; see Figure 8. By Lemma 6.1(a) for s0 = ti, the function G localizes onto

Si as G|Si
= Gti [Λ̃m,n, G(ti)]|Si

. With this property, we rewrite Lemma 6.7 for fm,n = G as

lim sup
m→∞

lim sup
n→∞

(
sup
Si∩D

∣∣G− g
∣∣
)
≤ lim sup

m→∞
lim sup
n→∞

sup
(ti,ξ)∈Si∩D

|G(ti, ξ)− g(ti, ξ)|, (6.97)

for each i = 1, . . . , ℓ∗. Next, fix a transition zone Ti, i ∈ {0, . . . , ℓ∗} as in (6.50), and it write as

Ti :=
(
[ti, ti+1] ∩ [0, T ]

)
× [−r∗, r∗] =

[
(ti)+, ti+1 ∧ T

]
× [−r∗, r∗].

By (5.1), g is uniformly Lipschitz; and by Lemma 6.1(b) the Hopf–Lax function G is also uniformly Lipschitz.
Consequently, there exists a fixed constant c <∞, such that

|G(t, ξ)−G(s1, ξ)| ≤ c|t− (ti)+| ≤ 6cτ ′m, |g(t, ξ)− g(s1, ξ)| ≤ c|t− (ti)+| ≤ 6cτ ′m, ∀(t, ξ) ∈ Ti.

This gives

sup
Ti∩D

|G− g| ≤ sup
((ti)+,ξ)∈Ti∩D

∣∣G((ti)+, ξ)− g((ti)+, ξ)
∣∣+ 12τ ′m.

Taking the iterated limit n→ ∞, m→ ∞, we obtain

lim sup
m→∞

lim sup
n→∞

(
sup
Ti∩D

∣∣G− g
∣∣
)
≤ lim sup

m→∞
lim sup
n→∞

sup
((ti)+,ξ)∈Ti∩D

∣∣G((ti)+, ξ)− g((ti)+, ξ)
∣∣, (6.98)

for each i = 0, . . . , ℓ∗. As mentioned earlier, [0, T ]× [−r∗, r∗] is decomposed into a stalk of transition zones
and the slabs, from bottom to top as T0 ∪S1 ∪T1 ∪ . . .Sℓ∗ ∪ Tℓ∗ . This being the case, applying (6.97)–(6.98)
inductively, similarly to the proof of Lemma 6.7, we obtain

lim sup
m→∞

lim sup
n→∞

sup
D

∣∣G− g
∣∣ ≤ lim sup

m→∞
lim sup
n→∞

sup
(0,ξ)∈D

∣∣G(0, ξ)− g(0, ξ)
∣∣.
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Indeed, since G(0, ξ) = G [Λ̃m,n, g
ic](0, ξ) = g(0, ξ), the r.h.s. is zero. This together with D ⊃ [0, T ]× [−r∗, r∗]

completes the proof. �

7. Lower Bound: Construction of Λm,n and Proof of Proposition 3.5

7.1. Constructing Λm and estimating G [Λm,n, g
ic]. We now construct the simple speed function Λm,n as

an approximation of Λ̃m,n. Recall that τ
′′
m,n and b′′m,n are the scales defined in (6.56). Consider the following

partition of [0, T ]× R that consists of rectangles of height τ ′′m,n and base b′′m,n:

Π′′
m,n :=

{
� := [(i′′ − 1)τ ′′m,n, i

′′τ ′′m,n]× [(j′′ − 1)b′′m,n, j
′′b′′m,n] : i

′′ = 1, . . . , ℓ∗mn
2, j′′ ∈ Z

}
. (7.1)

Recall from (6.57) that X denotes a partition of [0, T ] × R, and recall from (6.58) the induced skeleton
Ske(X ). One readily check that, each rectangle � ∈ Π′′

m,n is either contained in a region Z ∈ X , or
intersects with a diagonal edge E ∈ Ske(X ). In the latter case, the edge E goes through the upper-right and
lower-left vertices of �. Having noted these properties, we now define

Λm,n
∣∣
�◦ := Λ̃m,n

∣∣
�◦ , if � ⊂ Z, for some Z ∈ X ;

and if � intersects with a diagonal edge E ∈ Ske(X ), we let Z± ∈ X denote the neighboring regions of E ,
and set

Λm,n
∣∣
�◦ := (λZ− ∧ λZ+) = inf

�◦
Λ̃m,n.

So far, we have defined the values of Λm,n on [0, T )× R except along edges of the rectangles � ∈ Π′′
m,n. To

complete the construction, we extend the value of Λm,n onto [0, T )× R in the same way as in (6.71). This
defines an simple speed function, i.e., a function of the form (5.2). Further, from (6.46), (6.72)–(6.73), we
have

Λm,n(t, ξ)||ξ|>r∗ = 1, (7.2)

Λm,n ∈ [λ, λ], (7.3)

lim
m→∞

lim
n→∞

∑

△∈Σ∗

ˆ

△

∣∣Λm,n − (λ△ ∨ 1)
∣∣dtdξ = 0. (7.4)

The following result gives the necessarily control on the Hopf-Lax function G [Λm,n, g
ic].

Proposition 7.1. For each fixed m <∞,

lim
n→∞

sup
[0,T ]×R

∣∣∣G [Λm,n, g
ic]− G [Λ̃m,n, g

ic]
∣∣∣ = 0. (7.5)

In particular, by Proposition 6.8,

lim sup
m→∞

lim sup
n→∞

(
sup

[0,T ]×[−r∗,r∗]

∣∣G [Λm,n, g
ic]− g

∣∣
)
= 0.

Proof. Consider a generic diagonal buffer zone Be, e ∈ ∪ℓ∗i=1E
d
i , and parametrize the zone as (6.53). Under

the notations of (6.53), we let ∂±Be := (ti, (j − 1)b ± b′m)−(ti, kb ± b′m). denote the right/left boundary of
the buffer zone Be, and let

U±
e := {(t, ξ) : |ξ + (j − 1)b± b′m − b

τ (t− ti)| ≤ b′′m,n, t ∈ [ti, ti]}

denote the regions of width 2b′′m,n around ∂±Be. Referring the preceding definition of Λm,n, we see that

Λm,n 6= Λ̃m,n only within the regions Ue, e ∈ Ed. Showing (7.5) hence amounts to showing that such a
discrepancy does not affect the resulting Hopf–Lax function as n→ ∞.

Let σm := b′m(2(λ+ b
τ )). Divide each U±

e into smaller parts U±
e,i′ , each of height at most σm:

U±
e,i′ := U±

e ∩ ([(i′ − 1)σm, i
′σm)× R).

Let U := {U±
e,i′ : e ∈ ∪ℓ∗i=1E

d
i , i

′ = 1, 2, . . .} denote the collection of these regions, and enumerate them as

U = {U1, . . . ,U#U }. We replace the value of Λm,n on each Uk by that of Λ̃m,n sequentially, i.e.,

S0
m,n := Λm,n, Skm,n = Sk−1

m,n1Uc
k
+ Λ̃m,n1Uk′ .
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Under these notations, we telescope the difference G [Λm,n, g
ic]− G [Λ̃m,n, g

ic] accordingly as

G [Λm,n, g
ic]− G [Λ̃m,n, g

ic] =

#U∑

k=1

(
G [Skm,n, g

ic]− G [Sk−1
m,n , g

ic]
)
. (7.6)

Given the decomposition, we now fix k ∈ {1, . . . ,#U } and (t0, ξ0) ∈ [0, T ]×R, and proceed to bound the
quantity |G [Skm,n, g

ic]− G [Sk−1
m,n , g

ic]|. Let us prepare a few notations for this. Parametrize Uk ∈ U as

Uk = {(t, ξ) : |ξ + ζ0 −
b
τ (t− s)| ≤ b′′m,n, t ∈ [s, s)}, (7.7)

where s := (i′ − 1)σm, s := i′tσm, for some i′ ∈ N, and ζ0 = (j − 1)b± b′m, for some j′ ∈ N. In addition to
Uk, we consider also the region

V+ := {(t, ξ) : 0 ≤
(
ξ + ζ0 −

b
τ (t− s)

)
≤ b′m, t ∈ [s, s)},

V− := {(t, ξ) : −b′m ≤
(
ξ + ζ0 −

b
τ (t− s)

)
≤ 0, t ∈ [s, s)};

see Figure 12. Recall from (6.59) that Ẑi denotes the coarser partition, and let Z−,Z+ ∈ ∪ℓ∗i=1Ẑi denote

s s

s s
b′m b′mb′m b′m

b′′m,n b′′m,n

Uk Uk

V− V−

V+ V+

∂−Be

∂+Be

Figure 12. The regions Uk, V+ and V−

the two regions from these partitions that intersect with Uk, (i.e., Z± ∩ Uk 6= ∅), with Z− on the left and
Z+ on the right. Referring to Figure 13, we see that

Λ̃m,n|(V±)◦ = λZ± , (7.8)

Λ̃km,n|(V±\Uk)◦ = λZ± , Λ̃k−1
m,n|(V±\Uk)◦ = λZ± . (7.9)

2b′m

b′mb′m

Figure 13. On each reduced triangle ⨻, the function Λ̃m,n takes value λ⨻ on the gray
regions, no matter λ⨻ ≥ 1 or λ⨻ < 1. The gray regions stretch a distance b′m from the
buffer zone into the reduced triangles.

We now begin to bound |G [Skm,n, g
ic]−G [Sk−1

m,n , g
ic]|. To this end, we assume λZ+ ≥ λZ− for simplicity of

notations. The other scenario is proven by the same argument. The functions Skm,n, S
k−1
m,n differ only on Uk,
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and by (7.8), these functions Skm,n, S
k−1
m,n takes two values {λZ+ , λZ−} on Uk. Under this property, we define

the upper and lower envelopes of Skm,n, S
k−1
m,n as

S⋆ := Skm,n1([0,T )×R)\Uk
+ λZ+1Uk

, S⋆ := Skm,n1([0,T )×R)\Uk
+ λZ−1Uk

,

so that S⋆ ≤ Skm,n, S
k−1
m,n ≤ S⋆. Combining this with (6.15) gives

∣∣G [Skm,n, g
ic]− G [Sk−1

m,n , g
ic]
∣∣ ≤ G [S⋆, gic]− G [S⋆, g

ic]. (7.10)

The next step is to bound the r.h.s. of (7.10). We do so by appealing to the variational formulation:

G [S⋆, gic](t0, ξ0) := inf
w∈W (t0,ξ0)

{
Θ0,t0(S

⋆;w) + gic(w(0))
}
,

G [S⋆, gic](t0, ξ0) := inf
v∈W (t0,ξ0)

{
Θ0,t0(S

⋆; v) + gic(v(0))
}
. (7.11)

Fix a generic w ∈ W (t0, ξ0). Indeed, because S
⋆ ≥ S⋆ and because of (6.15),

Θ0,t0(S
⋆;w) + gic(w(0)) ≥ Θ0,t0(S⋆;w) + gic(w(0)).

Our goal is to perform surgery on the path w to obtain a new path v, so that the reverse inequality holds
for v, up to an error of order n−1. Consider the last time t⋆ := inf{t ∈ [s, s] : w(t) ∈ Uk} when w lies within
Uk. If t⋆ = ∞, i.e., w never lies within Uk, taking v = w (7.11) gives

Θ0,t0(S
⋆;w) + gic(w(0)) = Θ0,t0(S⋆;w) + gic(w(0)) ≥ G [S⋆, gic](t0, ξ0).

Otherwise, applying Lemma 6.1(c) with (s0, t
′
0, t0) = (0, t⋆, t0) and with S = S⋆, we obtained a modified

path w̃ ∈ W (t0, ξ0), such that

Θ0,t0(S⋆; w̃) + gic(w̃(0)) ≤ Θ0,t0(S⋆; w̃) + gic(w(0)), (7.12)

that (t, w̃)|[0,t⋆] ∈ C(t⋆, w(t⋆)), and that w̃|[t⋆,t0] = w[t⋆,t0]. The last property ensures that (t, w̃(t))|(t⋆,t0] /∈ Uk,
and we already have (t, w̃(t))|[0,s) /∈ Uk (see (7.7)). Since Uk is the only region where S⋆ and S⋆ differ, our
next step is to modify the path w̃(t) for t ∈ [s, t⋆].

Fix a small parameter δ > 0. We set

vδ(t) :=





w̃(t) , for t ∈ [0, s] ∪ [t⋆, t0],
w̃(t)− 3b′′m,n , for t ∈ [s+ δ, t⋆ − δ],
w̃(s) + 3b′′m,nδ

−1(t− s) , for t ∈ (s, s+ δ),
w̃(t⋆)− 3b′′m,nδ

−1(t⋆ − t), for t ∈ (t⋆ − δ, t⋆).

That is, we shift the part of w̃ within t ∈ [s+ δ,−δ+ t⋆], by distance 3b′′m,n to the left. Within the intervals
(s, s+ δ) and (−δ + t⋆, t⋆), we linearly joint the path to ensure vδ ∈W (t0, ξ0). For such a path vδ, evaluate
the corresponding functional Θ0,t0(S

⋆; vδ) + gic(vδ(0)), and let δ ↓ 0 to get

lim
δ↓0

(
Θ0,t0(S

⋆; vδ) + gic(vδ(0))
)
=Θ0,s(S

⋆; w̃) + Θt⋆,t0(S
⋆; w̃) + gic(w̃(0)) (7.13a)

+ Θs,t⋆
(
S⋆; w̃ − 3b′′m,n

)
(7.13b)

+ lim
δ↓0

Θs,s+δ(S
⋆; vδ) + lim

δ↓0
Θ−δ+t⋆,t⋆(S

⋆; vδ). (7.13c)

We now analyze the expressions on (7.13a)–(7.13c) each by each.

• As mentioned earlier, for t ∈ [0, s) and for t ∈ (t⋆, t0], w̃(t) sits entirely within the region where S⋆ = S⋆,
so we replace S⋆ by S⋆ on the r.h.s. of (7.13a).

• Next, for t ∈ (s, t⋆), given the properties

(t⋆, w̃(t⋆)) ∈ Uk, (t, w̃(t))|t∈[0,t⋆] ∈ C(t⋆, w(t⋆)), t⋆ − s ≤ σm,

using the same speed-counting argument below (6.79), we have that

S⋆
(
t, w̃(t)− 3b′′m,n

)∣∣
t∈(s,t⋆)

≤ S⋆
(
t, w̃(t)

)∣∣
t∈(s,t⋆)

, (7.14)

for all n large enough such that 4b′′m,n < b′m − σm(λ+ b
τ ). Further, by (7.9), we have S⋆|(V−\Uk)◦ = λZ− .

This together with (7.14) and λZ− ≤ λZ+ gives

S⋆
(
t, w̃(t)− 3b′′m,n

)∣∣
t∈(s,t⋆)

≤ S⋆
(
t, w̃(t)

)∣∣
t∈(s,t⋆)

,

for all n large enough, and therefore Θs,t⋆(S
⋆; w̃ − 3b′′m,n) ≤ Θs,t⋆(S⋆; w̃).
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• For t ∈ (s, t⋆) and for t ∈ (−δ + t⋆, t⋆), the path vδ has constant velocity vδ = ±δ−13b′′m,n. Using this
and (6.14) gives

lim
δ↓0

Θs,s+δ(S
⋆; vδ) = 0, lim

δ↓0
Θ−δ+t⋆,t⋆(S

⋆; vδ) = 3b′′m,n.

Combining the preceding discussions with (7.13) gives

lim
δ↓0

(
Θ0,t0(S

⋆; vδ) + gic(vδ(0))
)
≤ Θ0,t0(S

⋆; w̃) + gic(w̃(0)) + 3b′′m,n.

Further combining this is with (7.12) and (7.11), we arrive at G [S⋆, g
ic](t0, ξ0) ≥ Θ0,t0(S

⋆; w̃) + gic(w̃(0)) +
3b′′m,n. As this holds for all w ∈W (t0, ξ0) and all (t0, ξ0), we conclude

G [S⋆, g
ic] ≥ G [S⋆, gic]− 3b′′m,n.

Inserting this into (7.10) thus gives
∣∣G [Skm,n, g

ic]− G [Sk−1
m,n , g

ic]
∣∣ ≤ 3b′′m,n. (7.15)

Applying the bound (7.15) within the decomposition (7.6) gives
∣∣G [Λm,n, g

ic]− G [Λ̃m,n, g
ic]
∣∣ ≤ 3#U b′′m,n. (7.16)

Referring to the preceding definition of U , we see that #U depends on ℓ∗ and m only, and in particular
does not depend on n. Hence letting n→ ∞ in (7.16) completes the proof. �

7.2. Estimating the relative entropy. Recall that QS
N denotes the law of the inhomogeneous TASEP

with a simple speed function S. Having constructed Λm,n, in this subsection we estimate the relative entropy
1
N2H(Q

Λm,n

N |Pg
N ). First, from the explicit formula (5.10) and (7.2), we have

1

N2
H(Q

Λm,n

N |Pg
N ) =

1

N

∑

|x|≤Nr∗

E
Q

Λm,n

N

(ˆ T

0

φ(h(Nt), x)ψ
(
Λm,n

(
t, xN

))
dt
)
. (7.17)

Let us divide the r.h.s. of (7.17) into two sums over |x| ≤ Nr∗ and over Nr∗ < |x| ≤ Nr∗, and write resulting
sums as H1

m,n,N and H2
m,n,N , respectively. More explicitly,

H1
m,n,N :=

1

N

∑

|x|≤Nr∗

E
Q

Λm,n

N

( ˆ T

0

φ(h(Nt), x)ψ
(
Λm,n

(
t, xN

))
dt
)
, (7.18)

H2
m,n,N :=

1

N

∑

Nr∗<|x|≤Nr∗

E
Q

Λm,n

N

( ˆ T

0

φ(h(Nt), x)ψ
(
Λm,n

(
t, xN

))
dt
)
. (7.19)

Recall that Σ∗ denotes the restriction of the triangulation Σ onto [0, T ]× [−r∗, r∗] and that Σ∗ denotes
the restriction of Σ onto [0, T ]× [−r∗, r∗]. We begin with a bound on H2

m,n,N .

Lemma 7.2. We have that

lim sup
m→∞

lim sup
n→∞

lim sup
N→∞

H2
m,n,N ≤

∑

△∈Σ∗\Σ∗

ψ(λ△)|△| =

ˆ T

0

ˆ

r∗<|ξ|<r∗
ψ
( gt
gξ(1− gξ)

)
dtdξ.

Proof. Since the mobility function φ(f, x) is bounded by 1, we bound the expression (7.19) as

H2
m,n,N ≤

1

N

∑

Nr∗<|x|≤Nr∗

ˆ T

0

ψ
(
Λm,n(t,

x
N )

)
dt. (7.20)

Since Λm,n is piecewise constant, and since ψ(Λm,n) is bounded (thanks to (7.3)), letting N → ∞ in (7.20),
the discrete sum in (7.20) converges to an integral, giving

lim sup
N→∞

H2
m,n,N ≤

ˆ T

0

ˆ

r∗≤|ξ|≤r∗
ψ(Λm,n(t, ξ))dtdξ. (7.21)

With ψ(Λm,n) being bounded, in (7.21), letting n→ ∞ and m→ ∞ in order, together with (7.4), we obtain

lim sup
m→∞

lim sup
n→∞

lim sup
N→∞

H2
m,n,N ≤ lim

m→∞
lim
n→∞

ˆ T

0

ˆ

r∗≤|ξ|≤r∗
ψ(Λm,n(t, ξ))dtdξ =

∑

△∈Σ∗\Σ∗

ψ(λ△)|△|.
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This completes the proof. �

We next establish a bound on H1
m,n,N .

Lemma 7.3. We have that

lim
m→∞

lim
n→∞

lim
N→∞

H1
m,n,N =

∑

△∈Σ∗

ρ△(1− ρ△)ψ(λ△) =

ˆ T

0

ˆ r∗

−r∗
J2(gt, gξ)dtdξ. (7.22)

Proof. Throughout this proof, we use om,n,N (1) and um,n, to denote generic, deterministic quantities that
may change from line to line, but satisfy

lim
m→∞

lim
n→∞

lim
N→∞

|om,n,N (1)| = 0, lim sup
m→∞

lim sup
n→∞

|um,n| ≤ 1.

Recall from (7.1) that Π′′
m,n denote a partition of [0, T ] × R consisting of rectangles, and that Λm,n is

constant within the interior �
◦ of each rectangle � ∈ Π′′

m,n. This being the case, letting Π′′
∗,m,n denote

the restriction of Π′′
m,n onto [0, T ] × [−r∗, r∗], we parametrize each � ∈ Π′′

m,n as [t�, t�] × [ξ−
�
, ξ+

�
], and

express (7.18) as

H1
m,n,N =

∑

�∈Π′′
∗,m,n

ψ
(
Λm,n|�◦

)
E

Q
Λm,n

N

ˆ T

0

1

N

∑

(t,x)∈�◦

φ(g(Nt), x)dt

=
∑

�∈Π′′
∗,m,n

ψ
(
Λm,n|�◦

) 1

N

∑

x
N

∈[ξ−
�
,ξ+

�
]

E
Q

Λm,n

N

ˆ t�

t
�

φ(g(Nt), x)dt. (7.23)

Here, unlike in Lemma 7.2, using φ(g(Nt), x) ≤ 1 does not yields a good enough bound for our purpose.
Instead, we use the following analog of (4.33) for inhomogeneous TASEPs:

E
Q

Λm,n

N

(ˆ t2

t1

Λm,n(t,
x
N )φ(g(Nt), x)dt

)
= E

Q
Λm,n

N

(
gN(t1,

x
N )− gN (t2,

x
N )

)
, (7.24)

∀t1 ≤ t2 ∈ [0, T ], x ∈ Z. Applying (7.24) with (t1, t2) = (t�, t�) in (7.23), we obtain the following expression
for H1

m,n,N :

H1
m,n,N =

∑

�∈Π′′
∗,m,n

ψ
(
Λm,n|�◦

) 1

Λm,n|�◦

1

N

∑

x
N

∈[ξ−
�
,ξ+

�
]

E
Q

Λm,n

N

(
gN (t, xN )

∣∣t�
t
�

)
. (7.25)

Write Gm,n := G [Λm,n, g
ic] for the Hopf–Lax function. Recall from Corollary 5.3 that, gN converges

to Gm,n, Q
Λm,n

N -in probability. In order to approximate the r.h.s. of (7.25) in term of Gm,n, our next

step to leverage the convergence in probability into convergence in L1. Recall from (7.3) that Λm,n ≤ λ.

Consequently, under the law, Q
Λm,n

N , g(t2, x) − g(t1, x) is stochastically dominated by Pois((t2 − t1)λ),
∀t1 ≤ t2 ∈ [0, T ]. In particular,

sup
{
E

Q
Λm,n

N

(
gN (t, xN )|t2t1

)2
: N ∈ N, x ∈ Z, [t1, t2] ⊂ [0, T ]

}
<∞. (7.26)

The L2 boundedness (7.26), together with the converges in probability, Corollary 5.3, gives

lim
N→∞

1

N

∑

x
N

∈[ξ−
�
,ξ+

�
]

E
Q

Λm,n

N

(
gN (t, xN )

∣∣t�
t
�

)
=

ˆ ξ+
�

ξ−
�

Gm,n(t,
x
N )

∣∣t�
t
�

dξ. (7.27)

Further, by Lemma 6.1(b), the function (t, ξ) 7→ Gm,n(t, ξ) is uniformly Lipschitz. This allows us to rewrite
the r.h.s. of (7.27) as

´

�
∂tGm,ndtdξ. On this note, combining (7.27) and (7.25) gives

lim
N→∞

H1
m,n,N =

ˆ T

0

ˆ −r∗

−r∗

ψ
(
Λm,n

)

Λm,n
∂tGm,ndtdξ. (7.28)

Next, recall from (7.4) that Λm,n converges in L1 to (λ△ ∨ 1) on each △ ∈ Σ∗ under the relevant limit.
Further, Λm,n is bounded away from zero and infinity (by (7.3)), and ∂tGm,n is uniformly bounded (by
Lemma 6.1(b)). Under these properties, we rewrite the r.h.s. of (7.28) as

∑
△∈Σ∗

´

△
∂tGm,nψ(Λm,n)/Λm,ndtdξ,
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and for on each △ ∈ Σ∗, replace Λm,n with its limiting value λ△ ∨ 1. This, together with ψ(λ∨ 1)/(λ∨ 1) =

ψ(λ)/λ, gives

lim
m→∞

lim
m→∞

lim
N→∞

H1
m,n,N =

∑

△∈Σ∗

ψ
(
λ△

)

λ△
lim
m→∞

lim
n→∞

ˆ

△

∂tGm,ndtdξ, (7.29)

provided that the limit (limm→∞ limn→∞

´

△
∂tGm,ndtdξ) exists, for each △ ∈ Σ∗. Fixing △ ∈ Σ∗, We

next show that the corresponding limit does exist, and calculate its value. To this end, we parametrize the
triangle as △ = {(t, ξ) : t ∈ [t△(ξ), t△(ξ)], ξ ∈ [ξ−△, ξ

+
△]}, and write

ˆ

△

∂tGm,n =

ˆ ξ+
△

ξ−
△

Gm,n(t, ξ)|
t△(ξ)

t△(ξ)dξ. (7.30)

By Proposition 7.1, the function Gm,n converges uniformly to g on [0, T ] × [−r∗, r∗] under the relevant
iterated limit. Using this the take limit (7.30) gives

lim
m→∞

lim
n→∞

ˆ

△

∂tGm,n =

ˆ ξ+
△

ξ−
△

g(t, ξ)|
t△(ξ)

t△(ξ)dξ =

ˆ

△

gtdtdξ = |△|κ△. (7.31)

Inserting (7.31) into (7.29), together with κ△/λ△ = ρ△(1− ρ△), we conclude the desired result (7.22). �

Combining Lemma 7.2–7.3 immediately yields:

Corollary 7.4. We have that

lim sup
m→∞

lim sup
n→∞

lim sup
N→∞

1

N2
H(Q

Λm,n

N |Pgic) ≤

ˆ T

0

ˆ r∗

−r∗
J2(gt, gξ)dtdξ +

ˆ T

0

ˆ

r∗<|ξ|<r∗
ψ
( gt
gξ(1− gξ)

)
dtdξ.

7.3. Proof of Proposition 3.5. With ε∗ > 0 being given and fixed, we apply Proposition 7.1 and Corol-
lary 7.4, to obtain fixed m∗, n∗ ∈ N such that

sup
[0,T ]×[−r∗,r∗]

∣∣G [Λm∗,n∗
, gic]− g

∣∣ < ε∗, (7.32)

lim sup
n→∞

lim sup
N→∞

1

N2
H(Q

Λm∗,n∗

N |Pgic) <

ˆ T

0

ˆ

R

J2(gt, gξ)dtdξ +

ˆ T

0

ˆ

r∗<|ξ|<r∗
ψ
( gt
gξ(1− gξ)

)
dtdξ. (7.33)

Given such m∗, n∗ ∈ N, we set QN := Q
Λm∗,n∗

N . The inequality verifies (7.33) the condition (3.27). Next,
combining (7.32) with Corollary 5.3, we see that the condition (3.25) holds.

It remains only to check the condition (3.26). From the explicit formula (5.9) and by (7.2), we have that

1

N2
log

dQN

dPg
N

=
1

N

∑
x
N

∈[−r∗,r∗]

ˆ T

0

(
log Λm∗,n∗

(
Nt, xN

)
dhN (t, xN )− φ(h(Nt), x)

(
Λm∗,n∗

(
Nt, xN

)
− 1

)
dt
)
. (7.34)

From (7.3), we have the bounds | log(Λm∗,n∗
)| ≤ | logλ|+ | logλ| := A and |Λm∗,n∗

− 1| ≤ λ+1. Using these
bounds in (7.34) gives

∣∣∣ 1

N2
log

dQN

dPic
g

∣∣∣ ≤ 1

N

∑
x
N

∈[−r∗,r∗]

(
AhN (t, xN )|t=Tt=0 + (λ + 1)T

)
. (7.35)

Taking (EQN
(·)2) on both sides of (7.35) and using Jensen’s inequality, we arrive at

EQN

([ 1

N2
log

dQN

dPg
N

]2)
≤

4r∗A

N

∑

|x|≤Nr∗

EQN

([
hN (t, xN )|t=Tt=0

]2)
+ 4r∗(λ+ 1)2T 2. (7.36)

Using the L2 bound (7.26) on the r.h.s. of (7.36), we concludes the desired condition (3.26) and hence
complete the proof.
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