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Community detection methods can discover better structural clusters
than ground-truth communities

Vinh-Loc Dao, Cécile Bothorel and Philippe Lenca

Abstract— Community detection emerged as an important
exploratory task in complex networks analysis across many
scientific domains. Many methods have been proposed to solve
this problem, each one with its own mechanism and sometimes
with a different notion of community. In this article, we
bring most common methods in the literature together in
a comparative approach and reveal their performances in
both real-world networks and synthetic networks. Surprisingly,
many of those methods discovered better communities than the
declared ground-truth communities in terms of some topological
goodness features, even on benchmarking networks with built-in
communities. We illustrate different structural characteristics
that these methods could identify in order to support users
to choose an appropriate method according to their specific
requirements on different structural qualities.

I. INTRODUCTION

Community detection is a fundamental task in the explo-
ration of networks and has received an exceptional attention
in complex network analysis in recent years [1], [2], [3]. It
is widely accepted that nodes in networks have a tendency to
connect preferably with the similar ones in order to establish
operational groups, which are sometimes called clusters,
modules or communities. Understanding these community
structures of networks plays an essential role in the study of
their functionality in many domains such as social network
analysis [4], biochemistry [5], communication [6], etc.

The word community in real life represents semantic
concepts, which define groups of individuals such as groups
of friends in social networks, biological modules in protein-
protein interaction networks or classes of malicious web
domains in world wide web. In this paper, we call these
communities metadata communities. On the other hand, in
network theory, a community implies a group of nodes
in a network that can be detected using some topological
conditions, which are usually and widely based on edge den-
sity criteria. The confusion between these two independent
definitions in two different contexts could lead to serious
misconstructions in the study of complex networks. Here,
when we refer to the word community, with an exception of
metadata ones, we imply the latter sense of community, i.e.
clusters discovered by algorithms.

Many community detection algorithms with different ap-
proaches have been proposed in the last decades [7], [8],
[9]. Each approach has a different partitioning strategy and
sometimes different points of view about topological require-
ments of a good community. Consequently, communities
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detected on a same network by different methods are usually
different in their structural patterns and sometimes release
unpredictable characteristics. That is the reason why the
analysis of community discovery method behaviors still faces
many challenges.

In networks where metadata communities are available,
the performance of community detection methods is usually
evaluated based on the similarity between communities that
they discover with metadata communities considered as
ground-truth. The most frequently used similarity metrics
that are worth mentioning include Normalized Mutual In-
formation (NMI), Recall score, Precision score, F1-measure,
etc.. However, declared metadata communities are not always
good references in terms of topology. For that reason, consid-
ering them as ground-truth can lead to irrelevant conclusions
about the properties of topological community detection
methods and eliminates good structures that are not similar
to metadata communities. A meticulous distinction between
these two notions has been pointed out in a recent research
by Aaron Clauset ez al. [10].

In this paper, we present a comparative analysis of most
common community detection methods in the literature
by studying a wide range of structural characteristics of
communities that they produce. In this way, a community
is appraised by many criteria that correspond to different
goodness notions. Although the analysis that we conduct in
this paper uses metadata as a point of reference, the goodness
of a community is only depended on its structure and not the
similarity with its associated metadata groups.

Then, we show that metadata communities in real-world
networks are not always good in terms of some structural
qualities, whereas using them as groud-truth is commonly
acknowledged. More importantly, we prove that there exists
communities in benchmarking networks that are even struc-
turally better than planted communities, which are widely
believed as ground-truth and represent the best solution that
could be found in synthetic networks.

The rest of this paper is organized as follows: Section
introduces some researches relating to the evaluation of
community quality and community discovery methods. In
Section we describe the dataset that is used in this
work and community detection methods under consideration.
Section focuses on the analysis process using goodness
metrics and important results obtained from this analysis.
Finally, we conclude this paper and point out some essential
contributions and perspectives in Section



II. RELATED WORK

Leskovec et al. [11] analyze the performance of many
scoring functions based on their capacities to identify some
community goodness characteristics. The authors also in-
clude many real life stimulation strategies on network com-
munities such as node swapping, member replacing, commu-
nity expanding, community shrinking in order to test their
consistency through perturbations.

Fortunato et al. published an analysis [12] where they
compare metadata communities with structural communities
throughout a dozen of community detection methods. They
use NMI metric to assess the performance of these meth-
ods through correlation score matrices. Besides, hierarchical
structures in communities are also considered in this analysis.

Rossetti et al. [13] introduce a novel approach to evaluate
the efficiency of algorithms by comparing detected com-
munities with a given ground-truth information. They use
precision score, recall score and their harmonic mean, known
as Fl-measure, to assess the quality of community discovery
methods using scatter plots. This approach is close to the
descriptive approach [14] where authors use combinations
of quality metrics to point out and expose structures of real-
world communities in a comprehensive way.

Cherifi et al. provide evidence of the distinctness be-
tween traditional detection performance in terms of similarity
metrics (Rand Index, NMI, etc.) and topological goodness
quality. They indicate that high performance scores do not
necessarily imply good structures [15].

ITII. NETWORKS DATASET AND COMMUNITY
DETECTION METHODS

In this paper, we rely on the hypothesis that there exist
communities whose structures are better than ground-truth or
real communities. To avoid any further confusion, semantic
communities in real-world networks or planted communities
in synthetic networks are from now called metadata commu-
nities.

A. Network dataset

Since our first priority is to compare as many methods
as possible, in this paper we only investigate undirected
and unweighted networks. Table [I| describes the dataset that
we use in this paper including very well-known real-world
networks in the first part and synthetic networks with built-in
communities from LFR benchmark [17] in the second part.
These synthetic networks are created in a way that their struc-
tural parameters approach those of real-world networks. Such
that node degrees follow the power-law distribution [18] with
exponent coefficients around —2.5. Average node degrees
are set from 5 to 20 to acquire relatively sparse networks.
Besides, in order to obtain a variety of community quality,
the Ifr1-fr5 networks are configured with mixing parameters
u €{0.1,0.2,0.3,0.4,0.5} which represents the probability
that an edge of a node is connected to nodes outside
of its community. Moreover, built-in communities can be
disjointed or overlapped with different average participation
rates A from 1.0 to 2.6 groups per node.

Graph N E d k a CCF
zachary! 34 78 5 4.59 -2.16 0.256
football! 115 613 4 10.67  -9.09  0.407
polblog! 1222 16714 8 2736 -3.67 0.226
youtube?* 39841 224235 15 1126 -2.78 0.063
livejournal®* 84438 1521988 27 36.05 -2.35 0.773
dblp? 317080 1049866 23  6.63 -3.26  0.306
amazon? 334863 925872 47 553 -3.59  0.205
e 5000 26836 7 1073 -298  0.192
1fr2 10000 24617 18 4.92 -3.08 0312
1fr3 25000 133429 6 10.67 -3.05 0.024
1fr4 100000 480978 14 9.62 -2.51  0.178
Ifr5 100000 1056963 6 21.14  -2.50  0.055

Vhttp:/fwww-personal.umich.edu/ mejn/netdata/

2 https.//snap.stanford.edu/data/ and *subgraph of 5000 communities

N number of nodes, E number of edges, d network diameter, k average
degree of nodes, & estimated power law exponent of node degree se-
quence [18], CCF clustering coefficient

TABLE I
A DESCRIPTION OF DATASET USED IN THIS ANALYSIS

The metadata communities of the previous presented net-
works are described in table[ll Metadata groups in real-world
networks are considered as communities such as: those in
amazon represent product categories on Amazon website,
while metadata communities in dblp are publication venues.
These communities can be overlapped since a product on
Amazon can belong to several categories and an author in
DBLP can publish at several publication venues.

Graph C S A B Metadata

zachary 2 17.00 1.00 NA Group memberships

football 12 9.58 1.00 NA Team groups

polblog 2 611 1.00 NA Political alignments

youtube 5000 1459 1.83 -2.21  Subscription groups

livejournal 5000 2780 1.65 -2.83  Group memberships

amazon 75149  30.23 6.78 -2.08  Product categories

dblp 13477 5341 227 -3.06 Publication venues
7S 5157 1359 140 -3.08 Planted groups

1fr2 1473 6.79 1.00  -3.29  Planted groups

1fr3 3002 21.65 2.60 -2.09 Planted groups

1fr4 9434 13.14 124 -2.50  Planted groups

Ifr5 4729 21.15 1.00 -2.57 Planted groups

C number of communities, S average community size, A community
membership per node, 3 estimated power law exponent of community size
distribution [18].

TABLE I
A DESCRIPTION OF TOPOLOGICAL FEATURES OF METADATA GROUPS

B. Community detection methods

We include a wide spectrum of popular methods in the
literature which can handle the networks in a reasonable
time. Except for further mentions, all the analysis based on
the following methods are conducted with default parameters
provided from their authors.

1) Structure-based approaches:

« Cfinder [19] searches for groups of nodes which are
constituted by sets of k-cliques that can be reached from
each other through a sequence of adjacent k-cliques. We
set k =3 in this analysis (referred as cfinder3).



2) Dynamics-based approaches:

« Conclude [20] weights edges of the input network by
using a random walker and then calculates distances be-
tween each pair of connected nodes. Finally, it searches
out communities based on these distances.

« Infomap [21] turns the community detection task into
the problem of compressing the description length of a
random walker’s trajectory so that one can recover as
closely as possible the original structure of the network.

« Walktrap [22] measures similarities of vertices based on
random walks and then computes community structures
in an agglomerative process. This approach is based on
the intuition that random walkers tend to get trapped
into densely parts corresponding to communities.

3) Diffusion-based approaches:

« Label [23]: The label propagation method is based on
the idea that every node is likely to belong to the
community where reside most of its neighbors. Nodes
are configured with unique labels at the initial step, then
they adopt the labels that most of their neighbors have.

o Copra [24] is an extension of the label propagation
method which can include overlapping information as
an input parameter. Each vertex can belong up to v
communities. In this analysis we set v =4 (referred as
coprad).

« Demon [25] fuses overlapping communities that are ex-
plored locally by using the label propagation algorithm
together based on a merging function. Fusing parameter
is chosen at € = 0.25.

« Ganxis is a general speaker-listener label propagation
algorithm based on information propagation process,
which spreads labels around nodes according to some
interaction rules [26].

4) Optimization-based approaches:

« Fastgreedy is a hierarchical agglomeration algorithm
for detecting community structures based on the maxi-
mization of modularity increment in each iteration [32].

« Louvain: This method is a multi-step hierarchical mod-
ularity optimization [27]. In each step, it aggregates
closely connected nodes that yield an optimization of
modularity to create a intermediate partition.

o Oslom is based on a local optimization of a fitness
function expressing the statistical significance of clus-
ters with respect to random fluctuations [28].

IV. AN ANALYSIS OF STRUCTURAL FEATURES OF
COMMUNITY DETECTION METHODS

The main objective of this paper is to quantify the behavior
of community detection methods in terms of some specific
community topological features. In other words, we eval-
uate the functionality of a method by analyzing structural
characteristics of all the communities that it discovers. In
order to do that, we apply all community detection methods
presented in Section to each network in the dataset
and then measure various structural features of identified
communities. The obtained values will be then compared

with their corresponding values in metadata communities
in order to evaluate detection performance. These structural
features, which will be introduced in Section [IV-Al also
represent goodness metrics as they describe various notions
of a good community. In this paper, these terms are used
interchangeably.

A. Definitions of structural goodness metrics

A graph G = (V,E) is composed of a set of n = |V| nodes
and m = |E| edges where E = (u,v) : u,v € V. Given a cluster
S of ng nodes, which is a subgraph of G, a function g(S)
quantifies a structural goodness feature of S according to a
particular expectation of community quality. Let mg be the
number of edges inside S, ms = |(u,v) EE:uc€S,vES|; cs
be the number of edges that connect S to other nodes outside
of S, cs=|(u,v) €E:ucS,v¢&S|. Since quality scores of
communities are normally correlated [11], some following
representative goodness metrics are considered:

o Separability [11] is based on the concept that a good
community should be well separated by a rupture in
edges distribution. This function measures the ratio
between internal connections and external connections
of nodes inside a community: g(S) = ’;’—SS

o Embeddedness [12] reflects how much the direct neigh-
bors of a node belong to its community. It is measured
as the ratio of internal degree to the total degree of a
community: g(S) = 5 nf;ﬂfCS.

o Density [11] captures the idea that nodes in a commu-
nity must be well connected. It quantifies the fraction
of edges inside S over the total possible edges could be
established in S: g(S) = Mif]m

o Compactness [29] suggests that good communities
should be at the same time dense and easily reachable
from nodes to nodes. This quality is calculated by:
g(8) = %, where d(S) is the diameter of S.

o Clustering coefficient is a very well-known metric [30]
which is used to evaluate community quality. It is
based on the concept that pairs of nodes with common
neighbors are more likely to be connected.

o Cluster modularity measures the difference between
edges inside S and the expected number of such edges

in a random network with the same degree distribution.

2
8(8) = [ — M 1), 21,

B. Properties of metadata communities in terms of structural
goodness metrics

As previously mentioned, we employ metadata community
goodness scores as a reference for testing the performance of
community detection methods. Thus, we are now interested
in analyzing the distribution of these scores throughout our
set of metadata communities. We compute the goodness
scores defined in Section [V-Al for all metadata communities
in the dataset and present the distribution of these scores
in Figure [I] and [2] for real-world communities and synthetic
communities respectively. Each subfigure represents a distri-
bution of one goodness metric’s scores.
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g. 2. Distribution of goodness scores of synthetic metadata communities

As we can see, the distributions differ notably from
one metric to another in both real-world communities and
synthetic communities as they measure different structural
aspect of communities. However within a goodness metric,
these distributions are quite similar from one metric of
quality to another. A possible explanation for this similarity
could be that metadata communities in these networks are
correlated with structural features, so that goodness scores
are distributed in a more organized way than in a topo-
logical meaningless partition. Note that by the construction
mechanism of LFR benchmark based on a constant mixing
parameter U, there are some ruptures and peaks appeared on
the side of synthetic communities [31].

These distributions could also give a prediction about the
possibility to discover good structural communities. It is
based on a premise that one expect to get partitions with high
goodness scores. If goodness score distributions are right-
skewed, there is a chance that community detection methods
could identify communities whose scores are moved towards
the right hand side of the distribution landscapes. Although
the performance of community detection algorithms also
depends on topological characteristics of input graphs, this
preliminary survey provides significant information about
metadata structural properties and a potential perspective.

Method Sep. Emb. Den. Com. CCFE Q.
cfinder3 1.68 094 397 1.16 1.90 0.44

" conclude” 142 T 1.3 0 2527 T 072 0 133 0 063
infomap 2.24 1.26 334 0.96 0.90 0.75
walktrap 1.87 1.19 335 0.78 0.93 0.65

“label 272 140 184 1.5 11 106
copra4 1.35 087 294 1.76 1.14 0.53
demon 4.28 126 063 19.28 1.05 1.44
ganxis 5.34 1.39 254 1.19 1.03 0.84

" fastgreedy  6.18 ~ 146 ~ 279 T 1.79 T 099 © 271
louvain 11.01 150  2.68 6.02 094  12.67
oslom 1.69 1.10 1.29 1.21 1.05 0.83
Average 3.62 123 254 3.27 1.13 2.19

Ratio between average structural goodness scores of detected communities
over those of metadata communities calculated based on equation (T).
Sep. separability, Emb. embeddedness, Den. density, Com. compactness,
CCF. clustering coefficient, Q. Cluster modularity, Avg. average quality
improvement score. The best method of each quality feature are bolded.

TABLE III
AVERAGE GOODNESS SCORE RATIOS ON REAL-WORLD NETWORKS

C. An analysis of community detection methods’ behaviors
based on structural goodness metrics

The principle interest in this section is answering the
question: "How good are communities identified by meth-
ods presented in Section [[II-B| compared to the metadata
communities in terms of structural goodness features defined
in Section [[V-AP” We quantify a ratio between the average
goodness scores of discovered communities and those of
metadata communities to evaluate these methods.

Suppose that method M discovers Cy communities in
a network, which contains Cp metadata communities. The
goodness ratio which represents the improvement of feature
F promoted by method M in this dataset is measured by:

(22 r(59)] /Cu
[ch-il 8F (S.,-)} /Co

This ratio can vary from zero to infinity. R(M,F) =1
indicates that the method M provides communities that are as
good as metadata communities in terms of feature F', while
R(M,F)>1 and R(M,F) < 1 implies an enhancement and
a degradation respectively.

We measure all goodness scores of detected communities
and calculate goodness ratios based on Equation (I). The
average ratios are showed in Table [IT] and [IV] for real-
world networks and synthetic networks respectively. Each
row corresponds to a method and each column corresponds
to a goodness metric.

Surprisingly, we observe a significant quality improvement
in most methods and goodness metrics, even in synthetic net-
works where it is widely believed that planted communities
are the best, there are still improvements in general. This
phenomenon is explainable since LFR benchmark only create
communities based on a mixing parameter condition which
is not always preferred by all goodness functions. Hence, it is
generally possible to get higher goodness scores just by some
simple actions such as merging, dividing communities, etc.

R(M,F) = (1)



Method Sep. .
cfinder3 0.89  0.89 1.57 0.88 1.63 0.70
“conclude” T 1.000 097 126 076 122 077
infomap 122 1.08 095 0.99 0.98 1.00

walktrap 122 1.07 1.27 0.79 1.04 0.83

label 120 1.64 0.88 0.87 0.87 0.79
copra4 089 145 082 074 0.75 0.66
demon 076 077  0.87 2.20 1.16 278
ganxis 1.14  1.04 1.04 0.84 0.96 1.03

" fastgreedy  1.94° 122 035 1497 080 ~ 36.70
louvain 1.57  1.21 0.09 7.10 0.73  26.62
oslom 1.10  1.04 086 1.13 0.97 1.25

Average 1.17 1.13 0.91 2.84 1.01 6.65

The abbreviations are reused from Table
The best method of each quality feature are bolded.

TABLE IV
AVERAGE GOODNESS SCORE RATIOS ON SYNTHETIC NETWORKS

However, we can see in Table that no method can improve
all goodness scores of synthetic communities at the same
time. Each method will normally improve some goodness
scores while reduce some others.

Importantly, it can be seen that the average improvement
of goodness scores in real-world networks is generally higher
than that of in synthetic networks. This is completely reason-
able since metadata communities in synthetic networks are
planted based on many topological conditions while meta-
data communities in real-world networks are often chosen
by semantic meanings, functional criteria or sometimes in
a subjective way. As a consequence, there are obviously
less correlation between metadata communities with their
topology in real-world networks. For this reason, commu-
nity detection algorithms could ameliorate more remarkably
structural goodness scores of real-world metadata groups.

Density is the only goodness metric that shows a global
degradation in synthetic networks. Though, it is totally
explainable since the link density of a subgraph § is measured
by the ratio between the number of links inside S and the
total number maximum of links that could be formed, which
is ng(ng —1)/2. While link density increases linearly with
the size of S in sparse graphs, the number of possible links
increases quadratically. So it is clear that density favors small
communities in general. Since synthetic community sizes fol-
low power-law distributions with high exponent coefficients,
there are plenty of tiny communities in synthetic networks.
This explains why density is not often improved. However,
one can note that cfinder3 always improves significantly the
density in the two cases as it found a numerous number of
small cliques. This clique detection mechanism also makes
cfinder3 to be the best to improve clustering coefficient.

Since both metrics separability and embeddedness are both
built on the notion that good communities have relatively
higher number of internal edges than number of external
edges, one can remark that there is a correlation between
these two metrics throughout all methods in both cases.

As presented, compactness favors short diameter commu-
nities where nodes are easily accessible from one to another.
This conception explains why methods that discover locally

nodes in networks such as demon, louvain, fastgreedy
usually improve significantly this goodness feature.

Modularity is the most atypical among the studied metrics
as it is improved more significantly in synthetic networks.
Since modularity is designed as an accumulative function,
it can be misbehaved by using an average ratio. However,
it is not unpredictable to see that modularity optimization-
based methods such as fastgreedy and louvain enhance
remarkably this metric.

D. A ranking of community detection by structural goodness
metrics

In this section, we focus on the ranking of community
detection methods in function of the above goodness metrics.
There are no changes in the experiment setup except that at
this time, we consider the dataset as a whole. That means
that the ranking of a method should reveal its functionality
in both real-world networks and synthetic networks.

Table [V] shows the ranking of studied methods according
to the six different qualities. A quick glance through the
table shows that separability and embeddedness quality can
be best discovered by louvain, fastgreedy and ganxis
methods while high density communities can be detected by
a dynamics-based method. Compactness and modularity are
notably ameliorated by using an optimization-based method
whereas clustering coefficient prefers cfinder3 method.

We can not notice any method that outperforms all the
others in a general way. All studied community detection
methods are doing well according to one or sometimes many
criteria, but there is not a best method for all the studied
cases. The modularity-based methods obtain the highest
average ranking score of 4.3 over 11 methods and perform
well in terms of most criteria but poorly for density and
clustering coefficient quality. Globally, the rankings of these
methods fluctuate around a medium value, which presents
them as very highly competitive. However, if one has an
interest in a specific criteria of structural community, this
reference could provide an important information. It answers
the question: ”"Which method one should choose to identify
communities with specific characteristic requirements?” and
assist analysts to choose the most appropriate method that
corresponds to their expected notion of community.

One should note that this ranking is relative. A change
of ranking criteria, goodness metric set or input dataset
could change the orders of these methods. However, it does
not mean that the ranking have no significance. Since we
analyzed a very large number of communities with a variety
of topological features, the result showed a statistical consis-
tence in the functionality of community detection methods.

It is also worth mentioning that many methods are vari-
able, which means communities that they discover may be
different from one try to another. Hence, there could be some
slight fluctuations in goodness scores that one can obtain
during various experiments.

V. CONCLUSIONS AND PERSPECTIVES

In the paper, we analyze the functionality of a wide range
of community detection methods using structural character-



Method Sep. Emb. Den Com CCE. Q Avg.
cfinder3 9 11 1 7 1 11 6.7
“concludet 1097 T s iU 20T 9|1
infomap 6 5 3 9 9 7 6.5
walktrap 7 6 2 10 8 8 6.8
“label 5 1 9 6 5 57|52
copra4 11 7 4 4 7 10 7.2
demon 4 10 11 1 3 3 53
ganxis 3 4 6 8 6 6 5.5
" fastgreedy 2 37 7 2 7100 27| 437
louvain 1 2 8 3 11 1 4.3
oslom 8 8 10 5 4 4 6.5

The abbreviations are reused from Table [Tl Avg. - average ranking.
The highest ranked method by each goodness metric are bolded.

TABLE V
RAKING OF COMMUNITY DETECTION METHODS OVERALL THE DATASET

istics that correspond to many notions of good community
structures. We yield two following contributions:

Firstly, we found that communities identified by these
methods are structurally better than given metadata even
in synthetic networks. In consequence, comparing structural
communities with metadata as ground-truth by similarity
metrics is not fair for evaluating the performance of al-
gorithms that use merely topological information. This is
not the first paper that indicate this issue, but with a new
approach we reinforce the discovery with more evidences.

Secondly, to the best of our knowledge, there is actually
no straightforward answer for the question: "Which com-
munity detection methods one should choose to optimize
a topological goodness metric?”. Even if there are many
methods, which try to optimize some objective functions
such as Modularity [2] or Conductance, many of them are
usually biased especially in large-scale networks and produce
unexpected partitions [33]. Actually, the choice of a method
is often based on its simplicity (in terms of deployment and
time consumption) and its availability. This paper brings the
community structural goodness notion into consideration.
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