
HAL Id: hal-01577472
https://hal.science/hal-01577472

Submitted on 25 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Influence of epistasis on response to genomic selection
using complete sequence data

Natalia S. Forneris, Zulma G. Vitezica, Andres Legarra, Miguel Pérez-Enciso

To cite this version:
Natalia S. Forneris, Zulma G. Vitezica, Andres Legarra, Miguel Pérez-Enciso. Influence of epistasis
on response to genomic selection using complete sequence data. Genetics Selection Evolution, 2017,
49 (1), pp.66. �10.1186/s12711-017-0340-3�. �hal-01577472�

https://hal.science/hal-01577472
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Forneris et al. Genet Sel Evol  (2017) 49:66 
DOI 10.1186/s12711-017-0340-3

RESEARCH ARTICLE

Influence of epistasis on response 
to genomic selection using complete sequence 
data
Natalia S. Forneris1,2*, Zulma G. Vitezica3, Andres Legarra3 and Miguel Pérez‑Enciso1,4,5* 

Abstract 

Background: The effect of epistasis on response to selection is a highly debated topic. Here, we investigated the 
impact of epistasis on response to sequence‑based selection via genomic best linear prediction (GBLUP) in a regime 
of strong non‑symmetrical epistasis under divergent selection, using real Drosophila sequence data. We also explored 
the possible advantage of including epistasis in the evaluation model and/or of knowing the causal mutations.

Results: Response to selection was almost exclusively due to changes in allele frequency at a few loci with a 
large effect. Response was highly asymmetric (about four phenotypic standard deviations higher for upward than 
downward selection) due to the highly skewed site frequency spectrum. Epistasis accentuated this asymmetry and 
affected response to selection by modulating the additive genetic variance, which was sustained for longer under 
upward selection whereas it eroded rapidly under downward selection. Response to selection was quite insensitive 
to the evaluation model, especially under an additive scenario. Nevertheless, including epistasis in the model when 
there was none eventually led to lower accuracies as selection proceeded. Accounting for epistasis in the model, if it 
existed, was beneficial but only in the medium term. There was not much gain in response if causal mutations were 
known, compared to using sequence data, which is likely due to strong linkage disequilibrium, high heritability and 
availability of phenotypes on candidates.

Conclusions: Epistatic interactions affect the response to genomic selection by modulating the additive genetic 
variance used for selection. Epistasis releases additive variance that may increase response to selection compared to a 
pure additive genetic action. Furthermore, genomic evaluation models and, in particular, GBLUP are robust, i.e. adding 
complexity to the model did not modify substantially the response (for a given architecture).

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The relation between the genotype and phenotype of 
an individual can be extremely complex. Nevertheless, 
quantitative genetics is able to predict breeding values 
and response to selection with surprising accuracy based 
on highly simplified assumptions. Among all potential 
complexities, epistasis is one of the most widely stud-
ied and controversial [1]. In the physiological sense, 
recently reviewed experimental evidence [2] suggests 
that functional epistatic gene action is common, and 

that additivity can be an emergent property of underly-
ing genetic interaction networks. In the statistical sense, 
functional epistasis makes the statistical additive effects 
of alleles depend on the current genetic background, and 
their contribution to the total genetic variance depends 
on the allele frequencies [3].

The effect of epistasis on response to selection is a 
highly debated topic, both from the perspective of short-
term response and from an evolutionary perspective 
[4]. Although some authors claim that its effect on the 
long term may be substantial, others argue that interac-
tion effects contribute very little to the total genetic vari-
ance of a population, and consequently to its short-term 
response, because most of the variance is additive [5]. 
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When epistasis is present, the level of additive variance 
can be sustained or even increased compared to that 
expected under a strict additive model and the genetic 
gain may be sustained for longer [4]. Moreover, if epistasis 
is not symmetrical, that is, if alleles with a positive mar-
ginal effect interact positively on average (or negatively), 
the rate of evolution will accelerate (or decelerate) [4].

In the presence of functional epistasis, allele frequency 
drift and changes in frequency of causal alleles due to 
selection will cause the response to artificial selection 
from the same base population to differ among repli-
cate lines as well as within the same line over time [2]. 
Unless interacting loci are identified and co-introgressed, 
a favorable allele at one locus may be detrimental in a 
different genetic background. Although it was shown 
that an additive model may explain a major part of the 
genetic variance in different datasets [5], this model does 
not explicitly capture any kind of interaction which may 
be present in biochemical pathways that connect gene 
expression with the ultimate target phenotype. There-
fore, statistical models that incorporate interactions 
between loci have been viewed as potentially beneficial 
for genomic prediction [2, 6–9].

So far, genomic selection (GS) has been mainly per-
formed with manufactured genotyping arrays based on 
single nucleotide polymorphisms (SNPs), but the drop in 
sequencing costs should enable GS programs to routinely 
use genome sequencing instead of genotyping arrays in 
the near future. Since causative variants are themselves 
(potentially) included in the sequence data, the accu-
racy that can be achieved when sequence data is used 
instead of SNP arrays is expected to be no longer limited 
by linkage disequilibrium (LD) between SNPs and causal 
mutations [10]. Nevertheless, a few empirical studies on 
breeding schemes and recent simulations agree on the 
fact that full sequence data will probably not make SNP 
arrays obsolete for predicting genetic merit [11, 12]; yet, 
a modest increase (~4%) in genomic best linear unbi-
ased prediction (GBLUP) accuracy, compared to SNP 
arrays, can be expected under some genetic architectures 
[13–15]. Using sequence and SNP data, VanRaden [16] 
obtained an average increase of 2.5% in accuracy in US 
Holstein cattle compared to using SNP data only.

The aim of this study was to quantify the impact of 
epistasis on the response to GS in an extreme regime of 
non-symmetrical epistasis in diploid genomes, as well as 
to study the possible advantage of including non-additive 
effects in the prediction model. Since large amounts of 
epistasis have been reported in Drosophila [2], in this 
study, we mimicked this genome and used real Drosoph-
ila sequence data as starting population.

Methods
We conducted an in silico divergent genomic selection 
experiment in Drosophila using the sequence based vir-
tual breeding (SBVB) software [15]. SBVB can use real 
sequence data for founder animals in a simulated popula-
tion and simulates the genomes and phenotypes of off-
spring in a very efficient and flexible manner according to 
specified genetic architectures. Although SBVB is essen-
tially a gene-dropping algorithm, it allows implementing 
selection by efficiently reading and writing haplotypes 
(see Additional file 1: Figure S1).

Data
We downloaded the public SNP data from the 205 
inbred lines of the Drosophila melanogaster Genetic 
Reference Panel v2 (DGRP Freeze 2.0, http://dgrp2.
gnets.ncsu.edu/ [17]). SNPs from chromosome 4 and 
indels were removed, resulting in 3,954,651 SNPs 
that were used for analyses. Chromosome 4 in Dros-
ophila is normally ignored in population genetic stud-
ies since it is very small, does not recombine and is 
mostly heterochromatic. Missing values were imputed 
with Beagle4 [18]. SBVB allows the specification of 
variable recombination rates along the genome and 
between sexes as well as sex chromosomes. We used 
the genetic map from Flybase (www.flybase.org) and 
allowed for the fact that no recombination occurs in 
male Drosophila.

Genetic architecture
Four hundred causal SNPs, i.e. quantitative trait nucleo-
tides (QTN) were considered in the analysis. We used 
the 103 SNPs and their estimated additive effects on the 
phenotype “chill coma recovery time” which are reported 
by [19] in their supplementary Table  3. For those SNPs 
that were identified in both sexes (12 out of 103), we used 
the average between-sex effect size as QTN effect. Oth-
erwise, the specific sex effect was taken as the additive 
genetic effect in both sexes. In addition, we used 297 ran-
domly chosen SNPs with their additive effects that were 
simulated by using an exponential distribution with rate 
parameter equal to 5. The purpose of this was to gen-
erate a larger number of loci with smaller effects than 
those detected by the association study in [19], since the 
quantitative trait loci (QTL) that are reported as signifi-
cant are typically those with the largest effects, leading 
to a marked upward bias [20]. The sign (− or +) of the 
simulated additive effect sizes was sampled with equal 
probability.

Genotypic values were simulated according to two 
extreme architectures.

http://dgrp2.gnets.ncsu.edu/
http://dgrp2.gnets.ncsu.edu/
http://www.flybase.org
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Epistatic architecture
All loci (400 = 103 + 297) were randomly grouped in 200 
epistatic pairs. Second-order epistasis followed the com-
plementary model [5], where the genotypic values for the 
nine possible two-locus genotype combinations are equal 
to:

This architecture assumes equal values for the additive 
effect of locus B and locus C and complete dominance 
(a = d), with B1 and C1 being the dominant alleles. The 
genotypic value ‘z’ was computed as the arithmetic mean 
of the effects of the two original loci, that is, either the 
effect reported by [19] or that simulated from the expo-
nential distribution. In this architecture, the double 
mutation B1C1 yields the same phenotype as either one 
alone. The genotypic value of an individual was computed 
as the sum of the two-locus genotypic value at each of the 
200 epistatic pairs. We chose the complementary model 
because it is simple to interpret and allows for substantial 
non-additive genetic effects (~25% of the genetic vari-
ance is non-additive with a ‘U’ shape distribution of allele 
frequencies) [5].

Additive architecture
The genotypic value of an individual was obtained 
by summing all additive genotypic effects across loci, 
according to each individual’s genotypes (i.e., a, 0 or −a 
for B1B1, B1B2 and B2B2, respectively). Here, the value ‘a’ 
of each locus is equal to the value ‘z’ used for the corre-
sponding epistatic pair previously described.

Each individual’s phenotype was calculated from its 
genotypic value adding an environmental effect taken 
from a normal distribution with mean 0 and variance σ 2

e  . 
In both architectures, σ 2

e  was adjusted so that the broad 
sense heritability (H2) was 0.5, before selection started. 
Narrow sense heritability was approximately 0.25 for the 
epistatic architecture.

Evaluation model
Breeding values were predicted using GBLUP [21]. 
Briefly, GBLUP uses SNPs to build genomic relationship 
matrices (G). Four alternative models were used to evalu-
ate individuals.

Additive model using sequence data (A‑SEQ)
The evaluation model included a mean plus additive val-
ues distributed as a ∼ N (0,Gσ 2

a ), where G was obtained 
using all SNPs. Computation of G is described below.

C1C1 C1C2 C2C2

B1B1 z z 0

B1B2 z z 0

B2B2 0 0 0

Additive model using causal SNPs (A‑QTN)
As above except that G was obtained by using only causal 
SNPs (QTN).

Full epistatic model using sequence data (E‑SEQ)
The evaluation model included a mean, (statistical) 
additive values, distributed as a ∼ N (0,Gσ 2

a ), a domi-
nant random deviation d ∼ N (0,Dσ 2

d ), and an (statisti-
cal) epistatic effect distributed as h ∼ N (0,G �= Gσ 2

p ), 
where �= denotes the Hadamard product [22, 23]; G and 
D were obtained by using all SNPs. Computation of D is 
described below.

Full epistatic model using causal SNPs (E‑QTN)
As above except that G and D were obtained by using 
only the QTN.

For a given set of markers (all or only causal SNPs), G 
was obtained from MM

′/
∑k

j=1 2pjqj, where the elements 
of the m vectors for each individual are equal to −2pj, 
1− 2pj, and 2− 2pj for genotypes B1jB1j, B1jB2j and B2jB2j, 
respectively [21], pj is the frequency of allele B1j for the 
genotyped individuals of the population, qj = 1− pj, and 
k is the number of SNPs. D was obtained as in [7]:

where the elements of the md vectors for each individual 
are equal to −2p2j , 2pjqj and −2q2j  for genotypes B1jB1j, 
B1jB2j and B2jB2j, respectively.

Breeding values were predicted with the Bayesian gen-
eralized linear regression (BGLR) package [24]. For pre-
diction purposes, variance components were assumed 
unknown and, thus, estimated simultaneously (margin-
alized). BGLR implements various Bayesian regression 
models that were developed for genomic applications, 
including the GBLUP model. An eigenvalue decomposi-
tion of the covariance matrices (G and D) was used, given 
its good convergence properties [25]. Default prior param-
eters and 10,000 iterations plus 2000 burn-in cycles were 
used in the Markov chain Monte Carlo (MCMC) method, 
resulting in 100 to 150 effective iterations [26], depending 
on the parameter and replicate. To verify whether 10,000 
iterations were sufficient for our purposes, we compared 
the prediction of breeding values obtained in chains with 
10k and 200k iterations, which was on average equal to 
0.98 so we used 10k for computational speed.

The linear predictor included an intercept plus a linear 
regression on additive effects. We also included both a 
linear regression on dominant effects and a linear regres-
sion on epistatic effects for both E-SEQ and E-QTN 

D =
MdM

′

d
∑k

j=1 4p
2
j q

2
j

,
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evaluation models. Gaussian prior densities were used 
for all the linear regressions. The residual variance prior 
was assigned a scaled-inverse Chi-square density and 
the intercept is assigned a flat prior by default. For the 
other variances, we also used scaled-inverse Chi-squared 
densities with hyperparameters set by using the default 
rules in BGLR (see appendix of [24] at http://www.genet-
ics.org/content/suppl/2014/07/09/genetics.114.164442.
DC1/164442SI.pdf ). In short, the number of degrees 
of freedom was 5 (which provides a rather uninforma-
tive prior) and scale parameter S such that the  R2 of the 
model is matched. BGLR was run at each generation of 
selection, and predictions were obtained using all the 
phenotypes and genotypes of all the animals of the pre-
ceding generations including the present generation.

Selection scheme
We generated the base population starting with the 205 
sequenced lines of DGRP2 and performing 10 genera-
tions of random mating to decrease LD and to generate 
heterozygous individuals, since parents were homozygous 
at most sites. The size of the generated base population 
was N = 500. Selection intensity was 10% in both sexes. 
At each generation, 25 males and 25 dams were chosen 
based on genomic breeding values that were predicted 
using different genomic models (A-SEQ, E-SEQ, A-QTN 
and E-QTN) and randomly mated; each mating produced 
20 offspring with an equal sex ratio. At each genera-
tion, breeding values were predicted using all molecular 
and phenotypic information up to that generation. This 
scheme was continued for seven discrete generations. 
Both upward and downward selections were performed. 
We ran 10 replicates of each of the 16 experiments (two 
genetic architectures  ×  four evaluation models  ×  two 
directions of selection). In each replicate, the same set of 
SNP effects was used, but different base populations with 
different haplotype structures were generated, although 
all were initiated with the same real Drosophila data.

Response to selection, prediction accuracy and additive 
variance over generations
We investigated the influence of the genetic architec-
ture, the direction of selection and the evaluation model 
on response to selection, genomic prediction accuracy 
and the narrow sense heritability over generations. For 
the total cumulative response to selection, we computed 
the phenotypic mean per generation (N = 500), averaged 
across replicates and expressed in standard deviation (SD) 
units of the base population phenotypic distribution. Pre-
diction accuracy was computed as the Pearson correlation 
between true and predicted breeding values. Under ran-
dom mating, the breeding value of an individual is defined 
as twice the phenotypic mean of its offspring since it 

deviated from the phenotypic population mean. Calcu-
lating true breeding values is straightforward under an 
additive architecture, since they are equal to the simulated 
genotypic values. However, this equality does not hold for 
the epistatic architecture. From the simulations, we have 
the true total genetic values but not the breeding values. 
In this case, we used the original definition and empiri-
cally estimated the ‘true’ breeding value of an individual 
that generates 1000 offspring, which result from mating 
the individual to randomly chosen individuals from the 
same generation. Additive genetic variance was computed 
as the variance of ‘true’ breeding values among the indi-
viduals in the generation of interest.

Linkage disequilibrium and inbreeding
Long-range LD between causal SNPs was assessed at the 
beginning  (t0) and at the end  (t7) of each selection experi-
ment and replicate. A pair-wise  r2 estimation imple-
mented in PLINK [27], defined as the squared correlation 
coefficient of genotypes at two loci, was used to measure 
LD between all causal SNP pairs within a chromosome. 
The curve of the decay of  r2 with physical distance was 
fitted for each experiment by nonlinear regression, using 
Hill and Weir’s [28] expectation of  r2. Genomic inbreed-
ing coefficient estimates (Fh) were obtained for each indi-
vidual using PLINK’s—het function [27], which is based 
on excess SNP homozygosity, as Fhi = (Oi − E)/(k − E) , 
where Oi is the number of observed homozygous geno-
type counts for individual i, E =

∑k
j=1 1− 2pj

(

1− pj
)

 is 
the number of homozygous genotype counts expected by 
chance for the base population, pj is the frequency of B1 
in the base population, and k is the number of SNPs.

Results
The distributions of QTN allele frequencies and additive 
effect sizes in the base population  (t0) are in Fig. 1. The 
distribution of absolute effect sizes is bimodal, the result 
of the empirically identified QTL [19] plus the effects 
simulated following an exponential distribution (Fig. 1a). 
The site frequency spectra of the alleles that increase 
the trait value was U-shaped, although the frequency of 
alleles that decreased the mean was higher (Fig. 1b). The 
correlation between effect size and frequency was nega-
tive, ρ = −0.42 (Fig. 1c). Note that a negative correlation 
between effect and allele frequency is expected under 
some directional or stabilizing selection [17, 29], so our 
data can mimic a trait that has been under continuous 
selection.

Response to selection
Phenotypic means in SD units along generations and 
for all scenarios considered are in Fig.  2. Response 
to selection was clearly asymmetric: for the additive 

http://www.genetics.org/content/suppl/2014/07/09/genetics.114.164442.DC1/164442SI.pdf
http://www.genetics.org/content/suppl/2014/07/09/genetics.114.164442.DC1/164442SI.pdf
http://www.genetics.org/content/suppl/2014/07/09/genetics.114.164442.DC1/164442SI.pdf
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architecture, the upward response was equal to ~8 SD 
but the downward response was barely 2 SD; epistasis 
resulted in an even larger asymmetry (10 vs. 1 SD). As 
discussed below, response was almost exclusively due 
to changes in allele frequency at loci with a large effect, 
which were initially at low frequency (Fig. 1b). The fre-
quency of alleles increasing the trait value was 0.17 on 
average. The complementary model of epistasis actu-
ally shrinks the absolute genotypic value of the double 
homozygotes while it gives the double heterozygote the 
same advantage as the double dominant homozygote, 
compared to an additive architecture. In our experi-
ment, epistasis was not symmetrical overall because, for 
all SNPs, the alternative allele in the Drosophila genome 
was assigned to be the recessive allele, which happened 
to be the one that increased the trait value in most cases. 
Thus, under upward selection, alleles with a positive 
effect systematically tended to couple (in other words, 
for double mutants to become favorably selected), which 
accelerated the rate of response. In contrast, under 
downward selection, alleles with a positive effect tended 
to interact negatively on average, which decelerated the 
rate of response.

The second relevant result is that response to selection 
depended mainly on the underlying genetic architecture, 
and not so much on the statistical model used to perform 
the evaluation (to predict breeding values). For instance, 
upward response was almost two SD larger in the epista-
sis architecture than in the additive scenario, irrespec-
tive of the evaluation model. Remarkably, knowing the 
QTN would not have made a big difference. For the addi-
tive architecture in particular (Fig.  2a, c), response to 

selection was rather insensitive to the evaluation model 
used, even if QTN were known. For instance, upward 
response using A-QTN was only ~6% larger than that 
obtained with A-SEQ, E-QTN or E-SEQ. In the presence 
of epistasis, the situation was somewhat more complex. 
In this case, knowing the causal QTN improved response 
to downward selection by about ~24% (A-QTN vs. 
A-SEQ) or ~37% (E-QTN vs. E-SEQ). In upward selec-
tion (Fig.  2b), the advantage of knowing the QTN was 
only substantial in the short term (~20% higher for t < 5) 
but was only ~2% onwards. The E-SEQ strategy resulted 
in an increase in response compared to A-SEQ (on aver-
age ~10%) in the medium term and comparable to that 
with the E-QTN model. Overall, results in Fig.  2b sug-
gest that accounting for epistasis in the evaluation model 
may have a positive effect if epistasis exists, but mainly 
in the medium term. Otherwise, in an additive scenario, 
response is quite insensitive to the evaluation model used 
to predict breeding values and even to the knowledge of 
QTN positions.

Evolution of additive genetic variance and of allele 
frequencies
The evolution of the additive genetic variance (i.e., the 
variance of the ‘true’ breeding values, see “Methods”) 
over generations was examined for each experiment 
(Fig.  3). Downward selection rapidly eroded additive 
variance. In contrast, additive variance increased in the 
first generations of upward selection because alleles with 
a large effect (Fig.  1b), which were initially at low fre-
quencies, were favored by selection, thus the minor allele 
frequency increased at those sites. Subsequently, upward 
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selection also exhibited a marked decay in the additive 
genetic variance. This effect was specially marked in the 
additive architecture. Importantly, epistasis sustained 
additive genetic variance for longer, especially if QTN 
were known and epistasis was included in the model 
(E-QTN).

For each QTN, we computed the difference in allele 
frequency between the last and first generation; the 
distribution of these changes in allele frequencies 
across the genome is in Fig.  4. Clearly, the evaluation 
model used for prediction did not have a substantial 
impact on the change in allele frequency. Yet, the direc-
tion of selection and architecture did. First, for down-
ward selection, patterns between additive and epistatic 
architectures were small. Average changes in allele 

frequencies were −0.05 and −0.04 for additivity and 
epistasis, respectively. Again, this is due to the extreme 
allele frequency that we observed for loci with a large 
effect in the base population. Second, the pattern of 
changes in frequency for upward selection was clearly 
distinct from that for downward selection (Fig.  4a, b). 
Here, a small percentage of QTN (~7 and 4% for addi-
tivity and epistasis, respectively) went to fixation or 
near fixation starting from very low frequencies, while 
the frequencies of the other QTN did not change much. 
In the light of the results in, e.g., Fig. 2a, b, it seems that 
most of the response was due to these very few loci with 
a large effect. Note that fewer loci were affected by large 
changes in frequency with epistasis than with additiv-
ity, which again is coherent with the larger decrease in 
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additive variance observed in the additive than in the 
epistatic architecture (Fig. 4a, b).

To study this furthermore, we computed the expected 
contribution in the absence of disequilibrium for each 
locus j (i.e. 2pj qj α2

j , α being the substitution effect [30]). 
Cumulative distributions both in the base population and 
in the last generation are in Figure S2 [see Additional 
file  1: Figure S2]. For all criteria and genetic architec-
tures, selection resulted in fewer loci explaining a given 
percentage of variance (although note that the absolute 
value of additive variance decreased as selection pro-
ceeded, Fig. 3). About 110 (28%) loci explained 90% of the 
additive variance in the base population versus 20 to 40 
(5 to 10%) loci in the last generation.

Prediction accuracy
In contrast to response to selection, prediction accuracy 
was affected by both genetic architecture and selection 
method. For the additive architecture and upward selec-
tion (Fig. 5a), accuracies obtained with the A-QTN model 
were high and remained relatively constant over genera-
tions; they were only slightly higher than with the A-SEQ 
model (ca. 4%). If epistasis was absent but accommodated 
in the model (E-QTN and E-SEQ), accuracies were initially 
comparable to those of the additive models but decreased 
eventually. Thus, in the long term, including epistasis in the 
model when there is none, affected negatively the GS per-
formance, and this was observed in both upward and down-
ward selection (Fig. 5a, c). In contrast, there were marked 
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differences between downward and upward selection accu-
racies with epistasis (Fig. 5b, d). First, for downward selec-
tion, accuracies remained stable with A-QTN and A-SEQ 
but steadily declined when epistasis was included in the 
evaluation model. Second, results were clearly non-linear 
for upward selection. In this case, all accuracies decreased 
in the long term although there was an advantage of includ-
ing epistasis in the model in the short term.

Linkage disequilibrium and inbreeding
We computed decay of LD  (r2) with physical distance at 
the beginning  (t0) and at the end  (t7) of each selection 
experiment. The level of long-range LD in the base popu-
lation was very low (Fig. 6, black line), with average  r2 of 
0.06 and 0.00 for SNPs within 1 and 5 Mb, respectively. 

LD increased significantly after selection. Direction of 
selection seems to be the main factor that affects the 
extent of LD: upward selection experiments had an aver-
age  r2 of ~0.27 between QTN pairs up to 10  Mb apart, 
whereas average LD (in  r2) was ~0.16 for downward 
selection. This could be due to the fact that most favora-
ble alleles in downward selection were nearly fixed in the 
initial generation. Genetic architecture did not affect the 
extent of LD strongly; yet, under the epistatic architec-
ture, knowing the causal mutations and including epista-
sis in the prediction model hindered the buildup of LD 
 (r2 was ~0.21 for E-QTN vs. ~0.28 for the rest of the 
models).

There were no substantial differences between genetic 
architectures in terms of genomic inbreeding over 
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generations, yet the pattern of inbreeding differed with 
the direction of selection (Fig. 7). After seven generations 
of upward selection, the final genomic inbreeding coef-
ficient was ~70% on average, compared to ~55% from 
downward selection experiments. Moreover, an initial 
reduction of the genomic inbreeding coefficient was 
observed in upward selection, which is likely related to an 
initial increase in minor allele frequencies. Knowing the 
causal mutations can favorably affect genomic inbreeding 
(on average, 54% with E-QTN versus ~65% for the other 
evaluation models). Considering that GS is expected to 
reduce the rates of inbreeding per generation, compared 
with traditional BLUP, because it provides additional 
information on Mendelian sampling terms of selection 
candidates, it is not surprising that the lowest inbreeding 

corresponded to the model that better reflects the archi-
tecture of the trait.

Discussion
This study examined the impact of epistasis on the short-
to-medium-term response to GS in an extreme scenario 
of non-symmetrical epistasis under divergent selection, 
as well as the possible advantage of including non-addi-
tive effects in the prediction model. To date, there is no 
previous work on the evolution of selection response to 
full-sequence-based GS over generations under epistasis.

As in any simulation study of this kind, our study aimed 
at computational feasibility and made some guesses on 
a likely genetic architecture. First, although GS is cer-
tainly most relevant for mammalian and avian genomes, 
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simulating these large genomes would have added a large 
computational burden. We chose the Drosophila genome 
instead because it is about 15 times smaller than those 
of mammals and because this species has been tradi-
tionally used extensively in numerous selection experi-
ments, their chromosome genetic lengths are comparable 
to those in mammals, and whole-genome sequences are 
available for a reasonably sized population [17]. Further-
more, starting with a high level of nucleotide variability 
and a low LD, the intensive selection process that we sim-
ulated induced strong LD (Figs. 6, 7), which mimics that 
of domestic species. Second, we used an extreme epistatic 
architecture, where all 200 QTN pairs showed interac-
tion. This was done to set an upper limit on the influence 
of epistasis, for which real effects in comparison to com-
plete additivity are likely weaker than those found here. 

Third, we used a mixture of estimated and small simu-
lated gene effects. This was done to compensate for the 
fact that most estimated effects are likely overestimated 
and result in a negative correlation between effect and 
frequency, which is expected in traits under directional 
selection [29].

We used the traditional encoding {0, 1, 2}, where 0 and 
2 are for the homozygous genotypes and 1 is for the het-
erozygous genotype, together with a Hadamard product 
between G to account for epistasis. It should be recalled 
that epistasis analyses are coding-dependent [31], 
because the multiplications of different encodings dif-
fer. Recently, we showed that this coding and Hadamard 
product are equivalent to a model with an explicit effect 
for interactions [32], and that this model is orthogo-
nal under Hardy–Weinberg conditions. Nevertheless, 
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because we did not build a matrix of dominance-by-dom-
inance or additive-by-dominance epistasis, only part of 
the dominance is accounted for. Theoretically, more real-
istic modeling options exist than the one used here but 
they would require more variance components to be esti-
mated and, in the light of our results, are probably similar 
to the model used in our study.

In our study, the response to selection was highly 
asymmetric (Fig.  2) due to the skewed distribution of 
allele frequencies in the base population. Alleles that 
decreased the mean were at high frequency in the base 
population, thus dampening the efficacy of downwards 
artificial selection [33]. This asymmetric pattern is usu-
ally observed in traits that are closely associated with 
fitness, as is chill coma recovery time [34–37]. The 
asymmetry was accentuated under epistasis. This can 
be explained as follows. In the complementary epistatic 

architecture, our simulated epistasis shrinks the absolute 
genotypic value of the double homozygotes, compared 
to an additive architecture (see "Epistatic architecture" 
in "Methods"). Because the dominant allele happened to 
be, in most loci, the one that decreased the value of the 
trait, epistasis is not symmetrical. Under upward selec-
tion, the dominant allele will be deleterious and, thus, 
the double dominant genotype will usually have a fitter 
phenotype than expected from pure additivity, protecting 
this positive interaction against the negative effects and 
causing a less severe fitness drop [38]. In contrast, under 
downward selection, the dominant allele will usually be 
the beneficial one and thus the double dominant will usu-
ally have a less fit phenotype than expected from an addi-
tive action, causing smaller than expected increments 
in the trait mean. As a result, the rate of response was 
systematically accelerated (decelerated) under upward 
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(downward) selection, compared to an additive architec-
ture, as predicted by Paixão and Barton [4]. In fact, one of 
the proposed evolutionary advantages for the presence of 
epistasis is past selection for resilience to environmental 
or genetic perturbations [4, 39].

In addition, epistatic interactions affect the response 
to selection mainly by modulating the additive genetic 
variance. Here, epistasis sustained additive genetic vari-
ance in GS for longer than with pure additivity (Fig. 3b, 
d). According to Paixão and Barton [4] and Mackay [2], 
alleles that are initially deleterious or near-neutral may 
acquire favorable effects as the genetic background 
changes, “converting” epistatic variance into addi-
tive variance, and thus prolonging the response to selec-
tion (Fig. 2b, d). In our simulations, downward selection 
rapidly eroded the additive genetic variance (Fig. 3c, d). 
This is likely due to the small size of the effective popula-
tion (although population size was constant and equal to 
500 individuals, only 10% in each sex was used to breed 
the next generation), shift in frequencies of alleles with a 
large effect, and to the Bulmer effect [40], which induces 
negative LD (i.e., negative correlation between frequen-
cies of the beneficial alleles) [41–43] and, as a conse-
quence, accuracies also decay rapidly (Fig. 5c, d).

GBLUP genomic evaluation models were robust since 
adding complexity to the model did not modify sub-
stantially the genetic gain for a given architecture. For 
instance, response was rather insensitive to the evalu-
ation model used in an additive scenario (Fig.  2a, c). 
Including epistasis when there was none led to similar 
genomic predictions because the estimated non-addi-
tive variance components from GBLUP in this scenario 
were very close to zero (results not shown). If epista-
sis existed, including it into the evaluation model had a 
positive effect, but only in the medium term. This was 
clearly observed with the E-SEQ model, which achieved 
response values comparable to those when the causal 
mutations are known under upward selection (Fig.  2b). 
Under downward selection and epistasis (Fig.  2d), no 
substantial effect on the response was observed by add-
ing complexity to the evaluation model, likely because 
the variation on which selection can work is already very 
small (Fig. 3d).

Adding complexity to the model had a noticeable 
impact on prediction accuracy (Fig.  5). For instance, 
including epistasis in the model when there is none even-
tually led to lower accuracies as selection proceeded 
(Fig.  5a, c). Yet, accounting for epistasis when it did 
exist, did not always lead to higher accuracies; in fact, 
for upward selection, including epistasis in the model 
was advantageous only in the medium term when using 
sequence data compared to using a strictly additive 
model (Figs. 2b, 5b). This is not too surprising, since most 

of the genetic variance is additive even in the presence of 
epistasis, unless allele frequencies are intermediate [2, 5]. 
(In our scenario of extreme epistasis, narrow sense her-
itability in the base population was about 0.25, i.e., half 
the total genetic variance). Accuracies even declined 
under downward selection when epistasis existed and 
was included in the evaluation model (Fig. 5d), whereas 
strictly additive models exhibited relatively constant 
accuracy values. This may happen because there is not 
enough power to capture epistatic variance due to most 
favorable variants being already close to fixation in the 
base population. Although some studies predict gains in 
accuracy when accounting for epistasis in GS [19], our 
results show that this advantage can be eroded as selec-
tion proceeds, likely because the substitution effects 
change over time.

This study also examined the performance of sequence 
data compared to when the causal mutations are known 
(i.e., when only the causal SNPs were used to build the 
genomic relationship matrices). Surprisingly, there was 
not much gain in response when causal mutations were 
known (Fig. 2), except at the beginning of the experiment 
(Fig. 5). With epistasis, the E-QTN model may be benefi-
cial in the long term, because it resulted in significantly 
lower levels of LD (Fig. 6b) and inbreeding (Fig. 7b) and 
thus it may sustain additive variance for longer (Fig. 3b). 
Nevertheless, the small advantage of knowing the causal 
loci contrasts with previous analyses [19, 44]. In [19], 
genomic prediction improved when adding SNPs or SNP 
combinations that were selected based on genome-wide 
association analyses. In [20], the improvement in predic-
tion accuracy with only-QTN models was larger under an 
epistatic scenario due to a lower proportion of the total 
genetic variance being additive in this architecture. How-
ever, in our simulations, the initial advantage of know-
ing the causal mutations on prediction accuracy did not 
persist. First, this small advantage of knowing the causal 
mutations may be attributed to the high heritability of 
the trait, large LD as a result of recent selection and the 
small number of chromosomes (three in Drosophila), and 
to the fact that phenotypic information on candidates 
was available for genomic prediction at each generation.

Conclusions
This study shows that epistatic interactions affect the 
response to genomic selection by modulating the addi-
tive genetic variance used for selection. Depending on 
the kind of epistatic action and on the distribution of 
allele frequencies, epistasis releases additive variance 
that may increase selection response compared to a pure 
additive genetic action. Furthermore, genomic evalua-
tion models and, in particular, GBLUP are robust, since 
adding complexity to the model did not substantially 
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modify the response (for a given architecture). Never-
theless, the evaluation model did affect accuracy but in a 
nonlinear way, which suggests that complex architectures 
may require updating the evaluation model as selection 
proceeds. In practice, of course, the problem would be 
to have sufficient data to estimate parameters reliably. 
Finally, even if knowing the causal mutation can in prin-
ciple boost accuracy, its impact on response to selection 
can be less impressive than anticipated, especially if the 
generated LD is very large, the effective population size 
is small and phenotypes are available on the candidates.
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