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Abstract

We study the static and dynamic interaction between a horizontal cylindrical nano-probe and a thin liquid film.
The effects of the physical and geometrical parameters, with a special focus on the film thickness, the probe speed,
and the distance between the probe and the free surface are analyzed. Deformation profiles have been computed
numerically from a Reynolds lubrication equation, coupled to a modified Young-Laplace equation, which takes into
account the probe/liquid and the liquid/substrate non-retarded van der Waals interactions. We have found that the
film thickness and the probe speed have a significant effect on the threshold separation distance below which the
jump-to-contact instability is triggered. These results encourage the use of horizontal cylindrical nano-probes to
scan thin liquid films, in order to determine either the physical or geometrical properties of the latter, through the
measurement of interaction forces.

1 Introduction
Classical Atomic Force Microscopy (AFM) experiments make possible the determination of interaction forces
between nano-probes and the surfaces of liquids [1]. In the absence of electric charges, the probe interacts with
the liquid only through van der Waals (vdW) forces. These interactions induce a deformation of the surface of the
liquid [2, 3]. With a probe of nanometric size, the interaction forces matter only at very small distances between
the tip and the surface liquid, e.g. a force on the order of F = 10−11 N is detected at a distance around S = 10
nm. However, at these distances, the force measurement becomes hard to achieve since the jump-to-contact (JTC)
instability [4, 5] occurs. In such a case, the liquid wets the probe, forming a capillary bridge [6, 7] and the nature of
the measured forces switches from vdW to capillary forces. Therefore, to measure molecular forces and study the
dynamics of liquid surfaces at the nanoscale, it is fundamental to estimate the critical distance, in order to approach
and scan the liquid at a distance just above the JTC threshold.

In this letter, we suggest the employment of a horizontal cylinder as a nano-probe to scan a liquid film. The
advantage of this geometry is to increase the intensity of the vdW interaction forces [8], while keeping a nanoscale
spatial resolution in the direction perpendicular to the cylinder axis. Comparing a nano-cylinder of radius r and
length ly with a spherical probe of same radius, the interaction force increases by a factor that scales as ly/(2rS)1/2.
For instance, a nano-cylinder, with length ly = 1 µm and radius r = 10 nm at distance S = 30 nm, generates a
force ∼ 40 times stronger than a sphere of the same radius. Alternatively, a typical interaction force of F = 10−11

N, measured by a spherical probe at S ∼ 4 nm, is also obtained with a cylindrical probe at S ∼ 23 nm, which may
be a good distance to avoid the probe wetting.

Recently, we have developed a hydrodynamic model that forecasts the interaction force between a liquid and
a spherical nano-probe, which also predicts the critical distance for the JTC phenomenon to occur [9]. Here, we
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Figure 1: (a) Schematic of the cylinder-liquid-substrate system, (b) dimensionless cylinder-liquid interaction potential,
given by eq. (8), and (c) the three solutions of eq. (22), given by eq. (24).

consider a nano-cylinder, which length is much larger than its radius, placed close and parallel to a liquid thin film.
We study the cylinder-liquid static interaction and the dynamic behaviour of the liquid surface due to the motion
of the cylinder, perpendicular to its axis and at a constant speed. Additionally, we show that, in both cases, the
critical JTC distance decreases when the film thickness is reduced. The threshold JTC distance is larger than that
observed for a steady spherical probe. For the cylinder-liquid dynamic case, it is found to be controlled by a critical
velocity, which is a function of the film thickness. Finally, we estimate the interaction force between the cylindrical
nano-probe and the thin liquid film, for given probe speeds and separation distances. Using our results, one may
determine some properties of the film, i.e. its thickness or rheology, while avoiding the JTC instability.

2 Problem formulation
We consider a liquid film of thickness E, density ρ, dynamic viscosity µ and air-liquid surface tension γ deposited
over a flat horizontal substrate. Above the liquid film, the axis of a solid cylinder, of radius r and infinitely large in
the y-direction (see Fig. 1a), is placed at a vertical distance s from the flat-film surface. The two bodies, liquid and
cylinder, are attracted to each other due to the non-retarded van der Waals (nr-vdW) interaction, characterized by a
Hamaker constant Acl. Similarly, the liquid film is also attracted to the substrate, with a Hamaker constant Als. In
addition, the cylinder moves parallel to the horizontal plane z = 0, with a constant speed v ≥ 0 in the x-direction.

At the air-liquid interface, the pressure difference p is described by the modified Young-Laplace equation:

p = 2γκ+ ρgh− ψcl + ψls , (1)

where h and 2κ are the position and the curvature of the liquid surface, respectively, g is the acceleration of
gravity, whilst ψcl and ψls are the cylinder-liquid and liquid-substrate nr-vdW interaction potentials. Moreover,
lubrication theory, considering no-slip at the liquid-substrate interface and no-shear at the air-liquid interface, yields
the following Reynolds equation:

∂h

∂t
=

∂

∂x

[
(e+ h)

3

3µ

∂p

∂x

]
, (2)

which relates the dynamic behaviour of the liquid free surface to the film properties and the pressure difference.
Using the cylinder radius as a characteristic length scale, one sets the following dimensionless variables:

X = x/r , ζ = hr/λ2A , T = t/τ ,

E = e/r , S = s/r , V = vτ/r . (3)

where the Hamaker length λA =
√
Acl/12πγ arises from the balance between cylinder-liquid nr-vdW and surface

tension forces [10]. We recall the capillary length λC =
√
γ/ρg, yielded when surface tension and gravity effects
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are matched [6], the film characteristic length λF =
√

2πγe4/Als, obtained from the comparison between surface
tension and liquid-substrate nr-vdW forces [9], and the film viscous-capillary time τ = 3µr4/

(
γe3
)

[6]. We also
introduce the Bond number Bo, the Hamaker number Ha and the Hamaker ratio A, which are defined as:

Bo = (r/λC)
2
, Ha = (λA/r)

2
, A = Als/Acl . (4)

The problem being independent of the y-coordinates, the curvature of the air-liquid interface 2κ reads, for small
slopes:

2κ = (Ha/r) 2K , 2K = − ∂2ζ

∂X2
. (5)

where 2K corresponds to the dimensionless curvature.
We can also define `, the distance from the axis of the cylinder to a point (see Fig. 1a) placed at the air-liquid

interface with coordinates (x, h), and its dimensionless equivalent L = `/r at (X, ζ). The distance L is related to
the spatial variables by the relation:

L =

√
(S −Haζ)

2
+ (X − V T )

2
, (6)

Hence, the cylinder-liquid interaction potential is related to its dimensionless equivalent as follows:

ψcl = (γHa/r) Ψcl , (7)

where the dimensionless potential Ψcl is given by:

Ψcl =
L+ 1

(L2 − 1)
3

[ (
L2 + 7

)
f2 − 2 (L+ 3) f1

]
, (8)

with m = (L− 1) / (L+ 1). The functions f1 (L) and f2 (L) are defined as:

f1 = −K
(√

1−m2
)
, (9a)

f2 = −im E
(

1/m
)

+
[
1−m2

]
f1 , (9b)

with K (z) and E (z) being complete elliptic integrals of the first and second kinds [11], respectively, and i =
√
−1

being the imaginary unit. The trend of the dimensionless interaction potential Ψcl is shown in Fig. 1b.
The liquid-substrate interaction potential is related to its dimensionless equivalent as follows:

ψls = (γHa/r)
(
2A/E3

)
Ψls , (10)

where the dimensionless interaction Ψls is given by:

Ψls = 1− (1 +Haζ/E)
−3

. (11)

Finally, if we define the dimensionless pressure difference P such that:

p = (γHa/r)P , (12)

then eq. (1) is re-written in dimensionless terms as:

P = 2K +Boζ −Ψcl +
(
2A/E3

)
Ψls , (13)

and eq. (2) becomes:
∂ζ

∂T
=

∂

∂X

[(
1 +

Haζ

E

)3
∂P

∂X

]
. (14)

2.1 Comoving frame
If one considers a transformation to the comoving frame of the cylinder, through the new variable U = X − V T ,
the Reynolds lubrication equation becomes:

∂ζ

∂T
− V ∂ζ

∂U
=

∂

∂U

[(
1 +

Haζ

E

)3
∂P

∂U

]
. (15)
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Surface profiles that are steady in this comoving frame are obtained by setting ∂ζ/∂T = 0. Such states are
identified as waves travelling to the right in the X-direction, with speed V and without change of shape. Therefore,
for those solutions, one finds the following ODE:

dζ
dU

= − 1

V

d
dU

[(
1 +

Haζ

E

)3 dP
dU

]
, (16)

which, after integration and considering that ζ = 0 and dP/dU = 0 at U → ±∞, can be reduced to:

dP
dU

= −V ζ
(

1 +
Haζ

E

)−3

. (17)

2.2 Boundary conditions
Substituting eq.(13) within eq.(17), considering the small-deformationHaζ/E � 1 and the small-slopeHadζ/dU �
1 approximations, and introducing the effective Bond number B∗

o and the modified capillary length ΛCF :

B∗
o = Bo + (r/λF )

2
, ΛCF = r/

√
B∗
o , (18)

one finds the simplified equation:
d3ζ
dU3

−B∗
o

dζ
dU
− V ζ = −dΨcl

dU
, (19)

where Ψcl = Ψcl (L) and L = L (U, ζ).
For |U | � S, the dimensionless cylinder-liquid interaction and its derivative can be neglected dΨcl/dU → 0,

and eq.(19) reduces to:
d3ζ

dU3
−B∗

o

dζ
dU
− V ζ = 0 , (20)

which solution is given by:
ζ = N exp

(√
B∗
o/3 kUU

)
, (21)

with N being a proportionality constant. In turn, kU is the solution of the characteristic equation:

k3U − 3kU − 2V = 0 , (22)

where V is the rescaled probe speed, defined as:

V =
v

vc
=
V

2

[
3

B∗
o

]3/2
, vc =

2

9
√

3

γ

µ

[
e

ΛCF

]3
. (23)

Here, vc appears as a characteristic speed. The solutions of eq. (22) are:

kU (j) = (Ω/σj) + (σj/Ω) , (24)

for j = 1, 2, 3, with:

Ω =
3

√
V +

√
V2 − 1 , σj = exp

(
i
2π

3
[j − 1]

)
, (25)

where Ω satisfies the relations [Re (Ω)]
2

= 1− [Im (Ω)]
2 for V ≤ 1 and Im (Ω) = 0 for V ≥ 1. The dependence

of kU (j), for j = 1, 2, 3, on the rescaled probe speed V is presented in Fig. 1c.
On one hand, the asymptotic solution for U → −∞:

ζ = N1 exp
(√

B∗
o/3 kU (1)U

)
, (26)

is found, allowing us to derive the following conditions:

dζ
dU

=
√
B∗
o/3 kU (1)ζ , P = −

√
B∗
o/3

V ζ

kU (1)
. (27)

On the other hand, we find for U →∞:

ζ =

3∑

j=2

Nj exp
(√

B∗
o/3 kU (j)U

)
, (28)

P = − 3

B∗
o

V

kU (2)kU (3)

{√
B∗
o

3

[
kU (2) + kU (3)

]
ζ − dζ

dU

}
. (29)

Equations (26-29) are employed as boundary conditions (BCs) to find a numerical solution for the system formed
by eqs. (13) and (17).
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Parameter Value
Hamaker number, Ha 2.7× 10−3

Hamaker ratio, A 1
Bond number, Bo 10−10

effective Bond number, B∗
o

[
10−10 , 1.6× 10−2

]

Table 1: Dimensionless parameters employed in this study.
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Figure 2: (a) Surface profiles for different values of the minimum separation distance S0
min, given by the correspond-

ing dimensionless thickness E (in colors). The inset shows the U > 0 side in log− log scale. (b) Apex position ζ0 as
a function of the separation distance S, for different E (in colors). Lines correspond to eq. (30). (c) Parameters α and
β as functions of E. The two lines are α given by a saturating exponential (see text) and β = −0.3. (d) Maximum
apex position ζmax and S0

min as functions of E. Lines correspond to eqs. (30–31).

3 Static surface profiles
The static case corresponds to a situation for which the cylinder displacement speed is set to v = 0. This is accom-
plished by solving eq. (13), setting P = 0, also considering the corresponding BCs and using the corresponding
dimensionless parameters reported in Table 1. In Fig. 2a, the shape of the liquid surface ζ (U) is plotted for differ-
ent values of the dimensionless film thickness, which has been varied in the range E ∈

[
100, 103

]
. All the surface

profiles present a symmetric shape, with respect to the U = 0 axis, an exponential decay and a bump-like rounded
summit with finite curvature. The main difference resides in their amplitude, since each curve has been obtained
for a particular distance S = S0

min, whose value depends specifically on E. S0
min corresponds to the minimum

separation distance before the JTC phenomenon occurs. In Fig. 2b, the apex position of the surface ζ0, which is
placed at U = 0, is presented as a function of the distance S. For a given film thickness E, decreasing S from
∞ towards shorter values leads to a monotonic increase of ζ0. The probe-liquid interaction increases, pulling up
the liquid surface with an increasing strength, which is consistently opposed by the surface tension, the hydrostatic
and the liquid-substrate disjoining pressures, leading to an equilibrium surface profile. There are two values of the
surface apex position ζ0 at a given distance S, the smaller belonging to a low energy and stable branch, whereas
the higher resides on a high energy and unstable branch. At the distance S = S0

min, the two branches connect and
yield a unique equilibrium surface profile with the maximum amplitude physically possible, which corresponds
to the curves shown in Fig. 2a for the selected values of E. For shorter separation distances, below S = S0

min,
the surface tension, hydrostatic and liquid-substrate interaction effects cannot hold the strength of the probe-liquid
interaction, and the bump-like shape of the film surface becomes unstable, provoking the jump of the liquid onto
the probe (JTC phenomenon) and the formation of a capillary bridge [4, 7].

Due to the complexity of the cylinder-liquid interaction potential, we are not able to find analytically a simple
expression to relate ζ0 and S. Nevertheless, thanks to past experience [9], we know that the aforementioned relation
should take the form of the following Ansatz:

S ≈ 1 +Haζ0 + α (Haζ0)
β
. (30)

where α and β are parameters, whose behaviours have been determined by applying a fit to the curves shown in

5
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Figure 3: Air-liquid interface profiles, for different values of the rescaled probe speed V (in colors); two film thick-
nesses: top row E = 1000 (for which S0

min ≈ 8.04) and bottom row E = 32 (for which S0
min ≈ 4.97); and different

values of the separation distance S: left column S > S0
min and right column S < S0

min. The probe moves from left
to right.

Fig. 2b. It results that β = −0.3 is a constant, whereas α is a function of the film thickness E, which can be
accurately described by the saturating exponential function α = 6.2− 5.9 exp (−0.02E). The parameters α and β
are presented in Fig. 2c as functions of E. Also, by making dS/dζ0 = 0 in eq. (30), we find:

Haζmax = (−αβ)
1/(1−β)

, (31)

the maximum physically possible position of the surface apex, and we are able to calculate S0
min by making

ζ0 = ζmax in eq. (30). The values of ζmax and S0
min, both obtained numerically and from the combination

of eqs. (30–31), are presented in Fig. 2d as functions of E. As the dimensionless film thickness E increases,
both critical values ζmax and S0

min grow monotonically, from ζmax = 0 and S0
min = 0 at E = 0 towards the

corresponding bulk plateau for each quantity ζmax (E →∞) and S0
min (E →∞), which starts around E = 316.

4 Dynamic surface profile
In Fig. 3, typical dynamic profiles of the air-liquid interface are shown. They have been calculated from eqs. (13)
and (17), with the dimensionless parameters reported in Table 1, for two dimensionless film thicknesses: E = 1000
(top row in Fig. 3) andE = 32 (bottom row in Fig. 3). For each thickness, two different values of the dimensionless
distance S are presented, the first (left) being S > S0

min and the second (right) being S < S0
min, i.e. above and

below the static critical distance S0
min introduced previously. Additionally, the rescaled probe speed has been

varied in the range V ∈
[
10−3, 106

]
. When S > S0

min (left column in Fig. 3), the effect of V is directly observed
on the height of the apex ζmax. Note that we define ζmax as the highest position of the dynamic surface, which
may not be placed at U = 0 as for the static apex ζ0. As V increases, ζmax decreases, together with the extent of
the surface profile. For V ≤ 10−3, the surface is still vertically displaced in the far field, near |U

√
B∗
o | ∼ 6, and

the surface profile shows a symmetric shape with respect to the position U = 0. As V is increased, ζmax lowers
monotonically and the surface profile becomes asymmetric: an exponential decay for U < 0 and oscillations within
an exponential decay envelope for U > 0. Indeed, when the probe moves slowly, for instance V < 10−2, the film
has time to drain a significant amount of liquid from far-away regions towards the location of the probe, creating a
nearly symmetric and high bump. In contrast, when the probe motion is relatively fast V ∈

[
10−2, 100

]
, also due

to the mass conservation, the film has only time to take the liquid that is nearest to the probe, creating a sunken
region in front of the probe (downstream U > 0). The higher the speed, the shorter the amount of collected liquid
becomes, and the bump below the probe is smaller and slightly left behind to the upstream region U < 0. In other
words, as the rescaled speed is increased above V > 100, the bump and the sunken region have less time to be
formed, showing smaller magnitudes and being confined to a narrower region around U = 0. For V ≥ 106, the
surface profile is only a very small crease at U = 0.

When the probe speed v is compared with the film characteristic speed vc, which corresponds to study the
relative value of V according to eq. (23), a transition from a symmetric profile towards an asymmetric behaviour is
theoretically predicted. For V < 10−1 a quasi-static film profile, symmetric with an exponential decay, is found,
whereas for V > 100 a non-symmetric profile, with an exponential decay at the region U → −∞ and attenuated
surface oscillations at U →∞, occurs (recalling eqs. (26) and (28) and the trends of kU (j), shown in Fig. 1c).
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Figure 4: Highest position of the film surface ζmax (left column) and its lateral position U (right column) as functions
of the rescaled probe speed V , for different values of the dimensionless thickness E (in colors) and a given separation
distance S. Each row corresponds to a different value of S: (top row) S > S0

min for any E, (middle row) S > S0
min

for E < 100 but S < S0
min for E ≥ 100, and (bottom row) S > S0

min for E < 32 but S < S0
min for E ≥ 32. At the

left column, continuous and dashed lines indicate slopes of −1/3 and −1, respectively.

For S < S0
min (right column in Fig. 3), even though this range of distances corresponds to situations for which

it is not possible to find a static surface profile other than a capillary bridge, non-contact dynamic profiles exist at
relatively high rescaled speeds V > Vcrit. For a given distance S < S0

min, the critical value Vcrit corresponds
to the probe speed above which we can still displace the probe along the film surface without creating a capillary
bridge. Thus, for V > Vcrit, a non-contact profile exists (different from the capillary bridge), corresponding to
an asymmetric profile, i.e. an exponential decay for U < 0 and oscillations within an exponential envelope for
U > 0. A further increase of V , provokes a reduction of the surface perturbation extent, both in the vertical and the
horizontal directions, while maintaining the same shape of the decay-oscillating profile.

In Fig. 4, the surface apex ζmax and its horizontal position U (ζmax) are shown as functions of the rescaled
probe speed V . They have been calculated for the dimensionless parameters reported in Table 1, with the effective
Bond number in the indicated range, since the film thickness has been varied within E ∈

[
10−3, 106

]
. The

separation distances S = 8.1, S = 5.1 and S = 3.29, which were shown in Fig. 3, are also the ones presented in
Figs. 4. One should keep in mind that, for the three cases, S may be larger or smaller than S0

min, depending on the
specific value of E under analysis.

When S ≥ S0
min, ζmax is nearly constant in the low-speed regime where V < 1, whereas its value drops when

V is increased above V = 1. In the high-speed regimes where V > 1, the apex position scales as ζmax ∼ V−1/3

for thick films with E > 10, whereas the scaling ζmax ∼ V−1 is clearly discerned for thin films with E = 1. For
films of intermediate thicknesses with 1 < E ≤ 10, we observe the transit from a thick-film behaviour at very
high speeds, to a thin-film behaviour at moderately high speeds. This crossover occurs at larger values of V as the
distance S is shortened.

Furthermore, still considering that S ≥ S0
min, the horizontal position U of the apex ζmax shifts from the probe

position towards a downstream position where U < 0, as V is increased. Specifically, in the slow regime where
V < 1, U (ζmax) stands on the plateau U = 0 and, at high speed where V � 1, it drops to either reach directly a
second plateau, for thick films or thin films, or to transit slowly between them, for intermediate thicknesses. The
level of the second plateau, at high speed where V � 1, for both thick and thin films, gets closer to the center
U = 0 as the separation distance S is diminished.

Finally, when the separation distance is shorter than the static threshold (S < S0
min), non-contact surface

profiles are only observed for a restricted speed range: V > Vcrit. The data points for ζmax and U (ζmax) are
obtained in the corresponding speed regime, and are represented in Fig. 4 as left-truncated data. As it can be
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Figure 5: (a) Minimum separation distance Sv
min as a function of the critical speed Vcrit, for different values of the

dimensionless thickness E (in colors). Dashed lines represent the values of S0
min in the static limit V = 0, for each E.

(b) Phase diagram which interface is given by the reduced separation distance S∗, defined in eq. (32), and Vcrit. The
continuous line corresponds to the JTC threshold, given by eq. (34), and the dashed line represents the static value
S0
min. The inset shows the separation distance of the inflection point Sflex, for each curve in (a), as a function of E.

The continuous line corresponds to eq. (33). (c) Probe-liquid force Fcl per unit length as a function of the probe speed
v, for different values of S and E.

observed, at V = Vcrit, ζmax diverges and U (ζmax) approaches U = 0. When the rescaled speed V is increased,
both quantities ζmax and U (ζmax) show a decreasing behaviour similar to that observed for S ≥ S0

min.

5 Dynamic jump-to-contact distance
In order to retrieve the critical speed Vcrit, for a film of a certain thickness E and a cylinder placed at a fixed
separation distance S, we have implemented the following procedure. With a fixed S, starting from the highest
value of the rescaled speed used in this study, V = 106, a decrease of V is performed. For a distance larger than the
static threshold S > S0

min, a non-contact solution can be found for any probe speed V . In contrast, for S < S0
min, a

solution can be found only for speeds above the critical speed Vcrit. The slope of the curve given by ζmax (log [V])
is tracked, until it reaches the value of 103, which we decided to be the indicator for the speed threshold, and the
wetting of the probe. This criterion also defines a minimum separation distance Svmin for a dynamic situation with
a finite speed V > 0. The results of this procedure are presented in Fig. 5a, where the dynamic minimum distance
Svmin is plotted against the critical speed Vcrit. All the curves Svmin (Vcrit) follow the same trend, for low speeds
V < 0 the critical distance remains at the static threshold Svmin = S0

min and, as the speed V increases, Svmin
lowers monotonically, with an inflection point occuring at a distance S = Sflex. Using this information, a reduced
separation distance S∗ may be defined as:

S∗ = (S − Sflex) /
(
S0
min − Sflex

)
, (32)

which allows the data shown in Fig. 5a to collapse into a single curve, as presented in Fig. 5b. Additionally,
in Fig. 5b (inset), the inflection distance Sflex as a function of E is reported, for which the following empirical
sigmoidal shape describes the data accurately:

Sflex = 4 + 2.5 tanh (1.33 log (E)− 2) . (33)

Hence, one can identify the non-contact region and the dynamic jump-to-contact region, in between which the
curve S∗ (Vcrit) acts as a boundary. This boundary can be empirically described by the function:

S∗ = 5 exp [−0.15 log (Vcrit)]− 4 , (34)
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as shown in Fig. 5b. For a fixed value of the reduced separation distance S∗ < 1, a rescaled speed above the
threshold value Vcrit allows us to scan the liquid surface without wetting the cylinder. On the other hand, a rescaled
speed below the threshold value Vcrit provokes the wetting of the cylindrical probe.

6 Force estimate
Finally, in order to compare with experimental data, we will find the relation between force and speed, recovering
their proper dimensions for direct application. For small slopes of the air-liquid interface, the force Fcl per unit
length, mutually exerted between the cylindrical probe and the liquid film, can be approximated by [8]:

Fcl = Acl/
[
8
√

2r2 (Lmin − 1)
]
, (35)

where Lmin =

√
[S −Haζmax]

2
+ [U (ζmax)]

2 is the shortest distance between the surface of the cylinder and the
free surface of the film. Using the data obtained for V > Vcrit, Fcl has been computed, and is reported as a function
of the probe speed v in Fig. 5c, for the film thicknesses e = r, 10 r, 1000 r, each curve corresponding to a single
value of the distance s. For given values of e and s, a cylindrical nano-probe scanning a thin film may experience
an increasing interaction force Fcl when the speed v is lowered. The intensity of Fcl grows dramatically as v
decreases and approaches its “no return” value v = vcVcrit, at which the force diverges and the JTC instability is
triggered. It is important to notice that, in Fig. 5c, the magnitude of the force is larger for a thin film than for a thick
film, because the threshold separation distances is shorter for the former than for the latter. It is, in consequence,
the combination of thickness e and distance s which defines the force magnitude for a given speed v, as i can be
discerned in Fig. 5c.

7 Conclusions
We have studied the effects of the non-retarded van der Waals interaction between a moving cylindrical probe and
a viscous thin film deposited over a rigid substrate. The influences of the physical and geometric parameters have
been analyzed via a few dimensionless parameters: effective Bond number B∗

o , Hamaker number Ha, separation
distance S and film thickness E. We have found that for both static and dynamic situations, the amplitude of the
deformation increases with the Hamaker numberHa, but decreases with the effective Bond numberB∗

o . In addition,
we have verified that shortening the separation distance S leads to larger displacements ζmax of the free-surface
profile.

Another dimensionless parameter, the rescaled probe speed V , plays a major role in the dynamic phenomenon.
This new parameter controls the morphology of the film surface. Low speeds V < 10−1 yield a quasi-static surface
profile, symmetric with respect to the horizontal position of the cylindrical probe U = 0, with an exponential-decay
length proportional to (B∗

o)
−1/2. High speeds V > 101 yield an asymmetric surface profile, with an exponential-

decay length proportional to (B∗
o)

−1/2 V−1/3 at horizontal positions where U � 0 and attenuated oscillations at
U � 0.

We have also unveiled that increasing the rescaled speed V , above a critical value Vcrit, which depends on the
separation distance S, can prevent the jump-to-contact (JTC) instability. Alternatively, when scanning at a finite
rescaled speed V > 0, the probe can be placed closer to the free surface of the liquid film, since the dynamic min-
imum separation distance Svmin, below which the JTC instability is triggered, is smaller than the static threshold
value S0

min. A phase diagram has been presented, in terms of the rescaled speed V and the reduced separation
distance S∗ (S, S0

min, E
)
, which allows us to identify the dynamic non-contact and jump-to-contact regions. This

result may be useful for determining the conditions to perform local-probe scanning experiments, since experimen-
talists may be able to increase the sensitivity of the probe by reducing the separation distance, while avoiding the
wetting instability by increasing the probe speed. Additionally, the presented methodology can be employed to
determine one of the physical or geometric parameters, e.g. film thickness or viscosity (rheology), when the re-
maining parameters are known. In comparison with a spherical probe, a cylindrical probe may yield a finer estimate
of the film properties, since the measurements can be performed at shorter probe/liquid distances.
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